Preface to the Environmental Assessment for 2017 Ocean Salmon Fisheries Management Measures (RIN 0648-BG59)

The development of annual management measures for West Coast salmon fisheries is a well-documented and public process. Alternatives for annual management measures are developed at the March meeting of the Pacific Fishery Management Council (Council). At this meeting, the previous year’s fisheries are reviewed, and alternatives are developed for the current year’s fisheries after considering projected stock abundances, conservation objectives in the Fishery Management Plan (FMP), and compliance with the Endangered Species Act (ESA), Marine Mammal Protection Act (MMPA), and other relevant laws, as well as international agreements under the Pacific Salmon Treaty (PST). Public meetings are held in Washington, Oregon, and California in late March to give the public the opportunity to provide comments on the alternatives. The Council meets again in April to consider public and agency input on the alternatives and to develop and adopt a preferred alternative. Environmental impacts of the preferred alternative are within the range of impacts analyzed for the preliminary alternatives, although new fisheries data developed between March and April, especially regarding fisheries north of Cape Falcon, may require modification of the range of impacts.

During this process, the Council and the National Marine Fisheries Service (NMFS) develop a series of documents that describe the development and analysis of the alternatives. These documents collectively form the basis for the Environmental Assessment (EA) for NMFS’ analysis of the proposed action of adopting the 2016 ocean salmon fisheries management measures under the National Environmental Policy Act (NEPA). This Preface is provided to guide the reader through the three documents that, collectively, form the EA (see Table 1, below). These documents are available to the public on the Council’s website (www.pcouncil.org):

PRE I describes Purpose and Need, Affected Environment, and the no-action alternative.

PRE II describes the analysis of the action alternatives.

PRE III describes the final preferred alternative adopted by the Council.

A fourth document, also available on the Council’s website, is referenced in the above and provides some aspects of the affected environment, especially related to salmon stocks:

<table>
<thead>
<tr>
<th>NEPA Element</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose and Need</td>
<td>PRE I: Pages 1 – 2</td>
</tr>
<tr>
<td>Affected Environment</td>
<td>PRE I</td>
</tr>
<tr>
<td>Description of the Affected</td>
<td>PRE I: Chapter I, pages 4 – 12</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Affected Environment: Chinook Salmon</td>
<td>PRE I: Chapter II, pages 13 – 47</td>
</tr>
<tr>
<td>Affected Environment: Coho Salmon</td>
<td>PRE I: Chapter III, pages 49 – 74</td>
</tr>
<tr>
<td>Affected Environment: Pink Salmon</td>
<td>PRE I: Chapter IV, page 75</td>
</tr>
<tr>
<td>Alternatives</td>
<td>PRE I and PRE II</td>
</tr>
<tr>
<td>Description of No action alternative</td>
<td>PRE I: Chapter V, pages 77 – 95</td>
</tr>
<tr>
<td>Description of Action alternatives</td>
<td>PRE II: Chapter 7, pages 10 – 12, and Tables 1 – 4</td>
</tr>
<tr>
<td>Analysis of Impacts (Environmental Consequences)</td>
<td>PRE II: Chapter 8</td>
</tr>
<tr>
<td>Impacts on salmon stocks</td>
<td>PRE II: Chapter 8, pages 13 – 18, Tables 5 – 7</td>
</tr>
<tr>
<td>Socioeconomics</td>
<td>PRE II: Chapter 8, pages 18 – 23, Tables 9 – 10, Figures 1 – 2</td>
</tr>
<tr>
<td>Non-target Species</td>
<td>PRE II: Chapter 8, page 23</td>
</tr>
<tr>
<td>Marine Mammals</td>
<td>PRE II: Chapter 8, page 24</td>
</tr>
<tr>
<td>ESA Listed Species</td>
<td>PRE II: Chapter 8, pages 24</td>
</tr>
<tr>
<td>Seabirds</td>
<td>PRE II: Chapter 8, page 24</td>
</tr>
<tr>
<td>Biodiversity and Ecosystem Function</td>
<td>PRE II: Chapter 8, page 25</td>
</tr>
<tr>
<td>Ocean and Coastal Habitats</td>
<td>PRE II: Chapter 8, page 25</td>
</tr>
<tr>
<td>Public Health and Safety</td>
<td>PRE II: Chapter 8, page 25</td>
</tr>
<tr>
<td>Cumulative Impacts</td>
<td>PRE II: Chapter 8, page 25</td>
</tr>
<tr>
<td>Final Preferred Alternative</td>
<td>PRE III</td>
</tr>
<tr>
<td>Description</td>
<td>PRE III: Tables 1 – 4</td>
</tr>
<tr>
<td>Socioeconomic Impacts</td>
<td>PRE III: Chapter 10, pages 16 – 19</td>
</tr>
<tr>
<td>Environmental Effects</td>
<td>PRE III: Chapter 10, pages 19</td>
</tr>
<tr>
<td>Compliance with other Applicable Law and Finding of No Significant Impact</td>
<td>Addendum</td>
</tr>
</tbody>
</table>

NOTE: Any meaningful changes or updates to the Council’s documents used in this EA are shown in red.
ACKNOWLEDGMENTS

SALMON TECHNICAL TEAM

DR. ROBERT KOPE, CHAIR
National Marine Fisheries Service, Seattle, Washington

DR. MICHAEL O’FARRELL, VICE-CHAIR
National Marine Fisheries Service, Santa Cruz, California

MS. WENDY BEEGHLEY
Washington Department of Fish and Wildlife, Montesano, Washington

MR. CRAIG FOSTER
Oregon Department of Fish and Wildlife, Clackamas, Oregon

DR. STEVE HAESEKER
U.S. Fish and Wildlife Service (Alternate), Vancouver Washington

MR. LARRIE LAVOY
National Marine Fisheries Service, Seattle, Washington

MR. ALEX LETVIN
California Department of Fish and Wildlife (Alternate), Santa Rosa, California

PACIFIC FISHERY MANAGEMENT COUNCIL STAFF

MS. ROBIN EHLKE
MS. RENEE DORVAL
MS. KIM AMBERT
MR. KRIS KLEINSCMIDT

The Salmon Technical Team and the Council staff express their thanks for the expert assistance provided by Ms. Vanessa Gusman, Ms. Melodie Palmer-Zwahlen, and Ms. Jennifer Simon, California Department of Fish and Wildlife; Mr. Kyle Van de Graaf, Washington Department of Fish and Wildlife; Mr. Henry Yuen, U.S. Fish and Wildlife Service (retired); Ms. Sandy Zeiner of the Northwest Indian Fisheries Commission; and numerous other agency and tribal personnel in completing this report.

This document may be cited in the following manner:

A report of the Pacific Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award Number FNA10NMF4410016.
TABLE OF CONTENTS

LIST OF TABLES... v
LIST OF FIGURES .. vi
LIST OF ACRONYMS AND ABBREVIATIONS... vii
INTRODUCTION ... 1
 Purpose and Need .. 1
CHAPTER I: DESCRIPTION OF THE AFFECTED ENVIRONMENT... 4
 ABUNDANCE FORECASTS .. 5
 ACCEPTABLE BIOLOGICAL CATCH, ANNUAL CATCH LIMITS, AND OVERFISHING LIMITS 5
Acceptable Biological Catch .. 6
Annual Catch Limit .. 6
Overfishing Limit .. 6
 STATUS DETERMINATION CRITERIA .. 6
CHAPTER II: AFFECTED ENVIRONMENT - CHINOOK SALMON ASSESSMENT 13
Sacramento River Fall Chinook .. 13
 Predictor Description ... 13
 Predictor Performance ... 13
 Stock Forecast and Status ... 14
 OFL, ABC, and ACL .. 14
Sacramento River Winter Chinook .. 14
Klamath River Fall Chinook .. 15
 Predictor Description ... 15
 Predictor Performance ... 15
 Stock Forecast and Status ... 16
 OFL, ABC, and ACL .. 16
Other California Coastal Chinook Stocks ... 16
Oregon Coast Chinook Stocks ... 17
 Predictor Description ... 17
 Predictor Performance ... 17
 Stock Forecast and Status ... 17
 OFL, ABC, and ACL .. 17
CHINOOK STOCKS NORTH OF CAPE FALCON ... 19
Columbia River Chinook ... 19
 Predictor Description ... 20
 Predictor Performance ... 20
 Stock Forecasts and Status ... 21
Washington Coast Chinook .. 21
 Predictor Description and Past Performance .. 21
 Stock Forecasts and Status ... 22
Puget Sound Chinook ... 22
 Predictor Description ... 22
 Predictor Performance ... 22
 Stock Forecasts and Status ... 23
 STOCK STATUS DETERMINATION UPDATES .. 23
 SELECTIVE FISHERY CONSIDERATIONS FOR CHINOOK .. 23
CHAPTER III - COHO SALMON ASSESSMENT .. 49
COLUMBIA RIVER AND OREGON/CALIFORNIA COAST COHO .. 49
OREGON PRODUCTION INDEX AREA ... 49
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Preseason adult Chinook salmon stock forecasts in thousands of fish</td>
<td>8</td>
</tr>
<tr>
<td>I-2</td>
<td>Preseason adult coho salmon stock forecasts in thousands of fish</td>
<td>11</td>
</tr>
<tr>
<td>II-1</td>
<td>Harvest and abundance indices for adult Sacramento River fall Chinook</td>
<td>24</td>
</tr>
<tr>
<td>II-2</td>
<td>Sacramento River winter Chinook escapement, allowable age-3 impact</td>
<td>26</td>
</tr>
<tr>
<td>II-3</td>
<td>Klamath River fall Chinook ocean abundance (thousands), harvest rate,</td>
<td>27</td>
</tr>
<tr>
<td>II-4</td>
<td>Comparisons of preseason forecast and postseason estimates for</td>
<td>28</td>
</tr>
<tr>
<td>II-5</td>
<td>Summary of management objectives and predictor performance for</td>
<td>32</td>
</tr>
<tr>
<td>II-6</td>
<td>Harvest levels and rates of age-3 and age-4 Klamath River fall</td>
<td>33</td>
</tr>
<tr>
<td>II-7</td>
<td>Rogue River fall Chinook inriver run and ocean population indices</td>
<td>37</td>
</tr>
<tr>
<td>II-8</td>
<td>Predicted and postseason returns of Columbia River adult summer and</td>
<td>38</td>
</tr>
<tr>
<td>II-9</td>
<td>Preseason forecasts and postseason estimates of Puget Sound run</td>
<td>41</td>
</tr>
<tr>
<td>III-1</td>
<td>Preliminary pre season and post season coho stock abundance estimates</td>
<td>64</td>
</tr>
<tr>
<td>III-2</td>
<td>Oregon production index (OPI) area coho harvest impacts, spawning,</td>
<td>67</td>
</tr>
<tr>
<td>III-3</td>
<td>Preseason forecasts and postseason estimates of ocean escapements</td>
<td>68</td>
</tr>
<tr>
<td>III-4</td>
<td>Preseason forecasts and postseason estimates of ocean escapements</td>
<td>69</td>
</tr>
<tr>
<td>III-5</td>
<td>Status categories and constraints for Puget Sound and Washington</td>
<td>71</td>
</tr>
<tr>
<td>III-6</td>
<td>Projected coho mark rates for 2016 fisheries under base period</td>
<td>72</td>
</tr>
<tr>
<td>IV-1</td>
<td>Estimated annual (odd-numbered years) run sizes and forecasts for</td>
<td>75</td>
</tr>
<tr>
<td>V-1</td>
<td>Commercial troll management measures adopted by the Council for</td>
<td>81</td>
</tr>
<tr>
<td>V-2</td>
<td>Recreational management measures adopted by the Council for</td>
<td>90</td>
</tr>
<tr>
<td>V-3</td>
<td>Treaty Indian ocean troll management measures adopted by the Council</td>
<td>91</td>
</tr>
<tr>
<td>V-4</td>
<td>Stock status relative to overfished and overfishing criteria</td>
<td>92</td>
</tr>
<tr>
<td>V-5</td>
<td>Postseason SACL, SOFL, and spawner escapement estimates for</td>
<td>93</td>
</tr>
<tr>
<td>V-6</td>
<td>Estimated ocean escapements and exploitation rates for</td>
<td>93</td>
</tr>
<tr>
<td>V-7</td>
<td>Comparison of Lower Columbia natural (LCN), Oregon coastal natural</td>
<td>94</td>
</tr>
<tr>
<td>V-8</td>
<td>Maximum allowable fishery impact rate for OCN coho under Amendment</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE II-1. The Sacramento Index (SI) and relative levels of its components. The Sacramento River fall Chinook S_{MSY} of 122,000 adult spawners is noted on the vertical axis. 45

FIGURE II-2. Sacramento Index (SI) forecast based on log-log regression of the SI on jack escapement from the previous year, accounting for autocorrelated errors. The solid line represents the fitted model and the black dot denotes the SI forecast. Years shown are SI years. ... 45

FIGURE II-3. Regression estimators for Klamath River fall Chinook ocean abundance (September 1) based on that year’s river return of same cohort. Numbers in plots denote brood years. .. 46

FIGURE II-4. Selected preseason vs. postseason forecasts for Chinook stocks with substantial contribution to Council area fisheries. ... 47

FIGURE III-1a. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries. ... 73

FIGURE III-1b. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries ... 74
LIST OF ACRONYMS AND ABBREVIATIONS

