Using a Small ROV to Estimate the Abundance of Sensitive Rockfishes and Benthic Marine Fishes in a Broad-Scale Regional Survey

R.E Pacunski
W.A. Palsson
T. S. Tsou
Y.W. Cheng
F.R. Wallace
Puget Sound rockfish populations in decline
Traditional assessment tools not appropriate for sensitive populations or difficult habitats
WDFW videographic methods
 - drop- camera
 • limited to 37 m depth
 - Inspection-class ROVs
 • 2004, 2005 – pilot surveys of San Juan Channel
 • 2008, 2010-11, region-wide, San Juan Islands
ESA Listed Rockfish

Yelloweye

Bocaccio

Threatened

Canary

Endangered
Non-lethal sampling

Seaeye Falcon

WDFW R/V Molluscan
2008 ROV Survey

- San Juan Islands
- Habitat map of study area from MBES
- Limited to rock habitats
- Stratified-random design
 - Depth stratified along 20 fathom contour
 - Randomly selected start points
- Daytime sampling only
- Minimum transect distance of 250 m
Multibeam imagery
Interpreted MBES and backscatter
2008 ROV Survey final map
2008 Results

• 207 transects
• Rock encountered on 100% of transects conducted on geophysical map
• Rock encountered on 82% of transects conducted on WDFW low-res map
• Pop. estimates for 42 bottomfish species
 – 11 rockfish species
• SEs from 8-14% for most common species
2008 Copper and Quillback locations
2008 Yelloweye rockfish locations
2008 Population estimates

Thousands

Copper: 14% SE
Quillback: 11% SE
Yelloweye: 25% SE
2010 ROV Survey

- San Juan Islands (same as 2008)
- All habitat types included
- Stratified-Systematic grid
 - stratified by area based on distribution of yelloweye rockfish seen in 2008
- 24-hour sampling
 - 24-hour study conducted to account for diurnal differences in sampling
 - Transects run for 30 minutes regardless of direction
- Stereological analysis
 - Control for “edge effect” bias
Stereology

- “the spatial interpretation of sections”
- The science of estimating higher dimensional information from lower dimensional samples
- Systematic Random Sampling (SRS)
 - Reduced variance when compared to Simple Random Sampling
 - Method is unbiased as long as the sampling set is chosen in a random manner
2010 ROV Survey Stations

East: n = 64 (3 AS)
West: n = 116 (5 AS)
2010-11 Results

• 180 transects (172 primary, 8 adaptive)
• All habitats sampled
• Encounter rates for most common rockfish similar to 2008 on comparable habitats
• Rockfish species distributions consistent with 2008 but fewer species encountered
• Changes in ROV lighting configuration allowed for improved imaging of flatfish and small (<15 cm) bottomfish
Yelloweye rockfish

• 2008
 – 39 individuals on 25 transects
 – All juveniles and sub-adults (<40 cm)
 – Population estimate = 47,407 (24% SE)
 – All sightings on steep, complex rock

• 2010-11
 – 14 individuals on 10 transects
 – All juveniles and sub-adults (<40 cm)
 – All sightings on steep, complex rock
2008 and 2010 YEYE locations
Conclusions

- Small ROVs are an excellent tool for sampling in non-trawlable habitats
- Ability to image uncommon and rare species validates the use of ROVs for monitoring and assessment
- Repeatable surveys
- Technological additions (DVL, HD video, ranging system) will improve our ability to image fish and produce accurate population estimates
Acknowledgements

Washington Sea Grant

➢ Technology development

Rockfish Research Fund

Derelict Gear Program

➢ Funding and support