ABC acceptable biological catch
ACL annual catch limit
BY brood year
CDFW California Department of Fish and Wildlife
CoTC Coho Technical Committee (of the PSC)
Council Pacific Fishery Management Council
CRFMP Columbia River Fishery Management Plan
CWT coded-wire tag
EA Environmental Assessment
EEZ exclusive economic zone (from 3-200 miles from shore)
EIS Environmental Impact Statement
EMAP Environmental Monitoring and Assessment Program
ESA Endangered Species Act
ESU evolutionarily significant unit
FABC exploitation rate associated with ABC
FACL exploitation rate associated with ACL (= FABC)
FMP fishery management plan
FMSY MSY exploitation rate
FNMC Far-North-Migrating Coastal
FOFL exploitation rate associated with the overfishing limit (= FMSY, MFMT)
FONSI Finding of No Significant Impacts
FRAM Fishery Regulatory Assessment Model
GAM generalized additive models
ISBM individual stock-based management
Jack CR Columbia River jacks (coho)
Jack OC Oregon coastal and Klamath River Basin jacks (coho)
Jack OPI Jack CR + Jack OC (coho)
KMZ Klamath management zone (ocean zone between Humbug Mountain and Horse Mountain where management emphasis is on Klamath River fall Chinook)
KOHM Klamath Ocean Harvest Model
KRFC Klamath River fall Chinook
KRTT Klamath River Technical Team
LCN lower Columbia River natural (coho)
LCR lower Columbia River (natural tule Chinook)
LRB lower Columbia River bright (Chinook)
LRH lower Columbia River hatchery (tule fall Chinook returning to hatcheries below Bonneville Dam)
LRW lower Columbia River wild (bright fall Chinook spawning naturally in tributaries below Bonneville Dam)
MCB mid-Columbia River brights (bright hatchery fall Chinook released below McNary Dam)
MFMT maximum fishery mortality threshold
MOC mid-Oregon coast
MSST minimum stock size threshold
MSM mixed stock model
MSA Magnuson-Stevens Fishery Conservation and Management Act
MSY maximum sustainable yield
NA not available
LIST OF ACRONYMS AND ABBREVIATIONS (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NOC</td>
<td>north Oregon coast</td>
</tr>
<tr>
<td>NPGO</td>
<td>North Pacific Gyre Oscillation</td>
</tr>
<tr>
<td>NS1G</td>
<td>National Standard 1 Guidelines</td>
</tr>
<tr>
<td>OCN</td>
<td>Oregon coast natural (coho)</td>
</tr>
<tr>
<td>OCNL</td>
<td>Oregon coast natural lake (coho)</td>
</tr>
<tr>
<td>OCNR</td>
<td>Oregon coast natural river (coho)</td>
</tr>
<tr>
<td>ODFW</td>
<td>Oregon Department of Fish and Wildlife</td>
</tr>
<tr>
<td>OFL</td>
<td>overfishing limit</td>
</tr>
<tr>
<td>OPI</td>
<td>Oregon Production Index (coho salmon stock index south of Leadbetter Point)</td>
</tr>
<tr>
<td>OPIH</td>
<td>Oregon Production Index public hatchery</td>
</tr>
<tr>
<td>OPITTT</td>
<td>Oregon Production Index Technical Team</td>
</tr>
<tr>
<td>OY</td>
<td>Optimum Yield</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>PFMC</td>
<td>Pacific Fishery Management Council (Council)</td>
</tr>
<tr>
<td>PRIH</td>
<td>Private hatchery</td>
</tr>
<tr>
<td>PSC</td>
<td>Pacific Salmon Commission</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Salmon Treaty</td>
</tr>
<tr>
<td>RER</td>
<td>rebuilding exploitation rate</td>
</tr>
<tr>
<td>RK</td>
<td>Rogue/Klamath (coho)</td>
</tr>
<tr>
<td>RMP</td>
<td>Resource Management Plan (for exemption from ESA section 9 take prohibitions under limit 6 of the 4(d) rule)</td>
</tr>
<tr>
<td>ROPI</td>
<td>Rogue Ocean Production Index (Chinook)</td>
</tr>
<tr>
<td>SABC</td>
<td>spawning escapement associated with ABC</td>
</tr>
<tr>
<td>SACL</td>
<td>spawning escapement associated with ACL (= SABC)</td>
</tr>
<tr>
<td>SCH</td>
<td>Spring Creek Hatchery (tule fall Chinook returning to Spring Creek Hatchery)</td>
</tr>
<tr>
<td>SHM</td>
<td>Sacramento Harvest Model</td>
</tr>
<tr>
<td>SI</td>
<td>Sacramento Index</td>
</tr>
<tr>
<td>SJF</td>
<td>Strait of Juan de Fuca</td>
</tr>
<tr>
<td>SMSY</td>
<td>MSY spawning escapement</td>
</tr>
<tr>
<td>SOFL</td>
<td>spawning escapement associated with the overfishing limit (= S_{MSY})</td>
</tr>
<tr>
<td>SOC</td>
<td>south Oregon Coast</td>
</tr>
<tr>
<td>SRFC</td>
<td>Sacramento River fall Chinook</td>
</tr>
<tr>
<td>SRS</td>
<td>Stratified Random Sampling</td>
</tr>
<tr>
<td>SRWC</td>
<td>Sacramento River winter Chinook</td>
</tr>
<tr>
<td>STEP</td>
<td>Salmon Trout Enhancement Program</td>
</tr>
<tr>
<td>STT</td>
<td>Salmon Technical Team (formerly the Salmon Plan Development Team)</td>
</tr>
<tr>
<td>TAC</td>
<td>Technical Advisory Committee (U.S. v. Oregon)</td>
</tr>
<tr>
<td>URB</td>
<td>upper river brights (naturally spawning bright fall Chinook normally migrating past McNary Dam)</td>
</tr>
<tr>
<td>VSI</td>
<td>visual stock identification</td>
</tr>
<tr>
<td>WCVI</td>
<td>West Coast Vancouver Island</td>
</tr>
<tr>
<td>WDFW</td>
<td>Washington Department of Fish and Wildlife</td>
</tr>
</tbody>
</table>
INTRODUCTION

This is the second report in an annual series of four reports prepared by the Salmon Technical Team (STT) of the Pacific Fishery Management Council (Council) to document and help guide salmon fishery management off the coasts of Washington, Oregon, and California. The report focuses on Chinook, coho, and pink salmon stocks that have been important in determining Council fisheries in recent years, and on stocks listed under the Endangered Species Act (ESA) with established National Marine Fisheries Service (NMFS) ESA consultation standards. This report will be formally reviewed at the Council's March 2017 meeting.

This report provides 2017 salmon stock abundance forecasts, and an analysis of the impacts of 2016 management measures, or regulatory procedures, on the projected 2017 abundance. This analysis is intended to give perspective in developing 2017 management measures. This report also constitutes the first part of an Environmental Assessment (EA) to comply with National Environmental Policy Act (NEPA) requirements for the 2017 ocean salmon management measures. An EA is used to determine whether an action being considered by a Federal agency has significant impacts. This part of the EA includes a statement of the purpose and need, a summary description of the affected environment, a description of the No-Action Alternative, and an analysis of the No-Action Alternative effects on the salmon stocks included in the Council’s Salmon Fishery Management Plan (FMP).

The STT and Council staff will provide two additional reports prior to the beginning of the ocean salmon season to help guide the Council’s selection of annual fishery management measures: Preseason Report II and Preseason Report III. These reports will analyze the impacts of the Council's proposed alternatives and adopted fishery management recommendations, respectively. Preseason Report II will constitute the second part of the EA, and will include additional description of the affected environment relevant to the alternative management measures considered for 2017 ocean salmon fisheries, a description of the alternatives, and an analysis of the environmental consequences of the alternatives. Preseason Report II will analyze the potential impacts of a reasonable range of alternatives, which will inform the final fishery management measures included in Preseason Report III. Preseason Report III will describe and analyze the effects of the Council’s final proposed action, including cumulative effects. Together, these parts of the EA will provide the necessary components to determine if a finding of no significant impact (FONSI) or Environmental Impact Statement (EIS) is warranted.

Chapter I provides a summary of stock abundance forecasts. Chapters II and III provide detailed stock-by-stock analyses of abundance, a description of prediction methodologies, and accuracy of past abundance forecasts for Chinook and coho salmon, respectively. Chapter IV summarizes abundance and forecast information for pink salmon. Chapter V provides an assessment of 2016 regulations applied to 2017 abundance forecasts. Three appendices provide supplementary information as follows: Appendix A provides a summary of Council stocks and their management objectives; Appendix B contains the Council's current harvest allocation schedules, and Appendix C contains pertinent data for Oregon Production Index (OPI) area coho. For NEPA purposes, Chapters I-IV of this document describe the affected environment and Chapter V provides a description and analysis of the No-Action Alternative.

Purpose and Need

The purpose of this action, implementation of the 2017 ocean salmon fishery management measures, is to allow fisheries to harvest surplus production of healthy natural and hatchery salmon stocks within the constraints specified under the Salmon FMP, the Pacific Salmon Treaty (PST), and consultation standards established for ESA-listed salmon stocks. In achieving this purpose, management measures must take into account the allocation of harvest among different user groups and port areas. Without this action, 2016 management measures would be in effect, which do not consider changes in abundance of stocks in the mixed stock ocean salmon fisheries. Therefore, this action is needed to ensure constraining stocks are not
overharvested and that harvest of abundant stocks can be optimized and achieve the most overall benefit to the nation.

The Salmon FMP also establishes nine more general harvest-related objectives:

1. Establish ocean exploitation rates for commercial and recreational salmon fisheries that are consistent with requirements for stock conservation objectives and annual catch limits (ACLs), specified ESA consultation standards, or Council-adopted rebuilding plans.

2. Fulfill obligations to provide opportunity for Indian harvest of salmon as provided in treaties with the United States, as mandated by applicable decisions of the Federal courts, and as specified in the October 4, 1993 opinion of the Solicitor, Department of Interior, with regard to federally-recognized Indian fishing rights of Klamath River Tribes.

3. Maintain ocean salmon fishing seasons supporting the continuance of established recreational and commercial fisheries, while meeting salmon harvest allocation objectives among ocean and inside recreational and commercial fisheries that are fair and equitable, and in which fishing interests shall equitably share the obligations of fulfilling any treaty or other legal requirements for harvest opportunities.

4. Minimize fishery mortalities for those fish not landed from all ocean salmon fisheries as consistent with achieving optimum yield (OY) and bycatch management specifications.

5. Manage and regulate fisheries so that the OY encompasses the quantity and value of food produced, the recreational value, and the social and economic values of the fisheries.

6. Develop fair and creative approaches to managing fishing effort, and evaluate and apply effort management systems as appropriate to achieve these management objectives.

7. Support the enhancement of salmon stock abundance in conjunction with fishing effort management programs to facilitate economically viable and socially acceptable commercial, recreational, and tribal seasons.

8. Achieve long-term coordination with the member states of the Council, Indian tribes with federally-recognized fishing rights, Canada, the North Pacific Fishery Management Council, Alaska, and other management entities which are responsible for salmon habitat or production. Manage consistent with the PST and other international treaty obligations.

9. In recommending seasons, to the extent practicable, promote the safety of human life at sea.

These objectives, along with the consultation standards established under the ESA, provide "sideboards" for setting management measures necessary to implement the Salmon FMP, which conforms to the terms and requirements of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and the National Standard 1 Guidelines (NS1G).

Implementation of 2017 management measures will allow fisheries to harvest surplus production of healthy natural and hatchery salmon stocks within the constraints specified under the Salmon FMP and consultation standards established for ESA-listed salmon stocks.

The reauthorization of the MSA in 2006 established new requirements to end and prevent overfishing through specification of overfishing limits (OFL), acceptable biological catch (ABC), ACLs and accountability measures (AMs). Because OFLs, ABCs, and ACLs are based on annual abundance forecasts, Preseason Report I also specifies OFLs, ABCs, and ACLs for 2017 fisheries.
CHAPTER I: DESCRIPTION OF THE AFFECTED ENVIRONMENT

The action area for this proposed action is the exclusive economic zone (EEZ), 3 to 200 nautical miles, off the West Coast of the U.S. (California, Oregon, and Washington). A map of the action area is provided on the last page of Parts 1, 2, and 3 of this environmental assessment (EA).

The affected environment relevant to establishing the 2017 ocean salmon fishery management measures consists of the following components:

- Target Species – Chinook, coho, and pink salmon
- ESA-listed salmon stocks; and
- Socioeconomic aspects of coastal communities, federally-recognized Tribes, and states.

A description of the historical baseline for these components of the affected environment is presented in the Review of 2016 Ocean Salmon Fisheries (PFMC 2017). The current status (2017 ocean abundance forecasts) of the environmental components expected to be affected by the 2017 ocean salmon fisheries regulation alternatives (FMP salmon stocks, including those listed under the ESA) are described in this report (Part 1 of the 2017 salmon EA); the Review of 2016 Ocean Salmon Fisheries (PFMC 2017) provides an historical description of the salmon fishery-affected environment, including stock status and socioeconomic impacts, and represents the current status of the socioeconomic component of the affected environment.

The No-Action alternative was assessed in the 2016 NEPA process for ocean salmon regulations (Preseason Reports II and III; PFMC 2016b and 2016c). In those analyses, proposed management measures were determined to have no significant impacts on several components of the affected environment. These components included:

- Non-target species – Pacific Halibut, groundfish (NMFS 2003; PFMC 2006, 2016a)
- Seabirds (NMFS 2003; PFMC 2006, 2016a)
- Ocean and coastal habitats, ESA critical habitat, and Essential Fish Habitat (EFH) (NMFS 2003; PFMC 2006, 2015a)
- Biodiversity and ecosystem function (NMFS 2003; PFMC 2006, 2016a)
- Unique characteristics of the geographic area (NMFS 2003; PFMC 2006, 2016a)
- Cultural, scientific, or historical resources such as those eligible for listing in the National Register of Historic Places (NMFS 2003; PFMC 2006, 2016a)
- Public health or safety (NMFS 2003; PFMC 2006, 2016a)

The 2017 No-Action alternative is the same as the 2016 action, therefore it is expected to have no significant impacts on these elements of the environment. Thus this document includes analysis of the impacts of the No Action alternative on salmon stocks identified in the FMP, the component of the environment for which conditions have changed such that the effects in 2017 are different.

The component of the affected environment that is described in this document consists only of the salmon stocks identified in the FMP (Appendix A). The 2017 forecast abundance of the FMP salmon stocks represents this component of the affected environment. The surviving stock after fishery-related mortality is generally referred to as spawning escapement (S), and the proportion of the stock that succumbs to fishing-related mortality is generally referred to as the exploitation rate (F); these are the metrics that constitute conservation objectives for FMP stocks, and by which effects of the alternatives to this part of the affected environment are evaluated. Thus, application of management measures (alternatives) to the abundance forecasts (affected environment) results in projected exploitation rates and spawning escapements (effects).
A description of the other components of the affected environment considered for 2017 ocean salmon fishery regulation alternatives, including socioeconomic components and updated additional information on the biological components of the environment, will be presented in Preseason Report II, to be issued after the March Council meeting.

ABUNDANCE FORECASTS

Abundance forecasts in 2017 are summarized for key Chinook and coho salmon stocks in Tables I-1 and I-2, respectively. A cursory comparison of preseason forecast and postseason abundance estimates for selected stocks is presented in Figures II-4 and III-1. More detailed analyses of this subject are covered in Chapters II (Chinook) and III (coho). Information on pink salmon abundance and forecasts is contained in Chapter IV. Council Salmon FMP conservation objectives are presented in Appendix A; allocation objectives are presented in Appendix B.

In addition to the key stocks with abundance forecasts listed in Tables I-1 and I-2, Council management decisions for the 2017 ocean salmon fishing seasons may be constrained by other stocks, such as those listed under the ESA or subject to PSC agreements, which may not have abundance forecasts made, or do not have abundance forecasts available in time for inclusion in this report. These include the following Evolutionarily Significant Units (ESUs): Sacramento River Winter Chinook, Central Valley Spring Chinook, California Coastal Chinook, Lower Columbia River (LCR) natural tule Chinook, and Snake River Fall Chinook; and Central California Coast coho and Southern Oregon/Northern California Coast coho, as well as Interior Fraser (including Thompson River) coho.

ACCEPTABLE BIOLOGICAL CATCH, ANNUAL CATCH LIMITS, AND OVERFISHING LIMITS

Amendment 16 to the Salmon FMP, approved in December 2011, was developed to comply with the requirements of the 2006 MSA reauthorization, including specification of acceptable biological catch (ABC), annual catch limits (ACLs), overfishing limits (OFLs), and Scientific and Statistical Committee (SSC) recommendations for ABC. Amendment 16 established that ABC and ACLs were required for two stocks, Sacramento River fall Chinook (SRFC) and Klamath River fall Chinook (KRFC), which serve as indicator stocks for the Central Valley Fall and Southern Oregon/Northern California Chinook complexes, respectively. Other stocks in the FMP are not required to have ACLs either because they were components of these two stock complexes, were ESA-listed, were hatchery stocks, or were managed under an international agreement. Since publication of Amendment 16, ABCs and ACL specifications have been added to the Salmon FMP for Willapa Bay natural coho.

ABCs and ACLs are not specified for stocks that are managed under an international agreement as there is a statutory exception in the MSA to the requirement for ACLs, and the NS1Gs state that ABCs are not required if stocks meet this international exception. The NS1Gs allow the flexibility to consider alternative approaches for specifying ACLs for stocks with unusual life history characteristics like Pacific salmon, and particularly for species listed under the ESA and hatchery stocks. For hatchery stocks, broodstock goals serve as conservation objectives rather than specifying ACLs. For ESA-listed stocks, biological opinions and associated consultation standards provide necessary controls to ensure their long-term conservation.

Preseason OFLs are determined for all non-ESA-listed and non-hatchery stocks with an estimate of F_{MSY} (or Maximum Fishery Mortality Threshold, MFMT) and sufficient information available to make abundance forecasts.
Acceptable Biological Catch
For salmon, ABC is defined in terms of spawner escapement \(S_{ABC} \), which is determined annually based on stock abundance, in spawner equivalent units (N) and the exploitation rate \(F_{ABC} \).

\[
S_{ABC} = N \times (1 - F_{ABC})
\]

The ABC control rule defines \(F_{ABC} \) as a fixed exploitation rate reduced from \(F_{MSY} \) to account for scientific uncertainty. The degree of the reduction in F between \(F_{ABC} \) and \(F_{MSY} \) depends on whether \(F_{MSY} \) is directly estimated (tier 1 stock) or a proxy value is used (tier 2 stock). For tier 1 stocks, \(F_{ABC} \) equals \(F_{MSY} \) reduced by five percent. For tier 2 stocks, \(F_{ABC} \) equals \(F_{MSY} \) reduced by ten percent.

\[
\text{Tier-1: } F_{ABC} = F_{MSY} \times 0.95. \\
\text{Tier-2: } F_{ABC} = F_{MSY} \times 0.90.
\]

Annual Catch Limit
ACLs are also defined in terms of spawner escapement \(S_{ACL} \) based on N and the corresponding exploitation rate \(F_{ACL} \), where the exploitation rate is a fixed value that does not change on an annual basis.

\[
F_{ACL} \text{ is equivalent to } F_{ABC} \text{ and } \\
S_{ACL} = N \times (1-F_{ACL}),
\]

which results in \(S_{ACL} = S_{ABC} \) for each management year.

During the annual preseason salmon management process, \(S_{ACL} \) is estimated using the fixed \(F_{ACL} \) exploitation rate and the preseason forecast of N. Thus, fishery management measures must result in an expected spawning escapement greater than or equal to this preseason estimate of \(S_{ACL} \).

Overfishing Limit
For salmon, OFL is defined in terms of spawner escapement \(S_{OFL} \), which is consistent with the common practice of using spawner escapement to assess stock status for salmon. \(S_{OFL} \) is determined annually based on stock abundance, in spawner equivalent units (N) and the exploitation rate \(F_{OFL} \).

\[
F_{OFL} \text{ is defined as being equal to } F_{MSY} \text{ (or MFMT) and } \\
S_{OFL} = N \times (1 - F_{MSY}).
\]

STATUS DETERMINATION CRITERIA
Amendment 16 also included new status determination criteria (SDC) for overfishing, approaching an overfished condition, overfished, not overfished/rebuilding, and rebuilt. These criteria are:

- Overfishing occurs when a single year exploitation rate exceeds the maximum fishing mortality threshold (MFMT), which is based on the maximum sustainable yield exploitation rate (\(F_{MSY} \));
- Approaching an overfished condition occurs when the geometric mean of the two most recent postseason estimates of spawning escapement, and the current preseason forecast of spawning escapement, is less than the minimum stock size threshold (MSST);
- Overfished status occurs when the most recent 3-year geometric mean spawning escapement is less than the MSST;
- Not overfished/rebuilding status occurs when a stock has been classified as overfished and has not yet been rebuilt, and the most recent 3-year geometric mean spawning escapement is greater than the MSST but less than \(S_{MSY} \);
- A stock is rebuilt when the most recent 3-year geometric mean spawning escapement exceeds \(S_{MSY} \).
Status determinations for overfishing, overfished, not overfished/rebuilding, and rebuilt were reported in the annual SAFE document, Review of 2016 Ocean Salmon Fisheries (PFMC 2017). Because approaching an overfished condition relies on a preseason forecast and proposed fishing regulations, that status determination is reported in Chapter V of this document. All SDC rely on the most recent estimates available, which in some cases may be a year or more in the past because of incomplete broods or data availability; however, some status determinations reported in the SAFE document may be updated if more recent spawning escapement or exploitation rate estimates become available between the time the SAFE document and this document are published.
TABLE I-1 Preseason adult Chinook salmon stock forecasts in thousands of fish. (Page 1 of 3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>122.2</td>
<td>245.5</td>
<td>729.9</td>
<td>819.4</td>
<td>834.2</td>
<td>634.7</td>
<td>652.0</td>
<td>299.6</td>
<td>230.7</td>
</tr>
<tr>
<td>Klamath River (Ocean Abundance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>505.7</td>
<td>331.5</td>
<td>371.1</td>
<td>1,651.8</td>
<td>727.7</td>
<td>423.8</td>
<td>142.2</td>
<td>54.2</td>
<td></td>
</tr>
<tr>
<td>Oregon Coast North and South/Local Migrating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River (Ocean Escapement)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upriver Spring a/</td>
<td>298.9</td>
<td>470.0</td>
<td>198.4</td>
<td>314.2</td>
<td>141.4</td>
<td>227.0</td>
<td>232.5</td>
<td>188.8</td>
<td>160.4</td>
</tr>
<tr>
<td>Williams Spring</td>
<td>37.6</td>
<td>62.7</td>
<td>104.1</td>
<td>83.4</td>
<td>59.8</td>
<td>58.7</td>
<td>55.4</td>
<td>68.7</td>
<td>38.1</td>
</tr>
<tr>
<td>Sandy Spring</td>
<td>5.2</td>
<td>3.7</td>
<td>5.5</td>
<td>4.8</td>
<td>6.1</td>
<td>5.5</td>
<td>5.5</td>
<td>NA</td>
<td>3.6</td>
</tr>
<tr>
<td>Cowitz Spring</td>
<td>4.1</td>
<td>12.5</td>
<td>6.6</td>
<td>8.7</td>
<td>5.5</td>
<td>7.8</td>
<td>11.2</td>
<td>25.1</td>
<td>17.1</td>
</tr>
<tr>
<td>Kalama Spring</td>
<td>0.9</td>
<td>0.9</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>1.9</td>
<td>4.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Lewis Spring</td>
<td>2.2</td>
<td>6.0</td>
<td>3.4</td>
<td>2.7</td>
<td>1.6</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Upriver Summer b/</td>
<td>70.7</td>
<td>88.8</td>
<td>91.9</td>
<td>91.2</td>
<td>73.5</td>
<td>67.5</td>
<td>73.0</td>
<td>93.3</td>
<td>63.1</td>
</tr>
<tr>
<td>URB Fall</td>
<td>259.9</td>
<td>310.8</td>
<td>398.2</td>
<td>353.5</td>
<td>432.5</td>
<td>973.3</td>
<td>500.3</td>
<td>589.0</td>
<td>260.0</td>
</tr>
<tr>
<td>SCH Fall</td>
<td>59.3</td>
<td>169.0</td>
<td>116.4</td>
<td>63.8</td>
<td>38.0</td>
<td>115.1</td>
<td>160.5</td>
<td>89.6</td>
<td>158.4</td>
</tr>
<tr>
<td>LRW Fall</td>
<td>8.5</td>
<td>9.7</td>
<td>12.5</td>
<td>16.2</td>
<td>14.2</td>
<td>34.2</td>
<td>18.9</td>
<td>22.2</td>
<td>12.5</td>
</tr>
<tr>
<td>LRH Fall</td>
<td>88.8</td>
<td>90.6</td>
<td>133.5</td>
<td>127.0</td>
<td>88.0</td>
<td>110.0</td>
<td>94.9</td>
<td>133.7</td>
<td>92.4</td>
</tr>
<tr>
<td>MCB Fall</td>
<td>94.5</td>
<td>72.6</td>
<td>100.0</td>
<td>90.8</td>
<td>105.2</td>
<td>360.1</td>
<td>113.3</td>
<td>101.0</td>
<td>45.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodology for 2017 Prediction and Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-log regression of the Sacramento Index on jack escapement from the previous year, accounting for lag-1 autocorrelated errors. STT.</td>
</tr>
<tr>
<td>Linear regression analysis of age-specific ocean abundance estimates on river runs of same cohort. STT.</td>
</tr>
<tr>
<td>None.</td>
</tr>
<tr>
<td>Log-normal sibling regressions of cohort returns in previous run years. Columbia River TAC.</td>
</tr>
<tr>
<td>Age-specific linear regressions of cohort returns in previous run years. ODFW staff. Forecasts include jacks.</td>
</tr>
<tr>
<td>Recent 3-year average</td>
</tr>
<tr>
<td>Age-specific linear regressions of cohort returns in previous run years. WDFW.</td>
</tr>
<tr>
<td>Age-specific linear regressions of cohort returns in previous run years. WDFW.</td>
</tr>
<tr>
<td>Age-specific linear regressions of cohort returns in previous run years. WDFW.</td>
</tr>
<tr>
<td>Log-linear brood year sibling regressions or average return (4-ocean fish). Columbia River TAC subgroup.</td>
</tr>
<tr>
<td>Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.</td>
</tr>
<tr>
<td>Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.</td>
</tr>
<tr>
<td>Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.</td>
</tr>
<tr>
<td>Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.</td>
</tr>
<tr>
<td>Age-specific average cohort ratios or brood year sibling regressions. Columbia River TAC subgroup and WDFW.</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Willapa Bay Fall Natural</td>
</tr>
<tr>
<td>Hatchery</td>
</tr>
<tr>
<td>Quinault Fall Natural</td>
</tr>
<tr>
<td>Hatchery</td>
</tr>
<tr>
<td>Queets Spring/Sum Natural</td>
</tr>
<tr>
<td>Queets Fall Natural</td>
</tr>
<tr>
<td>Hatchery</td>
</tr>
<tr>
<td>Hoh Spring/Summer Natural</td>
</tr>
<tr>
<td>Hoh Fall Natural</td>
</tr>
<tr>
<td>Quillayute Spring Hatchery</td>
</tr>
<tr>
<td>Quillayute Sum/Fall Natural</td>
</tr>
<tr>
<td>Hoko** Fall Natural</td>
</tr>
<tr>
<td>North Coast Totals Spring/Summer</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Spring/Summer Hatchery</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Puget Sound summer/fall**</td>
</tr>
<tr>
<td>East Sound Bay Hatchery</td>
</tr>
<tr>
<td>Skagit** Hatchery</td>
</tr>
<tr>
<td>Skagit** Hatchery</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Stillaguamish Natural</td>
</tr>
<tr>
<td>Snohomish Natural</td>
</tr>
<tr>
<td>Hatchery</td>
</tr>
<tr>
<td>Tulalip Hatchery Natural</td>
</tr>
<tr>
<td>South Puget Sound Natural</td>
</tr>
<tr>
<td>Hood Canal Natural</td>
</tr>
<tr>
<td>Hatchery</td>
</tr>
<tr>
<td>Strait of Juan de Fuca Including Dungeness spring run Natural</td>
</tr>
</tbody>
</table>

a/ Since 2005, the upriver spring Chinook run includes Snake River summer Chinook.
b/ Since 2005, the upriver summer Chinook run includes only upper Columbia summer Chinook, and not Snake River summer Chinook.
c/ Expected spawning escapement without fishing.
d/ Unless otherwise noted, forecasts are for Puget Sound run size (4B) available to U.S. net fisheries. Does not include fish caught in troll and recreational fisheries.
e/ Terminal run forecast.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPI Area Total Abundance (California, Oregon Coasts, and Columbia River)</td>
<td>1,284.7</td>
<td>556.0</td>
<td>624.5</td>
<td>632.7</td>
<td>716.4</td>
<td>1,213.7</td>
<td>1,015.0</td>
<td>549.2</td>
<td>496.2</td>
</tr>
<tr>
<td>OPI Public Hatchery</td>
<td>1,073.1</td>
<td>408.0</td>
<td>375.1</td>
<td>341.7</td>
<td>525.4</td>
<td>983.1</td>
<td>808.4</td>
<td>396.5</td>
<td>394.3</td>
</tr>
<tr>
<td>Columbia River Early</td>
<td>672.7</td>
<td>245.3</td>
<td>216.0</td>
<td>229.8</td>
<td>331.6</td>
<td>526.6</td>
<td>515.2</td>
<td>153.7</td>
<td>231.7</td>
</tr>
<tr>
<td>Columbia River Late</td>
<td>369.7</td>
<td>144.2</td>
<td>146.5</td>
<td>87.4</td>
<td>169.5</td>
<td>437.5</td>
<td>261.8</td>
<td>226.9</td>
<td>154.6</td>
</tr>
<tr>
<td>Coastal N. of Cape Blanco</td>
<td>7.3</td>
<td>4.4</td>
<td>3.6</td>
<td>6.4</td>
<td>5.6</td>
<td>4.8</td>
<td>6.9</td>
<td>5.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Coastal S. of Cape Blanco</td>
<td>23.4</td>
<td>14.1</td>
<td>9.0</td>
<td>18.1</td>
<td>18.7</td>
<td>14.2</td>
<td>24.4</td>
<td>10.4</td>
<td>4.5</td>
</tr>
<tr>
<td>Lower Columbia River Natural</td>
<td>32.7</td>
<td>15.1</td>
<td>22.7</td>
<td>30.1</td>
<td>46.5</td>
<td>33.4</td>
<td>35.9</td>
<td>40.0</td>
<td>30.1</td>
</tr>
<tr>
<td>Oregon Coast (OCN) Natural</td>
<td>211.6</td>
<td>148.0</td>
<td>249.4</td>
<td>291.0</td>
<td>191.0</td>
<td>230.6</td>
<td>206.6</td>
<td>152.7</td>
<td>101.9</td>
</tr>
<tr>
<td>Washington Coast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willapa Natural</td>
<td>33.5</td>
<td>20.4</td>
<td>47.8</td>
<td>81.3</td>
<td>58.6</td>
<td>58.9</td>
<td>42.9</td>
<td>39.5</td>
<td>36.7</td>
</tr>
<tr>
<td>Hatchery</td>
<td>59.4</td>
<td>78.7</td>
<td>64.7</td>
<td>88.8</td>
<td>37.1</td>
<td>41.0</td>
<td>57.7</td>
<td>28.1</td>
<td>55.0</td>
</tr>
<tr>
<td>Grays Harbor Natural</td>
<td>59.2</td>
<td>67.9</td>
<td>89.1</td>
<td>150.2</td>
<td>196.8</td>
<td>108.8</td>
<td>142.6</td>
<td>35.7</td>
<td>NA</td>
</tr>
<tr>
<td>Hatchery</td>
<td>63.5</td>
<td>33.3</td>
<td>44.0</td>
<td>47.8</td>
<td>85.2</td>
<td>65.4</td>
<td>46.6</td>
<td>22.9</td>
<td>36.4</td>
</tr>
<tr>
<td>Quinault Natural</td>
<td>16.3</td>
<td>16.7</td>
<td>22.9</td>
<td>27.3</td>
<td>32.1</td>
<td>25.0</td>
<td>44.2</td>
<td>17.1</td>
<td>26.3</td>
</tr>
<tr>
<td>Hatchery</td>
<td>26.2</td>
<td>26.6</td>
<td>35.5</td>
<td>35.4</td>
<td>42.0</td>
<td>24.7</td>
<td>24.9</td>
<td>19.8</td>
<td>29.4</td>
</tr>
<tr>
<td>Queets Natural</td>
<td>31.4</td>
<td>21.8</td>
<td>13.3</td>
<td>37.2</td>
<td>24.5</td>
<td>10.3</td>
<td>7.5</td>
<td>3.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Hatchery</td>
<td>13.5</td>
<td>11.9</td>
<td>16.3</td>
<td>25.3</td>
<td>19.8</td>
<td>15.7</td>
<td>11.3</td>
<td>4.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Hoh Natural</td>
<td>9.5</td>
<td>7.6</td>
<td>11.6</td>
<td>14.3</td>
<td>8.6</td>
<td>8.9</td>
<td>5.1</td>
<td>2.1</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Methodology for 2017 Prediction and Source

Abundance of all OPI components based on cohort reconstruction including all fishery impacts using Mixed Stock Model (MSM); prior to 2008 only fishery impacts south of Leadbetter Point were used (traditional OPI accounting). OPIH, see Chapter III for details.

OPI Area: recent two year average return; Washington: natural smolt production multiplied by 2014 brood marine survival rate. Abundance is subset of early/late hatchery abundance above.

Rivers: Generalized additive model (GAM) relating ocean recruits to parental spawners and marine environmental variables. See text in Chapter III for details. Lakes: recent three year average return.

A variety of methods were used for 2017, primarily based on smolt production and survival. See text in Chapter III for details.
TABLE I-2: Preseason adult coho salmon stock forecasts in thousands of fish. (Page 2 of 2)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quillayute Fall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A variety of methods were used for 2017, primarily based on smolt production and survival. See text in Chapter III and Joint WDFW and tribal annual reports on Puget Sound Coho Salmon Forecast Methodology for details.</td>
</tr>
<tr>
<td>Natural</td>
<td>19.3</td>
<td>22.0</td>
<td>28.2</td>
<td>33.5</td>
<td>17.2</td>
<td>18.4</td>
<td>10.5</td>
<td>4.5</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>39.5</td>
<td>17.7</td>
<td>31.0</td>
<td>16.9</td>
<td>12.4</td>
<td>12.6</td>
<td>8.0</td>
<td>6.4</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>Quillayute Summer</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>2.2</td>
<td>2.8</td>
<td>2.8</td>
<td>5.7</td>
<td>0.5</td>
<td>2.0</td>
<td>1.2</td>
<td>0.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>12.9</td>
<td>3.2</td>
<td>5.4</td>
<td>4.3</td>
<td>3.3</td>
<td>3.2</td>
<td>2.2</td>
<td>1.4</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>North Coast Independent Tributaries</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>11.1</td>
<td>4.2</td>
<td>21.6</td>
<td>15.7</td>
<td>17.8</td>
<td>15.2</td>
<td>11.7</td>
<td>1.9</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>14.1</td>
<td>5.7</td>
<td>11.8</td>
<td>11.4</td>
<td>6.3</td>
<td>11.6</td>
<td>11.9</td>
<td>2.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>WA Coast Total</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>182.5</td>
<td>163.4</td>
<td>237.3</td>
<td>356.2</td>
<td>356.1</td>
<td>247.5</td>
<td>265.6</td>
<td>104.6</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>229.1</td>
<td>177.1</td>
<td>208.7</td>
<td>229.9</td>
<td>206.1</td>
<td>174.2</td>
<td>162.6</td>
<td>85.6</td>
<td>155.6</td>
<td></td>
</tr>
<tr>
<td>Puget Sound</td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>20.5</td>
<td>8.5</td>
<td>12.3</td>
<td>12.6</td>
<td>12.6</td>
<td>12.5</td>
<td>11.1</td>
<td>4.4</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>7.0</td>
<td>7.8</td>
<td>15.2</td>
<td>18.6</td>
<td>17.6</td>
<td>17.3</td>
<td>11.1</td>
<td>3.9</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>Nooksack-Samish</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>7.0</td>
<td>9.6</td>
<td>29.5</td>
<td>25.2</td>
<td>45.4</td>
<td>20.8</td>
<td>28.1</td>
<td>9.0</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>25.5</td>
<td>36.0</td>
<td>45.7</td>
<td>62.8</td>
<td>49.2</td>
<td>61.7</td>
<td>50.8</td>
<td>28.8</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>Skagit</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>33.4</td>
<td>95.9</td>
<td>138.1</td>
<td>48.3</td>
<td>137.2</td>
<td>112.4</td>
<td>121.4</td>
<td>8.9</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>11.7</td>
<td>9.5</td>
<td>16.7</td>
<td>14.9</td>
<td>16.3</td>
<td>15.8</td>
<td>19.5</td>
<td>4.9</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>13.4</td>
<td>25.9</td>
<td>66.6</td>
<td>47.5</td>
<td>33.1</td>
<td>32.5</td>
<td>31.3</td>
<td>2.8</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>0.0</td>
<td>5.4</td>
<td>0.6</td>
<td>4.1</td>
<td>3.1</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Snohomish</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>67.0</td>
<td>99.4</td>
<td>180.0</td>
<td>109.0</td>
<td>163.8</td>
<td>150.0</td>
<td>151.5</td>
<td>20.6</td>
<td>107.3</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>53.6</td>
<td>24.5</td>
<td>55.0</td>
<td>45.7</td>
<td>111.5</td>
<td>78.2</td>
<td>53.9</td>
<td>16.7</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td>South Sound</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>53.6</td>
<td>25.3</td>
<td>98.9</td>
<td>43.1</td>
<td>36.0</td>
<td>62.8</td>
<td>63.0</td>
<td>9.9</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>188.8</td>
<td>186.4</td>
<td>173.3</td>
<td>162.9</td>
<td>151.0</td>
<td>150.7</td>
<td>180.2</td>
<td>27.1</td>
<td>102.4</td>
<td></td>
</tr>
<tr>
<td>Hood Canal</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>48.6</td>
<td>33.2</td>
<td>74.7</td>
<td>73.4</td>
<td>36.8</td>
<td>82.8</td>
<td>61.5</td>
<td>35.3</td>
<td>115.6</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>52.0</td>
<td>51.2</td>
<td>74.9</td>
<td>62.6</td>
<td>68.6</td>
<td>47.6</td>
<td>108.4</td>
<td>83.5</td>
<td>74.9</td>
<td></td>
</tr>
<tr>
<td>Puget Sound Total</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>243.5</td>
<td>297.8</td>
<td>600.1</td>
<td>359.1</td>
<td>464.9</td>
<td>473.8</td>
<td>467.9</td>
<td>91.0</td>
<td>288.3</td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>338.6</td>
<td>320.8</td>
<td>381.4</td>
<td>371.6</td>
<td>417.3</td>
<td>377.3</td>
<td>423.9</td>
<td>165.0</td>
<td>309.3</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Assessment Part 1 (Preseason Report I)
April 2017
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
CHAPTER II: AFFECTED ENVIRONMENT - CHINOOK SALMON ASSESSMENT

CHINOOK STOCKS SOUTH OF CAPE FALCON

Sacramento River Fall Chinook

The SRFC stock comprises a large proportion of the Chinook spawners returning to Central Valley streams and hatcheries. SRFC are designated as the indicator stock for the Central Valley fall Chinook stock complex, which was established under FMP Amendment 16 to facilitate setting and assessing compliance with ABC and ACLs, as required by the 2006 revision of the MSA. The Sacramento Index (SI) is the aggregate-age index of adult SRFC ocean abundance.

Predictor Description

The SI is the sum of (1) adult SRFC ocean fishery harvest south of Cape Falcon, OR between September 1 and August 31, (2) adult SRFC impacts from non-retention ocean fisheries when they occur, (3) the recreational harvest of adult SRFC in the Sacramento River Basin, and (4) the SRFC adult spawner escapement (Table II-1, Figure II-1).

The SI forecasting approach uses jack escapement estimates to predict the SI and accounts for autocorrelated errors. In practice, this means that if, in the previous year, the modeled SI value was larger than the SI postseason estimate for that year, the current year forecast is adjusted downward to account for that error. Conversely, if the modeled SI value in the previous year was less than the postseason estimate of the SI for that year, the current year SI forecast would be adjusted upward to compensate for that error.

The forecast of the log-transformed SI was made using the model

$$\log SI_t = \beta_0 + \beta_1 \log J_{t-1} + \rho \epsilon_{t-1},$$

where $\log SI_t$ and $\log J_{t-1}$ are log-transformed SI and jack escapement values, respectively; t is the year for which the SI is being forecast; β_0 is the intercept; β_1 is the slope; ρ is the autocorrelation coefficient; and ϵ_{t-1} is the difference between the modeled value of the log SI for year $t-1$ and the postseason estimate of log SI in year $t-1$. The log SI, SI_t, is back-transformed to the arithmetic scale and corrected for bias in this transformation,

$$SI_t = e^{\log SI_t + 0.5 \sigma^2},$$

where σ^2 is the variance of the normally distributed error component of the fitted model (referred to as the “innovation” variance). A more detailed description of the forecast approach can be found in Appendix E of the 2014 Preseason Report I (PFMC 2014a).

Predictor Performance

The performance of past SI forecasts is displayed graphically in Figure II-4. For 2016, the postseason estimate of the SI was 205,023, which is 68 percent of the preseason forecast of 299,609.

A control rule, adopted as part of Amendment 16 to the salmon FMP, is used annually to specify the maximum allowable exploitation rate on SRFC (Appendix A, Figure A-1). The allowable exploitation rate is determined by the predicted number of potential spawners in the absence of fisheries, which is defined for SRFC as the forecast SI. The FMP allows for any ocean and river harvest allocation that meets the
exploitation rate constraints defined by the control rule. The regulations adopted in 2016 were expected to result in 151,100 hatchery and natural area spawners and an exploitation rate of 49.6 percent. Postseason estimates of these quantities were 89,173 hatchery and natural area adult spawners and an exploitation rate of 56.5 percent (Table II-1).

Stock Forecast and Status
Sacramento Index forecast model parameters were estimated from SI data for years 1983-2016 and jack escapement data for years 1982-2015. A total of 15,056 SRFC jacks were estimated to have escaped to Sacramento River basin hatcheries and natural spawning areas in 2016. This jack escapement and the estimated parameters

\[
\beta_0 = 7.611279, \\
\beta_1 = 0.5455785, \\
\rho = 0.740155, \\
\epsilon_{t-1} = -0.7896613, \\
\sigma^2 = 0.1477123,
\]

result in a 2017 SI forecast of 230,700.

Figure II-2 graphically displays the 2017 SI forecast. The model fit (line in Figure II-2) was higher than the 2016 postseason estimate of the SI. As a result, the 2017 SI forecast value is adjusted downward from the fitted model.

The forecast SI applied to the SRFC control rule (Appendix A, Figure A-1) results in an allowable exploitation rate of 47.1 percent which produces, in expectation, 122,000 hatchery and natural area adult spawners. Therefore, fisheries impacting SRFC must be crafted to achieve, in expectation, a minimum of 122,000 adult spawners in 2017.

In 2017, invoking de minimis fishing rates under Amendment 16 will be unnecessary because SRFC potential spawner abundance is projected to be greater than 162,667 hatchery and natural area adults. Therefore, projected escapement will meet or exceed the S_{MSY} of 122,000 by an exploitation rate greater than 0.25.

OFL, ABC, and ACL
The OFL, ABC, and ACL are defined in terms of spawner escapement (S_{OFL}, S_{ABC}, and S_{ACL}), and are calculated using potential spawner abundance forecasts and established exploitation rates. For SRFC, F_{MSY} = 0.78, the proxy value for Tier-2 Chinook stocks that do not have estimates of this rate derived from a stock-specific spawner-recruit analysis. The OFL for SRFC is S_{OFL} = 230,700 × (1-0.78) = 50,754. Because SRFC is a Tier-2 stock, F_{ABC} = F_{MSY} × 0.90 = 0.70, and F_{ACL} = F_{ABC}. The ABC for SRFC is S_{ABC} = 230,700 × (1-0.70) = 69,210, with S_{ACL} = S_{ABC}. These preseason estimates will be recalculated with postseason abundance estimates (when available) to assess ACL and OFL compliance.

Sacramento River Winter Chinook
ESA-listed endangered SRWC are harvested incidentally in ocean fisheries, primarily off the central California coast. A two-part consultation standard for endangered SRWC was first implemented in 2012.

The first component of the consultation standard is the season and size limit provisions that have been in place since the 2004 Biological Opinion. These provisions state that the recreational salmon fishery between Point Arena and Pigeon Point shall open no earlier than the first Saturday in April and close no later than the second Sunday in November. The recreational salmon fishery between Pigeon Point and the U.S.–
Mexico Border shall open no earlier than the first Saturday in April and close no later than the first Sunday in October. The minimum size limit shall be at least 20 inches total length. The commercial salmon fishery between Point Arena and the U.S.–Mexico border shall open no earlier than May 1 and close no later than September 30, with the exception of an October fishery conducted Monday through Friday between Point Reyes and Point San Pedro, which shall end no later than October 15. The minimum size limit shall be at least 26 inches total length.

The second component of the consultation standard is specified by a control rule that limits the maximum age-3 impact rate for the area south of Point Arena, California (allowable as a preseason forecast) based on the geometric mean of the most recent three years of spawner escapement (see Appendix A, Figure A-3 for a description of the control rule).

The geometric mean of SRWC escapement for years 2014-2016 is 2,521. Application of the control rule results in a maximum forecast age-3 impact rate of 15.8 percent for 2017 fisheries (Table II-2).

Klamath River Fall Chinook

Predictor Description

For Klamath River fall Chinook, linear regressions are used to relate September 1 ocean abundance estimates of age-3, age-4, and age-5 fish to that year’s river run size estimates of age-2, age-3, and age-4 fish, respectively (Table II-3). Historical abundance estimates were derived from a cohort analysis of CWT information (brood years 1979-2012). The y-intercept of the regressions is constrained to zero, which gives the biologically reasonable expectation that a river run size of zero predicts an ocean abundance remainder of zero for the same cohort. The abundance of age-2 fish is not forecasted because no precursor to age-2 fish of that brood is available. Ocean fisheries harvest nominal numbers of age-2 KRFC.

Predictor Performance

Since 1985, the preseason ocean abundance forecasts for age-3 fish have ranged from 0.33 to 3.09 times the postseason estimates; for age-4 fish from 0.37 to 2.60 times the postseason estimates; and for the adult stock as a whole from 0.34 to 2.29 times the postseason estimates (Table II-4). The September 1, 2015 age-3 forecast (93,400) was 2.20 times its postseason estimate (42,361). The age-4 forecast (45,100) was 1.81 times its postseason estimate (24,911); and the age-5 forecast (3,700) was 3.17 times its postseason estimate (1,166). The preseason forecast of the adult stock as a whole was 2.08 times the postseason estimate.

Management of KRFC harvest since 1986 has attempted to achieve specific harvest rates on fully-vulnerable age-4 and age-5 fish in ocean and river fisheries (Table II-5). The Council has used a combination of quotas and time/area restrictions in ocean fisheries in an attempt to meet the harvest rate objective set each year. Since 1992, fisheries have been managed to achieve 50/50 allocation between tribal and non-tribal fisheries. Tribal and recreational river fisheries have been managed on the basis of adult Chinook quotas.

The FMP describes a control rule used annually to specify the maximum allowable exploitation rate on KRFC (Appendix A, Figure A-2). The allowable exploitation rate is determined by the predicted number of potential spawners, which is defined as the natural area adult escapement expected in the absence of fisheries. The FMP allows for any ocean and river harvest allocation that meets the exploitation rate constraints defined by the control rule. The 2016 salmon fishery regulations were expected to result in 30,909 natural-area spawning adults and an age-4 ocean harvest rate of 8.4 percent. Postseason estimates of these quantities were 13,924 natural-area adult spawners and an age-4 ocean harvest rate of 9.1 percent (Table II-5 and Table II-6).
Stock Forecast and Status

The 2017 forecast for the ocean abundance of KRFC as of September 1, 2016 (preseason) is 42,026 age-3 fish, 10,558 age-4 fish, and 1,662 age-5 fish. The age-3 ocean abundance forecast is the second lowest on record. The age-4 forecast is the lowest on record, less than half of the previous lowest forecast.

Late-season ocean fisheries in 2016 (September through November) were estimated to have harvested 187 adult KRFC, including 105 age-4 (a 1.0 percent age-4 ocean harvest rate), which will be deducted from the ocean fishery’s allocation in determining the 2017 allowable ocean harvest.

The forecast of potential spawner abundance is derived from the ocean abundance forecasts, ocean natural mortality rates, age-specific maturation rates, stray rates, and the proportion of escapement expected to spawn in natural areas. The 2017 KRFC potential spawner abundance forecast is 12,383 natural-area adults, which is lower than all postseason values estimated for years 1985-2016. This potential spawner abundance forecast applied to the KRFC control rule results in an allowable exploitation rate of 8.1 percent, which produces, in expectation, 11,379 natural-area adult spawners. Therefore, fisheries impacting KRFC must be crafted to achieve, in expectation, a minimum of 11,379 natural-area adult spawners in 2017.

In 2017, invoking de minimis fishing rates under Amendment 16 will be necessary because KRFC potential spawner abundance is projected to be less than 54,267 natural-area adults. The FMP includes the following guidance with regard to de minimis exploitation rates: “When recommending an allowable de minimis exploitation rate in a given year, the Council shall also consider the following circumstances:

- The potential for critically low natural spawner abundance, including considerations for substocks that may fall below crucial genetic thresholds;
- Spawner abundance levels in recent years;
- The status of co-mingled stocks;
- Indicators of marine and freshwater environmental conditions;
- Minimal needs for tribal fisheries;
- Whether the stock is currently in an approaching overfished condition;
- Whether the stock is currently overfished;
- Other considerations as appropriate”.

OFL, ABC, and ACL

The OFL, ABC, and ACL are defined in terms of spawner escapement (SOFL, SABC, and SACL), and are calculated using potential spawner abundance forecasts and established exploitation rates. For KRFC, FMSY = 0.71, the value estimated from a stock-specific spawner-recruit analysis (STT 2005). The OFL for KRFC is SOFL = 12,383 × (1-0.71) = 3,591. Because KRFC is a Tier-1 stock, FABC = FMSY × 0.95 = 0.68, and FACL = FABC. The ABC for KRFC is SABC = 12,383 × (1-0.68) = 3,963, with SACL = SABC. These preseason estimates will be recalculated with postseason abundance estimates (when available) to assess ACL and OFL compliance.

Other California Coastal Chinook Stocks

Other California coastal streams that support fall Chinook stocks which contribute to ocean fisheries off Oregon and California, include the Smith, Little, Mad, Eel, Mattole, and Russian rivers, and Redwood Creek. Except for the Smith River, these stocks are included in the California coastal Chinook ESU, which is listed as threatened under the ESA. Current information is insufficient to forecast the ocean abundance of these stocks; however, the NMFS ESA consultation standard restricts the KRFC age-4 ocean harvest rate to no more than 16.0 percent to limit impacts on these stocks. In 2016, the age-4 ocean harvest rate was estimated to be 9.1 percent. The Klamath River spring, Smith River, Rogue River, Umpqua River, and other Oregon Chinook stocks south of the Elk River are components of the Southern Oregon/Northern
California (SONC) Chinook complex, and as such, specification of ACLs is deferred to KRFC, the indicator stock for the SONC Chinook complex.

Oregon Coast Chinook Stocks

Oregon coast Chinook stocks are categorized into three major subgroups based on ocean migration patterns: the North Oregon Coast (NOC) Chinook aggregate, the Mid Oregon Coast (MOC) Chinook aggregate, and the South Oregon Coast (SOC) Chinook aggregate. Although their ocean harvest distributions overlap somewhat, they have been labeled as far-north, north, or south/local migrating, respectively.

Far-North and North Migrating Chinook (NOC and MOC groups)

Far-north and north migrating Chinook stocks include spring and fall stocks north of and including the Elk River, with the exception of Umpqua River spring Chinook. Based on CWT analysis, the populations from ten major NOC river systems from the Nehalem through the Siuslaw Rivers are harvested primarily in ocean fisheries off British Columbia and Southeast Alaska, and to a much lesser degree in Council area and terminal area (state waters) fisheries off Washington and Oregon. CWT analysis indicates populations from five major MOC systems, from the Coos through the Elk Rivers, are harvested primarily in ocean fisheries off British Columbia, Washington, Oregon, and in terminal area fisheries. Minor catches occur in California fisheries, and variable catches have been observed in southeast Alaska troll fisheries.

NOC and MOC Chinook stocks are components of the Far-North-Migrating Coastal (FNMC) Chinook complex, which is an exception to the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for stocks in the FNMC complex.

Predictor Description

Quantitative abundance predictions are made for all three of the coastal Chinook groups (NOC, MOC, and SOC), but are not used in annual development of Council area fishery regulations. Quantitative forecasts of abundance are based on sibling regression analyses from individual basins’ escapement assessment data and scale sampling, which occur coast-wide. Forecast data for the NOC are used in the PSC management process in addition to terminal area management actions.

Natural spawner escapement is assessed yearly from the Nehalem through Sixes rivers. Peak spawning counts of adults are obtained from standard index areas on these rivers and monitored to assess stock trends (PFMC 2017, Chapter II, Table II-5 and Figure II-3). Natural fall Chinook stocks from both the NOC and MOC dominate production from this subgroup. Also present in lesser numbers are naturally-produced spring Chinook stocks from several rivers, and hatchery fall and/or spring Chinook released in the Trask, Nestucca, Salmon, Alsea, and Elk rivers.

Basin-specific forecasts constitute the overall aggregate forecasts and are derived in conjunction with annual PSC Chinook model input and calibration activities; however, they were not available at publication time.

Predictor Performance

There was no information available to evaluate performance of predictors for NOC and MOC stocks.

Stock Forecast and Status

North Oregon Coast
Since 1977, the Salmon River Hatchery production has been tagged for use primarily as a PSC indicator stock for the NOC stock component. Because these fish are primarily harvested in fisheries north of the Council management area, the STT has not reviewed the procedure by which this indicator stock is used in estimating annual stock status. The 2016 NOC density from standard survey areas (Nehalem R. through the Siuslaw R.) was a 50 percent decrease from 2015 (PFMC 2017, Appendix B, Table B-11).

Based on the density index of total spawners, the generalized expectation for NOC stocks in 2017 is below recent years’ average abundance. Specifically, the 2016 spawner density in standard survey areas for the NOC averaged 96 spawners per mile, the lowest since 2010.

Mid Oregon Coast

Since 1977, the Elk River Hatchery production has been tagged for potential use as a PSC indicator stock for the MOC stock aggregate. Age-specific ocean abundance forecasts for 2017 are not currently available, but are being developed. The STT has not undertaken a review of the methods used by Oregon Department of Fish and Wildlife (ODFW) staff in developing these abundance forecasts.

The 2016 MOC density from standard survey areas (Coos and Coquille basins) averaged 186 adult spawners per mile, below recent years’ average abundance and the lowest since 2008 (PFMC 2017, Appendix B, Table B-11). Fall Chinook escapement goals are currently under development for the South Umpqua and Coquille basins of the MOC.

South/Local Migrating Chinook (SOC group)

South/local migrating Chinook stocks include Rogue River spring and fall Chinook, fall Chinook from smaller rivers south of the Elk River, and Umpqua River spring Chinook. These stocks are important contributors to ocean fisheries off Oregon and northern California. Umpqua River spring Chinook contribute to a lesser degree to fisheries off Washington, British Columbia, and southeast Alaska.

SOC stocks are components of the Southern Oregon/Northern California (SONC) Chinook complex, and as such, specification of ACLs is deferred to KRFC, the indicator stock for the SONC complex.

Rogue River Fall Chinook

Rogue River fall Chinook contribute to ocean fisheries principally as age-3 through age-5 fish. Mature fish enter the river each year from mid-July through October, with the peak of the run occurring during August and September.

Predictor Description

Carcass recoveries in Rogue River index surveys covering a large proportion of the total spawning area were available for 1977-2004. Using Klamath Ocean Harvest Model (KOHM) methodology, these carcass numbers, allocated into age-classes from scale data, were used to estimate the Rogue Ocean Population Index (ROPI) for age-3 to age-5 fish. A linear regression was developed using the escapement estimates (all ages) in year \(t \) based on seining at Huntley Park (1976-2004) to predict the ROPI in year \(t+1 \) (1977-2005).

Beginning in 2015, a revised predictor was used which relies on the Huntley Park escapement estimate and dispenses with the use of the carcass counts. Linear regressions are used to relate May 1 ocean abundance estimates of age-3, age-4, age-5, and age-6 Rogue fall Chinook to the previous year’s river run size estimates of age-2, age-3, age-4, and age-5 fish, respectively. Historical May 1 ocean abundance estimates were derived from a cohort analysis of 1988-2006 brood years. May 1 (t) ocean abundances were converted to September 1 (t-1) forecasts by dividing the May (t) number by the assumed September 1 (t-1) through May 1 (t) survival rate of 0.5 age-3, 0.8 age-4, 0.8 age-5, and 0.8 age-6. River run size estimates are derived
from a flow-based expansion of standardized seine catches of fall Chinook at Huntley Park (RM 8). The y-intercept of the regressions is constrained to zero.

The 2016 Huntley Park escapement estimate and the resulting 2017 ROPI forecast of 246,800 consists of age-3 (214,000), age-4 (19,200) and age-5-6 (13,600) fish.

Predictor Performance

The ROPI is based on cohort reconstruction methods with index values predicted from regression equations. Because postseason estimates of the ROPI are not available, it is not possible to assess predictor performance.

Stock Forecast and Status

The 2017 ROPI is below recent years’ average (Table II-7).

Other SOC Stocks

Umpqua and Rogue spring Chinook contribute to ocean fisheries primarily as age-3 fish. Mature Chinook enter the rivers primarily during April and May and generally prior to annual ocean fisheries.

Natural fall Chinook stocks from river systems south of the Elk River and spring Chinook stocks from the Rogue and Umpqua rivers dominate production from this subgroup. Substantial releases of hatchery spring Chinook occur in both the Rogue and Umpqua rivers, although also present in lesser numbers are hatchery fall Chinook, primarily from the Chetco River.

These stocks are minor contributors to general season mixed-stock ocean fisheries. Standard fall Chinook spawning index escapement data were available for the smaller SOC rivers (Winchuck, Chetco, and Pistol rivers). These had been used for assessment of the conservation objective for the SOC stocks prior to 2015. The 2016 average density from standard survey areas was 34 adult spawners per mile, the third lowest since 2008 (PFMC 2017, Appendix B, Table B-8). Beginning in 2015, for the SOC Chinook stock complex, the conservation objective is assessed using the escapement estimate of naturally produced fall Chinook at Huntley Park on the Rogue River (PFMC 2017, Appendix B, Table B-10, Chapter II, Table II-5 and Figure II-3).

CHINOOK STOCKS NORTH OF CAPE FALCON

Columbia River Chinook

Columbia River fall Chinook stocks form the largest contributing stock group to Council Chinook fisheries north of Cape Falcon. Abundance of these stocks is a major factor in determining impacts of fisheries on weak natural stocks critical to Council area management, particularly ESA-listed Lower Columbia River (LCR) natural tule Chinook. Abundance predictions are made for five major fall stock units characterized as being hatchery or natural production, and originating above or below Bonneville Dam. The upriver brights (URB) and lower river wild (LRW) are primarily naturally-produced stocks, although the upriver brights do have a substantial hatchery component. The lower river hatchery (LRH) tule, Spring Creek Hatchery (SCH) tule, and mid-Columbia brights (MCB) are primarily hatchery-produced stocks. The MCB include the lower river bright (LRB) stock as a small naturally-produced component. LRB spawn in the mainstem Columbia River near Beacon Rock and are believed to have originated from MCB hatchery strays. The tule stocks generally mature at an earlier age than the bright fall stocks and do not migrate as far north. Minor fall stocks include the Select Area brights (SAB), a stock originally from the Rogue River.

Upper Columbia River summer Chinook also contribute to Council area fisheries, although like URB and LRW, most ocean impacts occur in British Columbia (B.C.) and Southeast Alaska (SEAK) fisheries. Upper
Columbia River summer Chinook have both natural and hatchery components, and originate in areas upstream from Rock Island Dam.

URB and Columbia summer Chinook are exempt from the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for URB and Columbia summer Chinook. ESA consultation standards serve the purpose of ACLs for ESA-listed stocks like LRW Chinook. Broodstock goals serve the purpose of ACLs for hatchery-origin stocks like LRH, SCH, and MCB.

Predictor Description

Preseason forecasts of Columbia River fall and summer Chinook stock abundance, used by the STT to assess the Council’s adopted fishery regulations, are based on age-specific and stock-specific forecasts of annual ocean escapement (returns to the Columbia River). These forecasts are developed by WDFW and a subgroup of the *U.S. v Oregon* Technical Advisory Committee (TAC). Columbia River return forecast methodologies used for Council management are identical to those used for planning Columbia River fall season fisheries, although minor updates to Council estimates of inriver run size may occur prior to finalization of the inriver fishery plans, based on the results of planned ocean fisheries.

The 2017 return of summer and each fall Chinook stock group is forecasted using relationships between successive age groups within a cohort. The database for these relationships was constructed by combining age-specific estimates of escapement and inriver fishery catches for years since 1964 (except for MCB, which started in the 1980s). Typically, only the more recent broods are used in the current predictions. Fall Chinook stock identification in the Columbia River mixed-stock fisheries is determined by sampling catch and escapement for CWTs and visual stock identification (VSI). Age composition estimates are based on CWT data and scale reading of fishery and escapement samples, where available. These stock and age data for Columbia River fall Chinook are the basis for the return data presented in the *Review of 2016 Ocean Salmon Fisheries* (Appendix B, Tables B-15 through B-20). The 2016 returns for summer Chinook and the five fall Chinook stocks listed in this report may differ somewhat from those provided in the *Review of 2016 Ocean Salmon Fisheries*, since ocean escapement estimates may have been updated after that report was printed.

Summer and fall Chinook ocean escapement forecasts developed for the March Council meeting do not take into account variations in marine harvest. The STT combines the initial inriver run size (ocean escapement; Table II-8) with expected Council area fishery harvest levels and stock distribution patterns to produce adjusted ocean escapement forecasts based on the proposed ocean fishing regulations. These revised forecasts are available at the end of the Council preseason planning process in April and are used for preseason fishery modeling in the Columbia River.

Predictor Performance

Performance of the preliminary inriver run size estimation methodology can be assessed, in part, by examining the differences between preseason forecasts and postseason estimates (Table II-8; Figure II-4). The recent 10-year average March preliminary preseason forecasts as a percentage of the postseason estimates are 111 percent for URB, 111 percent for LRW, 117 percent for LRH, 120 percent for SCH, and 112 percent for MCB. None of the fall Chinook stocks had a notable bias in the recent time series of March preliminary forecasts, although all were slightly over-forecasted in March. The recent 5-year average March preliminary preseason forecasts as a percentage of the postseason estimates for summer Chinook is 102 percent.
Stock Forecasts and Status

The preliminary forecast for 2017 URB fall Chinook ocean escapement is 260,000 adults, about 64 percent of last year’s return of 406,600 and about 63 percent of the recent 10-year average of 414,000. This forecast is less than half the 589,000 forecast in 2016 and is well below the strong returns that have occurred during 2010-2016. This ocean escapement will allow for moderate ocean and in-river fisheries while achieving the FMP S\textsubscript{MSY} conservation objective of 39,625 natural area spawners in the Hanford Reach, Yakima River, and areas above Priest Rapids Dam.

The forecast for the 2017 ocean escapement of ESA-listed Snake River wild fall Chinook was not available at the time this report was written.

Ocean escapement of LRW fall Chinook in 2017 is forecast at 12,500 adults, about 80 percent of the recent 10-year average return of 15,600. The forecast is about 96 percent of last year’s actual return. The spawning escapement goal of 5,700 in the North Fork Lewis River is expected to be achieved this year.

The preliminary forecast for 2017 ocean escapement of LRH fall Chinook is for a return of 92,400 adults, about 113 percent of last year’s return and 105 percent of the recent 10-year average of 88,200. Based on this abundance forecast, the total allowable LCR natural tule exploitation rate for 2017 fisheries is no greater than 41.0 percent under the matrix developed by the Tule Chinook Workgroup in 2011, which is used by NMFS in developing ESA guidance for this stock (Appendix A Table A-6). This is the highest exploitation rate allowed under the recommended matrix.

The preliminary ocean escapement forecast of SCH fall Chinook in 2017 is 158,400 adults, about 355 percent of last year’s return of 44,600 and 189 percent of the 10-year average of 83,800.

The preliminary forecast for the 2017 ocean escapement of MCB fall Chinook is 45,600 adults, about 52 percent of last year’s return of 88,300 and about 41 percent of the recent 10-year average of 112,500.

The preliminary forecast for summer Chinook in 2017 is 63,100 adults, approximately 69 percent of last year’s return of 91,000 and about 75 percent of the recent 5-year average of 84,400. This ocean escapement should allow opportunity for both ocean and in-river fisheries while easily exceeding the FMP S\textsubscript{MSY} conservation objective of 12,143 escapement above Rock Island Dam.

Washington Coast Chinook

Washington Coast Chinook consist of spring, summer, and fall stocks from Willapa Bay through the Hoko River. Based on limited CWT analysis, these populations are harvested primarily in ocean fisheries off British Columbia and Southeast Alaska, and to a lesser degree in Council-area fisheries off Washington and Oregon.

Washington Coast Chinook stocks are components of the FNMC Chinook complex, which is an exception to the ACL requirements of the MSA because it is managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for stocks in the FNMC complex.

Predictor Description and Past Performance

Council fisheries have negligible impacts on Washington coast Chinook stocks and information to assess past performance is unavailable. However, abundance estimates are provided for Washington Coastal fall stocks in subsequent preseason fishery impact assessment reports prepared by the STT (e.g., Preseason Report III).
Stock Forecasts and Status

The 2017 Willapa Bay natural fall Chinook ocean escapement forecast is 4,178 which is above the FMP S_{MSY} conservation objective of 3,393. The hatchery fall Chinook forecast is 34,328.

The 2017 Grays Harbor spring and fall Chinook ocean escapement forecasts were unavailable at the time of print.

The 2017 Queets River natural Spring/Summer Chinook ocean escapement forecast is 536. The natural fall Chinook forecast is 3,692 which is above the FMP S_{MSY} conservation objective of 2,500 and the hatchery fall Chinook spawning escapement forecast is 900.

The 2017 Quinault River hatchery and natural fall Chinook forecasts were unavailable at time of printing.

For the Hoh River, the 2017 natural spring/summer Chinook spawning escapement forecast is 1,000, above the FMP conservation objective of 900. The natural fall Chinook forecast is 2,725 which is above the FMP S_{MSY} conservation objective of 1,200.

The 2017 Quillayute hatchery spring Chinook ocean escapement forecast is 2,152 and the natural summer/fall Chinook forecast is 7,565 (1,132 summer and 6,433 fall). The FMP S_{MSY} conservation objectives are spawning escapements of 1,200 summer Chinook and 3,000 fall Chinook.

Puget Sound Chinook

Puget Sound Chinook stocks include all fall, summer, and spring stocks originating from U.S. tributaries in Puget Sound and the eastern Strait of Juan de Fuca (east of Salt Creek, inclusive). Puget Sound Chinook consists of numerous natural Chinook stocks of small to medium-sized populations and substantial hatchery production. The Puget Sound ESU was listed under the ESA as threatened in March 1999.

Council-area fishery impacts to Puget Sound Chinook stocks are generally very low, on the order of 5% or less. NMFS issued a biological opinion in 2004 concluding that Council-area fisheries were not likely to jeopardize listed Puget Sound Chinook, and exempting these fisheries from the ESA section 9 take prohibition as long as they are consistent with the terms and conditions in the opinion. This opinion does not cover Puget Sound fisheries. In recent years the comangers have developed annual fishery management plans for Puget Sound and NMFS has issued one-year biological opinions for these plans exempting them from ESA section 9 take prohibitions. These opinions take into account the combined impacts of ocean and Puget Sound fisheries. Puget Sound stocks contribute to fisheries off B.C., are present to a lesser degree off SEAK, and are impacted to a minor degree by Council-area ocean fisheries. Because Council-area fishery impacts to Puget Sound Chinook stocks are minor, ocean regulations are not generally used to manage these stocks.

Predictor Description

Methodologies for estimates are described in the annual Puget Sound management reports (starting in 1993, reports are available by Puget Sound management unit, not by individual species). Forecasts for Puget Sound stocks generally assume production is dominated by age-4 adults. The STT has not undertaken a review of the methods employed by state and tribal staffs in preparing these abundance forecasts. Run-size expectations for various Puget Sound stock management units are listed in Table I-1.

Predictor Performance

There was no information available to evaluate performance of predictors for Puget Sound Chinook stocks.
Stock Forecasts and Status
ACLs are undefined in the FMP for ESA-listed stocks like Puget Sound Chinook, and are deferred to ESA consultation standards.

Spring Chinook
Spring Chinook originating in Puget Sound are expected to remain depressed. Runs in the Nooksack and Dungeness rivers are of particular concern.

Summer/Fall Chinook
The 2017 preliminary total hatchery and natural forecasts for Puget Sound summer/fall Chinook stocks are unavailable, as some forecasts were not completed at print time. The 2016 preseason hatchery Chinook return forecast was 150,400 and the 2016 natural Chinook return forecast was 29,200 (includes supplemental category forecasts).

Since ESA listing and development of the Resource Management Plan (RMP), fishery management for Puget Sound Chinook has changed from an escapement goal basis to the use of stock-specific exploitation rates and “critical abundance thresholds.” This new approach is evaluated on an annual basis through the RMP.

STOCK STATUS DETERMINATION UPDATES
No Chinook stocks were subject to overfishing or were classified as overfished in 2016. Of the two Chinook stocks for which projections could be made, Klamath River fall Chinook meets the criteria for approaching an overfished condition under 2016 fishery management measures (Table V-4).

SELECTIVE FISHERY CONSIDERATIONS FOR CHINOOK
As the North of Falcon region has moved forward with mass marking of hatchery Chinook salmon stocks, the first mark selective fishery for Chinook salmon in Council waters was implemented in June 2010 in the recreational fishery north of Cape Falcon. In 2011 and 2012, the mark selective fishery in June was 8 and 15 days, respectively. In 2013 and 2014, the North of Falcon mark selective recreational fishery started in mid-May in Neah Bay and La Push subareas, then opened in all areas in late May or June. In 2015, the mark selective Chinook quota was 10,000 fish in the mid-May to mid-June fishery. There was no mark selective fishery for Chinook in Council waters in 2016. Selective fishing options for non-Indian fisheries are likely to be under consideration in the ocean area from Cape Falcon, Oregon to the U.S./Canada border. Observed mark rates on Chinook in 2015 ocean fisheries in this area ranged from 59 to 85 percent. Based on preseason abundance forecasts, the expected mark rate for Chinook in this area for 2017 should be similar to those observed during the last mark selective ocean fishery in 2015.
TABLE II-1. Harvest and abundance indices for adult Sacramento River fall Chinook (SRFC) in thousands of fish. (Page 1 of 2)

<table>
<thead>
<tr>
<th>Year</th>
<th>Troll</th>
<th>Sport</th>
<th>Non-Ret</th>
<th>Total</th>
<th>River Harvest</th>
<th>Sport Harvest</th>
<th>Non-Ret Harvest</th>
<th>Total</th>
<th>Spawning Escapement</th>
<th>Sacramento Index (SI)</th>
<th>Exploitation Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>248.1</td>
<td>86.5</td>
<td>0.0</td>
<td>334.6</td>
<td>18.0</td>
<td>91.4</td>
<td>18.8</td>
<td>110.2</td>
<td>462.9</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>1984</td>
<td>266.9</td>
<td>87.1</td>
<td>0.0</td>
<td>353.9</td>
<td>25.9</td>
<td>119.5</td>
<td>39.5</td>
<td>159.0</td>
<td>538.9</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1985</td>
<td>359.0</td>
<td>159.3</td>
<td>0.0</td>
<td>518.4</td>
<td>39.1</td>
<td>209.5</td>
<td>29.9</td>
<td>239.3</td>
<td>796.7</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1986</td>
<td>620.1</td>
<td>137.5</td>
<td>0.0</td>
<td>757.6</td>
<td>39.2</td>
<td>216.3</td>
<td>23.8</td>
<td>240.1</td>
<td>1,036.9</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1987</td>
<td>686.6</td>
<td>173.8</td>
<td>0.0</td>
<td>860.4</td>
<td>31.8</td>
<td>174.8</td>
<td>20.3</td>
<td>195.1</td>
<td>1,087.3</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1988</td>
<td>1,163.0</td>
<td>188.3</td>
<td>0.0</td>
<td>1,351.3</td>
<td>37.1</td>
<td>198.0</td>
<td>29.5</td>
<td>227.5</td>
<td>1,615.9</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1989</td>
<td>605.9</td>
<td>158.9</td>
<td>0.0</td>
<td>764.8</td>
<td>24.9</td>
<td>126.7</td>
<td>25.9</td>
<td>152.6</td>
<td>942.3</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1990</td>
<td>507.5</td>
<td>150.8</td>
<td>0.0</td>
<td>658.3</td>
<td>17.2</td>
<td>83.2</td>
<td>21.9</td>
<td>105.1</td>
<td>780.5</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1991</td>
<td>301.0</td>
<td>90.7</td>
<td>0.0</td>
<td>391.7</td>
<td>26.0</td>
<td>91.4</td>
<td>27.5</td>
<td>118.9</td>
<td>536.6</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1992</td>
<td>233.3</td>
<td>70.1</td>
<td>0.0</td>
<td>303.4</td>
<td>13.3</td>
<td>59.5</td>
<td>22.1</td>
<td>81.5</td>
<td>398.3</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1993</td>
<td>342.8</td>
<td>115.5</td>
<td>0.0</td>
<td>458.3</td>
<td>27.7</td>
<td>110.6</td>
<td>26.8</td>
<td>137.4</td>
<td>623.4</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1994</td>
<td>303.5</td>
<td>168.8</td>
<td>0.0</td>
<td>472.3</td>
<td>28.9</td>
<td>133.0</td>
<td>32.6</td>
<td>165.6</td>
<td>666.7</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1995</td>
<td>730.7</td>
<td>390.4</td>
<td>0.0</td>
<td>1,121.1</td>
<td>48.2</td>
<td>253.5</td>
<td>41.8</td>
<td>295.3</td>
<td>1,464.6</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1996</td>
<td>426.8</td>
<td>157.0</td>
<td>0.0</td>
<td>583.8</td>
<td>49.2</td>
<td>267.1</td>
<td>34.6</td>
<td>301.6</td>
<td>934.7</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1997</td>
<td>579.7</td>
<td>210.3</td>
<td>0.0</td>
<td>790.1</td>
<td>56.3</td>
<td>279.6</td>
<td>65.2</td>
<td>344.8</td>
<td>1,191.2</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1998</td>
<td>292.3</td>
<td>114.0</td>
<td>0.0</td>
<td>406.4</td>
<td>69.8</td>
<td>168.1</td>
<td>77.8</td>
<td>245.9</td>
<td>722.1</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1999</td>
<td>289.1</td>
<td>76.3</td>
<td>0.0</td>
<td>365.4</td>
<td>68.9</td>
<td>353.7</td>
<td>46.1</td>
<td>399.8</td>
<td>834.1</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2000</td>
<td>423.1</td>
<td>152.8</td>
<td>0.0</td>
<td>576.0</td>
<td>59.5</td>
<td>369.2</td>
<td>48.3</td>
<td>417.5</td>
<td>1,053.0</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2001</td>
<td>285.2</td>
<td>94.3</td>
<td>0.0</td>
<td>379.5</td>
<td>97.4</td>
<td>537.4</td>
<td>59.4</td>
<td>596.8</td>
<td>1,073.7</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2002</td>
<td>454.2</td>
<td>185.1</td>
<td>0.0</td>
<td>639.3</td>
<td>89.2</td>
<td>682.7</td>
<td>87.2</td>
<td>769.9</td>
<td>1,498.4</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2003</td>
<td>506.2</td>
<td>106.7</td>
<td>0.0</td>
<td>612.9</td>
<td>85.4</td>
<td>413.4</td>
<td>109.6</td>
<td>523.0</td>
<td>1,221.3</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2004</td>
<td>621.8</td>
<td>213.0</td>
<td>0.0</td>
<td>834.8</td>
<td>46.8</td>
<td>203.5</td>
<td>83.4</td>
<td>286.9</td>
<td>1,168.5</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2005</td>
<td>370.4</td>
<td>127.6</td>
<td>0.0</td>
<td>498.0</td>
<td>64.6</td>
<td>210.7</td>
<td>185.3</td>
<td>396.0</td>
<td>958.6</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>2006</td>
<td>149.9</td>
<td>107.9</td>
<td>0.0</td>
<td>257.8</td>
<td>44.9</td>
<td>195.1</td>
<td>79.9</td>
<td>275.0</td>
<td>577.7</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Year</td>
<td>Troll</td>
<td>Sport</td>
<td>Non-Rel/</td>
<td>Total</td>
<td>Troll</td>
<td>Sport</td>
<td>Non-Rel/</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>120.0</td>
<td>32.0</td>
<td>0.0</td>
<td>152.0</td>
<td>14.3</td>
<td>70.0</td>
<td>21.4</td>
<td>91.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>3.2</td>
<td>0.9</td>
<td>0.0</td>
<td>4.1</td>
<td>0.1</td>
<td>46.9</td>
<td>18.5</td>
<td>65.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>23.3</td>
<td>17.5</td>
<td>40.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>11.8</td>
<td>11.4</td>
<td>0.3</td>
<td>23.5</td>
<td>2.5</td>
<td>84.6</td>
<td>39.7</td>
<td>124.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>46.7</td>
<td>22.9</td>
<td>0.0</td>
<td>69.6</td>
<td>17.4</td>
<td>76.5</td>
<td>42.9</td>
<td>119.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>184.0</td>
<td>93.5</td>
<td>0.3</td>
<td>277.7</td>
<td>62.2</td>
<td>163.2</td>
<td>122.3</td>
<td>285.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>292.1</td>
<td>114.5</td>
<td>0.0</td>
<td>406.6</td>
<td>55.5</td>
<td>301.5</td>
<td>104.7</td>
<td>406.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>243.0</td>
<td>62.4</td>
<td>0.0</td>
<td>305.4</td>
<td>35.7</td>
<td>167.7</td>
<td>44.7</td>
<td>212.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>101.3</td>
<td>24.4</td>
<td>0.0</td>
<td>125.7</td>
<td>16.9</td>
<td>73.2</td>
<td>39.8</td>
<td>112.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016*</td>
<td>63.2</td>
<td>28.8</td>
<td>0.0</td>
<td>92.0</td>
<td>23.9</td>
<td>54.6</td>
<td>34.5</td>
<td>89.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a/ Ocean harvest for the period September 1 (t-1) through August 31 (t).
b/ Mortalities estimated from non-retention ocean fisheries (e.g., coho-only fisheries, non-retention GSI sampling). In 2008, there were 37 estimated mortalities as a result of non-retention fisheries that have been rounded to 0 in this table.
c/ The SI is the sum of (1) SRFC ocean fishery harvest south of Cape Falcon between September 1 and August 31, (2) SRFC impacts from non-retention ocean fisheries when they occur, (3) the recreational harvest of SRFC in the Sacramento River Basin, and (4) the SRFC spawner escapement.
d/ Total ocean harvest, non-retention ocean fishery mortalities, and river harvest of SRFC as a percentage of the SI.
e/ Estimates derived from CDFW Sacramento River Basin angler survey. Estimates not marked with a footnote are inferred from escapement data and the mean river harvest rate estimate.
f/ Preliminary.
<table>
<thead>
<tr>
<th>Year</th>
<th>Escapement<sup>a</sup></th>
<th>3-yr GM Escapement<sup>b</sup></th>
<th>Maximum Allowable (%)</th>
<th>Preseason Forecast (%)</th>
<th>Postseason Estimate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>21.4</td>
</tr>
<tr>
<td>2001</td>
<td>8,224</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>23.3</td>
</tr>
<tr>
<td>2002</td>
<td>7,464</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>21.8</td>
</tr>
<tr>
<td>2003</td>
<td>8,218</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>10.3</td>
</tr>
<tr>
<td>2004</td>
<td>7,869</td>
<td>7,960</td>
<td>-</td>
<td>-</td>
<td>24.8</td>
</tr>
<tr>
<td>2005</td>
<td>15,839</td>
<td>7,844</td>
<td>-</td>
<td>-</td>
<td>17.2</td>
</tr>
<tr>
<td>2006</td>
<td>17,290</td>
<td>10,080</td>
<td>-</td>
<td>-</td>
<td>15.1</td>
</tr>
<tr>
<td>2007</td>
<td>2,541</td>
<td>12,917</td>
<td>-</td>
<td>-</td>
<td>17.8</td>
</tr>
<tr>
<td>2008</td>
<td>2,830</td>
<td>8,862</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>4,537</td>
<td>4,991</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>2010</td>
<td>1,596</td>
<td>3,195</td>
<td>-</td>
<td>-</td>
<td>-<sup>c</sup></td>
</tr>
<tr>
<td>2011</td>
<td>824</td>
<td>2,737</td>
<td>-</td>
<td>-</td>
<td>28.3</td>
</tr>
<tr>
<td>2012</td>
<td>2,671</td>
<td>1,814</td>
<td>13.7</td>
<td>13.7</td>
<td>12.6</td>
</tr>
<tr>
<td>2013</td>
<td>6,084</td>
<td>1,520</td>
<td>12.9</td>
<td>12.9</td>
<td>18.8</td>
</tr>
<tr>
<td>2014</td>
<td>3,015</td>
<td>2,375</td>
<td>15.4</td>
<td>15.4</td>
<td>15.8</td>
</tr>
<tr>
<td>2015</td>
<td>3,439</td>
<td>3,659</td>
<td>19.0</td>
<td>17.5</td>
<td>-<sup>d</sup></td>
</tr>
<tr>
<td>2016</td>
<td>1,546</td>
<td>3,981</td>
<td>19.9</td>
<td>12.8</td>
<td>NA<sup>e</sup></td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>2,521</td>
<td>15.8</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

^a Escapement includes jacks and adults spawning in natural areas and fish used for broodstock at Livingston Stone National Fish Hatchery.

^b Geometric mean of escapement for the three prior years (e.g., 2017 GM computed from 2014-2016 escapement).

^c Insufficient data for postseason estimate.

^d Preliminary: Incomplete cohort data (age-4 escapement unavailable).

^e Not Estimated. Incomplete cohort data (age-3 and age-4 escapement unavailable).
TABLE II-3. Klamath River fall Chinook ocean abundance (thousands), harvest rate, and river run size estimates (thousands) by age.

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Ocean Abundance Sept. 1 (t-1)</th>
<th>Annual Ocean Harvest Rate Sept. 1 (t-1) - Aug. 31 (t)</th>
<th>Klamath Basin River Run (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age-3 Age-4 Total</td>
<td>Age-3 Age-4</td>
<td>Age-2 Age-3 Age-4 Age-5 Total Adults</td>
</tr>
<tr>
<td>1981</td>
<td>493.2 57.0 550.2</td>
<td>0.21 0.53</td>
<td>28.2 64.1 14.4 1.8 80.3</td>
</tr>
<tr>
<td>1982</td>
<td>561.1 133.4 694.5</td>
<td>0.30 0.52</td>
<td>39.4 30.1 33.9 2.6 66.6</td>
</tr>
<tr>
<td>1983</td>
<td>313.3 114.2 427.5</td>
<td>0.19 0.60</td>
<td>3.8 35.9 20.7 0.9 57.5</td>
</tr>
<tr>
<td>1984</td>
<td>157.3 82.8 240.1</td>
<td>0.08 0.38</td>
<td>8.3 21.7 24.4 1.1 47.2</td>
</tr>
<tr>
<td>1985</td>
<td>374.8 56.9 431.7</td>
<td>0.11 0.24</td>
<td>69.4 32.9 25.7 5.8 64.4</td>
</tr>
<tr>
<td>1986</td>
<td>1,304.4 140.8 1,445.2</td>
<td>0.18 0.46</td>
<td>44.6 162.9 29.8 2.3 195.0</td>
</tr>
<tr>
<td>1987</td>
<td>781.1 341.9 1,123.0</td>
<td>0.16 0.43</td>
<td>19.1 89.7 112.6 6.8 209.1</td>
</tr>
<tr>
<td>1988</td>
<td>756.3 234.8 991.0</td>
<td>0.20 0.39</td>
<td>24.1 101.2 86.5 3.9 191.6</td>
</tr>
<tr>
<td>1989</td>
<td>369.8 177.2 547.1</td>
<td>0.15 0.36</td>
<td>9.1 50.4 69.6 4.3 124.3</td>
</tr>
<tr>
<td>1990</td>
<td>176.1 104.0 280.1</td>
<td>0.30 0.55</td>
<td>4.4 11.6 22.9 1.3 35.9</td>
</tr>
<tr>
<td>1991</td>
<td>69.4 37.2 106.6</td>
<td>0.03 0.18</td>
<td>1.8 10.0 21.6 1.1 32.7</td>
</tr>
<tr>
<td>1992</td>
<td>39.5 28.2 67.7</td>
<td>0.02 0.07</td>
<td>13.7 6.9 18.8 1.0 26.7</td>
</tr>
<tr>
<td>1993</td>
<td>168.5 15.0 183.5</td>
<td>0.05 0.16</td>
<td>7.6 48.3 8.2 0.7 57.2</td>
</tr>
<tr>
<td>1994</td>
<td>119.9 41.7 161.7</td>
<td>0.03 0.09</td>
<td>14.4 37.0 26.0 1.0 64.0</td>
</tr>
<tr>
<td>1995</td>
<td>787.3 28.7 816.0</td>
<td>0.04 0.14</td>
<td>22.8 201.9 18.3 2.6 222.8</td>
</tr>
<tr>
<td>1996</td>
<td>192.3 226.3 418.6</td>
<td>0.05 0.16</td>
<td>9.5 38.8 136.7 0.3 175.8</td>
</tr>
<tr>
<td>1997</td>
<td>140.2 62.8 203.0</td>
<td>0.01 0.06</td>
<td>8.0 35.0 44.2 4.6 83.7</td>
</tr>
<tr>
<td>1998</td>
<td>154.8 44.7 199.5</td>
<td>0.00 0.09</td>
<td>4.6 59.2 29.7 1.7 90.6</td>
</tr>
<tr>
<td>1999</td>
<td>129.1 30.5 159.5</td>
<td>0.02 0.09</td>
<td>19.2 29.2 20.5 1.3 51.0</td>
</tr>
<tr>
<td>2000</td>
<td>617.1 44.2 661.3</td>
<td>0.06 0.10</td>
<td>10.2 187.1 30.5 0.5 218.1</td>
</tr>
<tr>
<td>2001</td>
<td>356.1 133.8 489.9</td>
<td>0.03 0.09</td>
<td>11.3 99.1 88.2 0.2 187.4</td>
</tr>
<tr>
<td>2002</td>
<td>513.6 98.9 612.5</td>
<td>0.02 0.15</td>
<td>9.2 94.6 62.5 3.7 160.8</td>
</tr>
<tr>
<td>2003</td>
<td>401.1 192.2 593.3</td>
<td>0.08 0.21</td>
<td>3.8 94.3 96.8 0.9 191.9</td>
</tr>
<tr>
<td>2004</td>
<td>159.4 105.2 264.7</td>
<td>0.12 0.35</td>
<td>9.6 33.1 40.5 5.3 78.9</td>
</tr>
<tr>
<td>2005</td>
<td>190.0 38.1 228.1</td>
<td>0.02 0.20</td>
<td>2.3 43.8 17.5 3.9 65.2</td>
</tr>
<tr>
<td>2006</td>
<td>90.6 63.4 154.0</td>
<td>0.01 0.10</td>
<td>26.9 18.5 41.6 1.3 61.4</td>
</tr>
<tr>
<td>2007</td>
<td>376.8 33.6 410.5</td>
<td>0.06 0.21</td>
<td>1.7 113.7 16.8 1.6 132.1</td>
</tr>
<tr>
<td>2008</td>
<td>68.0 81.4 149.4</td>
<td>0.00 0.10</td>
<td>25.2 18.6 50.2 1.7 70.6</td>
</tr>
<tr>
<td>2009</td>
<td>240.7 21.1 261.8</td>
<td>0.00 0.00</td>
<td>11.9 78.6 16.4 5.6 100.6</td>
</tr>
<tr>
<td>2010</td>
<td>192.8 62.1 254.9</td>
<td>0.01 0.04</td>
<td>16.6 46.1 44.3 0.4 90.9</td>
</tr>
<tr>
<td>2011</td>
<td>240.2 64.6 304.7</td>
<td>0.03 0.08</td>
<td>84.9 59.0 41.0 2.0 102.0</td>
</tr>
<tr>
<td>2012</td>
<td>799.0 74.3 873.3</td>
<td>0.03 0.08</td>
<td>21.4 243.9 49.3 2.1 295.3</td>
</tr>
<tr>
<td>2013</td>
<td>438.3 194.4 632.6</td>
<td>0.04 0.20</td>
<td>14.4 55.2 108.8 1.1 165.0</td>
</tr>
<tr>
<td>2014</td>
<td>216.6 180.7 397.3</td>
<td>0.03 0.17</td>
<td>22.3 57.8 98.7 3.9 160.4</td>
</tr>
<tr>
<td>2015</td>
<td>110.6a/ 61.0 171.7</td>
<td>0.02a/ 0.22</td>
<td>6.1 36.7 34.0 7.1 77.8</td>
</tr>
<tr>
<td>2016</td>
<td>42.4b/ 24.9w/ 67.3</td>
<td>NAc/ 0.09w/</td>
<td>2.8 8.6 15.4 0.5 24.6</td>
</tr>
</tbody>
</table>

a/ Preliminary: incomplete cohort data (age-5 unavailable).
b/ Preliminary: incomplete cohort data (age-4 and age-5 unavailable).
c/ Not estimated: incomplete cohort data (age-4 and age-5 unavailable).
TABLE II-4. Comparisons of preseason forecast and postseason estimates for ocean abundance of adult Klamath River fall Chinook

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Preseason Forecast<sup>a</sup></th>
<th>Postseason Estimate</th>
<th>Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>113,000</td>
<td>276,000</td>
<td>0.41</td>
</tr>
<tr>
<td>1986</td>
<td>426,000<sup>b</sup></td>
<td>1,304,409</td>
<td>0.33</td>
</tr>
<tr>
<td>1987</td>
<td>511,800</td>
<td>781,123</td>
<td>0.66</td>
</tr>
<tr>
<td>1988</td>
<td>370,800</td>
<td>756,261</td>
<td>0.49</td>
</tr>
<tr>
<td>1989</td>
<td>450,600</td>
<td>369,828</td>
<td>1.22</td>
</tr>
<tr>
<td>1990</td>
<td>479,000</td>
<td>176,122</td>
<td>2.72</td>
</tr>
<tr>
<td>1991</td>
<td>176,200</td>
<td>69,424</td>
<td>2.54</td>
</tr>
<tr>
<td>1992</td>
<td>50,000</td>
<td>39,502</td>
<td>1.27</td>
</tr>
<tr>
<td>1993</td>
<td>294,400</td>
<td>168,473</td>
<td>1.75</td>
</tr>
<tr>
<td>1994</td>
<td>138,000</td>
<td>119,915</td>
<td>1.15</td>
</tr>
<tr>
<td>1995</td>
<td>269,000</td>
<td>787,309</td>
<td>0.34</td>
</tr>
<tr>
<td>1996</td>
<td>479,800</td>
<td>192,272</td>
<td>2.50</td>
</tr>
<tr>
<td>1997</td>
<td>224,600</td>
<td>140,153</td>
<td>1.60</td>
</tr>
<tr>
<td>1998</td>
<td>176,000</td>
<td>154,799</td>
<td>1.14</td>
</tr>
<tr>
<td>1999</td>
<td>84,800</td>
<td>129,066</td>
<td>0.66</td>
</tr>
<tr>
<td>2000</td>
<td>349,600</td>
<td>617,087</td>
<td>0.57</td>
</tr>
<tr>
<td>2001</td>
<td>187,200</td>
<td>356,128</td>
<td>0.53</td>
</tr>
<tr>
<td>2002</td>
<td>209,000</td>
<td>513,604</td>
<td>0.41</td>
</tr>
<tr>
<td>2003</td>
<td>171,300</td>
<td>401,112</td>
<td>0.43</td>
</tr>
<tr>
<td>2004</td>
<td>72,100</td>
<td>159,446</td>
<td>0.45</td>
</tr>
<tr>
<td>2005</td>
<td>185,700</td>
<td>189,976</td>
<td>0.98</td>
</tr>
<tr>
<td>2006</td>
<td>44,100</td>
<td>90,606</td>
<td>0.49</td>
</tr>
<tr>
<td>2007</td>
<td>515,400</td>
<td>376,840</td>
<td>1.37</td>
</tr>
<tr>
<td>2008</td>
<td>31,600</td>
<td>68,003</td>
<td>0.46</td>
</tr>
<tr>
<td>2009</td>
<td>474,900</td>
<td>240,713</td>
<td>1.97</td>
</tr>
<tr>
<td>2010</td>
<td>223,400</td>
<td>192,760</td>
<td>1.16</td>
</tr>
<tr>
<td>2011</td>
<td>304,600</td>
<td>240,160</td>
<td>1.27</td>
</tr>
<tr>
<td>2012</td>
<td>1,567,600</td>
<td>798,976</td>
<td>1.96</td>
</tr>
<tr>
<td>2013</td>
<td>390,700</td>
<td>438,269</td>
<td>0.89</td>
</tr>
<tr>
<td>2014</td>
<td>219,800</td>
<td>216,585</td>
<td>1.01</td>
</tr>
<tr>
<td>2015</td>
<td>342,200</td>
<td>110,643</td>
<td>3.09</td>
</tr>
<tr>
<td>2016</td>
<td>93,400</td>
<td>42,361</td>
<td>2.20</td>
</tr>
<tr>
<td>2017</td>
<td>42,000</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Age-3
<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Preseason Forecast<sup>a</sup></th>
<th>Postseason Estimate</th>
<th>Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>56,900</td>
<td>57,500</td>
<td>0.99</td>
</tr>
<tr>
<td>1986</td>
<td>66,300</td>
<td>140,823</td>
<td>0.47</td>
</tr>
<tr>
<td>1987</td>
<td>206,100</td>
<td>341,875</td>
<td>0.60</td>
</tr>
<tr>
<td>1988</td>
<td>186,400</td>
<td>234,751</td>
<td>0.79</td>
</tr>
<tr>
<td>1989</td>
<td>215,500</td>
<td>177,245</td>
<td>1.22</td>
</tr>
<tr>
<td>1990</td>
<td>50,100</td>
<td>103,951</td>
<td>0.48</td>
</tr>
<tr>
<td>1991</td>
<td>44,600</td>
<td>37,171</td>
<td>1.20</td>
</tr>
<tr>
<td>1992</td>
<td>44,800</td>
<td>28,169</td>
<td>1.59</td>
</tr>
<tr>
<td>1993</td>
<td>39,100</td>
<td>15,037</td>
<td>2.60</td>
</tr>
<tr>
<td>1994</td>
<td>86,100</td>
<td>41,736</td>
<td>2.06</td>
</tr>
<tr>
<td>1995</td>
<td>47,000</td>
<td>28,726</td>
<td>1.64</td>
</tr>
<tr>
<td>1996</td>
<td>268,500</td>
<td>226,282</td>
<td>1.19</td>
</tr>
<tr>
<td>1997</td>
<td>53,900</td>
<td>62,820</td>
<td>0.86</td>
</tr>
<tr>
<td>1998</td>
<td>46,000</td>
<td>44,733</td>
<td>1.03</td>
</tr>
<tr>
<td>1999</td>
<td>78,800</td>
<td>30,456</td>
<td>2.59</td>
</tr>
<tr>
<td>2000</td>
<td>38,900</td>
<td>44,176</td>
<td>0.88</td>
</tr>
<tr>
<td>2001</td>
<td>247,000</td>
<td>133,801</td>
<td>1.85</td>
</tr>
<tr>
<td>2002</td>
<td>143,800</td>
<td>98,927</td>
<td>1.45</td>
</tr>
<tr>
<td>2003</td>
<td>132,400</td>
<td>192,180</td>
<td>0.69</td>
</tr>
<tr>
<td>2004</td>
<td>134,500</td>
<td>105,246</td>
<td>1.28</td>
</tr>
<tr>
<td>2005</td>
<td>48,900</td>
<td>38,079</td>
<td>1.28</td>
</tr>
<tr>
<td>2006</td>
<td>63,700</td>
<td>63,383</td>
<td>1.01</td>
</tr>
<tr>
<td>2007</td>
<td>26,100</td>
<td>33,615</td>
<td>0.78</td>
</tr>
<tr>
<td>2008</td>
<td>157,200</td>
<td>81,366</td>
<td>1.93</td>
</tr>
<tr>
<td>2009</td>
<td>25,200</td>
<td>21,124</td>
<td>1.19</td>
</tr>
<tr>
<td>2010</td>
<td>106,300</td>
<td>62,092</td>
<td>1.71</td>
</tr>
<tr>
<td>2011</td>
<td>61,600</td>
<td>64,568</td>
<td>0.95</td>
</tr>
<tr>
<td>2012</td>
<td>79,600</td>
<td>74,289</td>
<td>1.07</td>
</tr>
<tr>
<td>2013</td>
<td>331,200</td>
<td>194,356</td>
<td>1.70</td>
</tr>
<tr>
<td>2014</td>
<td>67,400</td>
<td>180,665</td>
<td>0.37</td>
</tr>
<tr>
<td>2015</td>
<td>71,100</td>
<td>61,029</td>
<td>1.17</td>
</tr>
<tr>
<td>2016<sup>b</sup></td>
<td>45,100</td>
<td>24,911</td>
<td>1.81</td>
</tr>
<tr>
<td>2017</td>
<td>10,600</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Age-4

TABLE II-4. Comparisons of preseason forecasts and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 2 of 4)
TABLE II-4. Comparisons of preseason forecasts and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 3 of 4)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Preseason Forecast<sup>a</sup></th>
<th>Postseason Estimate</th>
<th>Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sept. 1 (t-1)</td>
<td>Sept. 1 (t-1)</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>NA</td>
<td>11,113</td>
<td>NA</td>
</tr>
<tr>
<td>1986</td>
<td>NA</td>
<td>6,376</td>
<td>NA</td>
</tr>
<tr>
<td>1987</td>
<td>5,300</td>
<td>19,414</td>
<td>0.27</td>
</tr>
<tr>
<td>1988</td>
<td>13,300</td>
<td>14,632</td>
<td>0.91</td>
</tr>
<tr>
<td>1989</td>
<td>10,100</td>
<td>9,612</td>
<td>1.05</td>
</tr>
<tr>
<td>1990</td>
<td>7,600</td>
<td>7,767</td>
<td>0.98</td>
</tr>
<tr>
<td>1991</td>
<td>1,500</td>
<td>2,774</td>
<td>0.54</td>
</tr>
<tr>
<td>1992</td>
<td>1,300</td>
<td>1,444</td>
<td>0.90</td>
</tr>
<tr>
<td>1993</td>
<td>1,100</td>
<td>1,759</td>
<td>0.63</td>
</tr>
<tr>
<td>1994</td>
<td>500</td>
<td>1,468</td>
<td>0.34</td>
</tr>
<tr>
<td>1995</td>
<td>2,000</td>
<td>3,805</td>
<td>0.53</td>
</tr>
<tr>
<td>1996</td>
<td>1,100</td>
<td>788</td>
<td>1.40</td>
</tr>
<tr>
<td>1997</td>
<td>7,900</td>
<td>9,004</td>
<td>0.88</td>
</tr>
<tr>
<td>1998</td>
<td>3,300</td>
<td>2,382</td>
<td>1.39</td>
</tr>
<tr>
<td>1999</td>
<td>2,000</td>
<td>2,106</td>
<td>0.95</td>
</tr>
<tr>
<td>2000</td>
<td>1,400</td>
<td>1,051</td>
<td>1.33</td>
</tr>
<tr>
<td>2001</td>
<td>1,300</td>
<td>258</td>
<td>5.04</td>
</tr>
<tr>
<td>2002</td>
<td>9,700</td>
<td>6,933</td>
<td>1.40</td>
</tr>
<tr>
<td>2003</td>
<td>6,500</td>
<td>1,915</td>
<td>3.39</td>
</tr>
<tr>
<td>2004</td>
<td>9,700</td>
<td>17,184</td>
<td>0.56</td>
</tr>
<tr>
<td>2005</td>
<td>5,200</td>
<td>6,859</td>
<td>0.76</td>
</tr>
<tr>
<td>2006</td>
<td>2,200</td>
<td>5,236</td>
<td>0.42</td>
</tr>
<tr>
<td>2007</td>
<td>4,700</td>
<td>2,911</td>
<td>1.61</td>
</tr>
<tr>
<td>2008</td>
<td>1,900</td>
<td>2,900</td>
<td>0.66</td>
</tr>
<tr>
<td>2009</td>
<td>5,600</td>
<td>7,059</td>
<td>0.79</td>
</tr>
<tr>
<td>2010</td>
<td>1,800</td>
<td>517</td>
<td>3.48</td>
</tr>
<tr>
<td>2011</td>
<td>5,000</td>
<td>2,753</td>
<td>1.82</td>
</tr>
<tr>
<td>2012</td>
<td>4,600</td>
<td>5,110</td>
<td>0.90</td>
</tr>
<tr>
<td>2013</td>
<td>5,700</td>
<td>3,944</td>
<td>1.45</td>
</tr>
<tr>
<td>2014</td>
<td>12,100</td>
<td>7,623</td>
<td>1.59</td>
</tr>
<tr>
<td>2015</td>
<td>10,400</td>
<td>13,285</td>
<td>0.78</td>
</tr>
<tr>
<td>2016<sup>b</sup></td>
<td>3,700</td>
<td>1,166</td>
<td>3.17</td>
</tr>
<tr>
<td>2017<sup>c</sup></td>
<td>1,700</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Age-5
TABLE II-4. Comparisons of preseason forecasts and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 4 of 4)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Preseason Forecast<sup>a</sup></th>
<th>Postseason Estimate</th>
<th>Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>169,900<sup>d</sup></td>
<td>344,613</td>
<td>0.49</td>
</tr>
<tr>
<td>1986</td>
<td>492,300<sup>a</sup></td>
<td>1,451,608</td>
<td>0.34</td>
</tr>
<tr>
<td>1987</td>
<td>723,200</td>
<td>1,142,412</td>
<td>0.63</td>
</tr>
<tr>
<td>1988</td>
<td>570,500</td>
<td>1,005,644</td>
<td>0.57</td>
</tr>
<tr>
<td>1989</td>
<td>676,200</td>
<td>556,685</td>
<td>1.21</td>
</tr>
<tr>
<td>1990</td>
<td>536,700</td>
<td>287,840</td>
<td>1.86</td>
</tr>
<tr>
<td>1991</td>
<td>222,300</td>
<td>109,369</td>
<td>2.03</td>
</tr>
<tr>
<td>1992</td>
<td>96,100</td>
<td>69,115</td>
<td>1.39</td>
</tr>
<tr>
<td>1993</td>
<td>334,600</td>
<td>185,289</td>
<td>1.81</td>
</tr>
<tr>
<td>1994</td>
<td>224,600</td>
<td>163,119</td>
<td>1.38</td>
</tr>
<tr>
<td>1995</td>
<td>318,000</td>
<td>819,840</td>
<td>0.39</td>
</tr>
<tr>
<td>1996</td>
<td>749,400</td>
<td>419,342</td>
<td>1.79</td>
</tr>
<tr>
<td>1997</td>
<td>286,400</td>
<td>211,977</td>
<td>1.35</td>
</tr>
<tr>
<td>1998</td>
<td>225,300</td>
<td>201,914</td>
<td>1.12</td>
</tr>
<tr>
<td>1999</td>
<td>165,600</td>
<td>161,628</td>
<td>1.02</td>
</tr>
<tr>
<td>2000</td>
<td>389,900</td>
<td>662,324</td>
<td>0.59</td>
</tr>
<tr>
<td>2001</td>
<td>435,500</td>
<td>490,187</td>
<td>0.89</td>
</tr>
<tr>
<td>2002</td>
<td>362,500</td>
<td>619,464</td>
<td>0.59</td>
</tr>
<tr>
<td>2003</td>
<td>310,200</td>
<td>595,207</td>
<td>0.52</td>
</tr>
<tr>
<td>2004</td>
<td>216,300</td>
<td>281,876</td>
<td>0.77</td>
</tr>
<tr>
<td>2005</td>
<td>239,800</td>
<td>234,914</td>
<td>1.02</td>
</tr>
<tr>
<td>2006</td>
<td>110,000</td>
<td>159,225</td>
<td>0.69</td>
</tr>
<tr>
<td>2007</td>
<td>546,200</td>
<td>413,366</td>
<td>1.32</td>
</tr>
<tr>
<td>2008</td>
<td>190,700</td>
<td>152,269</td>
<td>1.25</td>
</tr>
<tr>
<td>2009</td>
<td>505,700</td>
<td>268,896</td>
<td>1.88</td>
</tr>
<tr>
<td>2010</td>
<td>331,500</td>
<td>255,369</td>
<td>1.30</td>
</tr>
<tr>
<td>2011</td>
<td>371,100</td>
<td>307,481</td>
<td>1.21</td>
</tr>
<tr>
<td>2012</td>
<td>1,651,800</td>
<td>878,375</td>
<td>1.88</td>
</tr>
<tr>
<td>2013</td>
<td>727,700</td>
<td>636,569</td>
<td>1.14</td>
</tr>
<tr>
<td>2014</td>
<td>299,300</td>
<td>404,873</td>
<td>0.74</td>
</tr>
<tr>
<td>2015</td>
<td>423,800</td>
<td>184,957</td>
<td>2.29</td>
</tr>
<tr>
<td>2016<sup>c</sup></td>
<td>142,200</td>
<td>68,438</td>
<td>2.08</td>
</tr>
<tr>
<td>2017</td>
<td>54,200</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Original preseason forecasts for years 1985-2001 were for May 1 (t); converted to Sept. 1 (t-1) forecasts by dividing the May 1 (t) number by the assumed Sept. 1 (t-1) through May 1 (t) survival rate in those years: 0.5 age-3, 0.8 age-4, 0.8 age-5.

^b A scalar of 0.75 was applied to the jack count to produce the forecast because, (1) most jacks returned to the Trinity River, and (2) the jack count was outside the database range.

^c Postseason estimates are preliminary.

^d Does not include age-5 adults.
TABLE II-5. Summary of management objectives and predictor performance for Klamath River fall Chinook.

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Preseason Ocean Abundance Forecast<sup>a</sup> Sept. 1 (t-1)</th>
<th>Preseason Age-4 Harvest Rate Forecast<sup>b</sup></th>
<th>Preseason Adult Harvest Forecast</th>
<th>Postseason Ocean Abundance Estimate Sept. 1 (t-1)</th>
<th>Postseason Age-4 Harvest Rate Estimate<sup>c</sup></th>
<th>Postseason Adult Harvest Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>479,000</td>
<td>176,122</td>
<td>0.30</td>
<td>176,122</td>
<td>0.55</td>
<td>114,780</td>
</tr>
<tr>
<td>1991</td>
<td>176,200</td>
<td>50,100</td>
<td>0.28</td>
<td>103,951</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>1992</td>
<td>50,000</td>
<td>39,502</td>
<td>0.28</td>
<td>28,169</td>
<td>0.49</td>
<td>4,200</td>
</tr>
<tr>
<td>1993</td>
<td>294,400</td>
<td>168,473</td>
<td>0.28</td>
<td>67,536</td>
<td>0.49</td>
<td>11,355</td>
</tr>
<tr>
<td>1994</td>
<td>119,915</td>
<td>41,736</td>
<td>0.28</td>
<td>20,400</td>
<td>0.49</td>
<td>7,961</td>
</tr>
<tr>
<td>1995</td>
<td>269,000</td>
<td>787,309</td>
<td>0.28</td>
<td>13,500</td>
<td>0.49</td>
<td>33,146</td>
</tr>
<tr>
<td>1996</td>
<td>479,800</td>
<td>192,272</td>
<td>0.28</td>
<td>88,400</td>
<td>0.49</td>
<td>14,627</td>
</tr>
<tr>
<td>1997</td>
<td>224,600</td>
<td>140,153</td>
<td>0.28</td>
<td>76,200</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>1998</td>
<td>176,000</td>
<td>154,799</td>
<td>0.28</td>
<td>10,200</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>1999</td>
<td>349,600</td>
<td>129,066</td>
<td>0.28</td>
<td>24,000</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2000</td>
<td>187,200</td>
<td>513,604</td>
<td>0.28</td>
<td>30,000</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2001</td>
<td>209,000</td>
<td>401,112</td>
<td>0.28</td>
<td>30,000</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2002</td>
<td>72,100</td>
<td>159,446</td>
<td>0.28</td>
<td>26,500</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2003</td>
<td>185,700</td>
<td>189,976</td>
<td>0.28</td>
<td>7,100</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2004</td>
<td>44,100</td>
<td>90,606</td>
<td>0.28</td>
<td>10,000</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2005</td>
<td>515,400</td>
<td>376,840</td>
<td>0.28</td>
<td>30,200</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2006</td>
<td>31,600</td>
<td>68,033</td>
<td>0.28</td>
<td>4,500</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2007</td>
<td>474,900</td>
<td>240,713</td>
<td>0.28</td>
<td>10,000</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2008</td>
<td>223,400</td>
<td>192,760</td>
<td>0.28</td>
<td>22,600</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2009</td>
<td>304,600</td>
<td>240,160</td>
<td>0.28</td>
<td>26,900</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2010</td>
<td>1,567,600</td>
<td>798,976</td>
<td>0.28</td>
<td>74,400</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2011</td>
<td>390,700</td>
<td>438,269</td>
<td>0.28</td>
<td>154,800</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2012</td>
<td>219,800</td>
<td>216,585</td>
<td>0.28</td>
<td>31,400</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2013</td>
<td>342,200</td>
<td>110,643</td>
<td>0.28</td>
<td>29,400</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2014</td>
<td>93,400</td>
<td>42,361</td>
<td>0.28</td>
<td>3,052</td>
<td>0.49</td>
<td>4,891</td>
</tr>
<tr>
<td>2015<sup>d</sup></td>
<td>25,630</td>
<td>0.28</td>
<td>12,920</td>
<td>0.49</td>
<td>4,891</td>
<td></td>
</tr>
<tr>
<td>2016<sup>e</sup></td>
<td>1,567,600</td>
<td>798,976</td>
<td>0.28</td>
<td>74,400</td>
<td>0.49</td>
<td>4,891</td>
</tr>
</tbody>
</table>

^a Original preseason forecasts for years 1990-2001 were for May 1 (t); converted to Sept. 1 (t-1) forecasts by dividing the May 1 (t) number by the assumed Sept. 1 (t-1) through May 1 (t) survival rate in those years: 0.5 age-3, 0.8 age-4, 0.8 age-5.

^b Ocean harvest rate forecast is the fraction of the predicted ocean abundance expected to be harvested Sept. 1 (t-1) through August 31 (t). River harvest rate forecast is the fraction of the predicted river run expected to be harvested in river fisheries. Original ocean harvest rate forecasts for year (t), 1990-2001, were based on a May 1 (t) ocean abundance denominator; converted to Sept. 1 (t-1) abundance denominator by multiplying former values by 0.8 (assumed age-4 survival rate between Sept. 1 (t-1) and May 1 (t) in those years).

^c Ocean harvest rate is the fraction of the postseason ocean abundance harvested Sept. 1 (t-1) through August 31 (t). River harvest rate is the fraction of the river run harvested by river fisheries.

^d Postseason estimates are preliminary age-3.

^e Postseason estimates are preliminary age-3 and age-4.
TABLE II-6. Harvest levels and rates of age-3 and age-4 Klamath River fall Chinook. (Page 1 of 4)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>KMZ North of South of</th>
<th>Ocean Total</th>
<th>River Fisheries (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Troll</td>
<td>Sport</td>
<td>Subtotal</td>
</tr>
<tr>
<td>1990</td>
<td>81</td>
<td>4,357</td>
<td>4,438</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>1,022</td>
<td>1,022</td>
</tr>
<tr>
<td>1992</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>822</td>
<td>822</td>
</tr>
<tr>
<td>1994</td>
<td>42</td>
<td>604</td>
<td>646</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>999</td>
<td>999</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>232</td>
<td>232</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1999</td>
<td>63</td>
<td>180</td>
<td>243</td>
</tr>
<tr>
<td>2001</td>
<td>113</td>
<td>105</td>
<td>118</td>
</tr>
<tr>
<td>2002</td>
<td>220</td>
<td>784</td>
<td>1,004</td>
</tr>
<tr>
<td>2003</td>
<td>176</td>
<td>669</td>
<td>845</td>
</tr>
<tr>
<td>2004</td>
<td>402</td>
<td>970</td>
<td>1,372</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>568</td>
<td>568</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>477</td>
<td>477</td>
</tr>
<tr>
<td>2007</td>
<td>770</td>
<td>8,099</td>
<td>8,869</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>2010</td>
<td>112</td>
<td>28</td>
<td>140</td>
</tr>
<tr>
<td>2011</td>
<td>334</td>
<td>1,119</td>
<td>1,453</td>
</tr>
<tr>
<td>2012</td>
<td>1,121</td>
<td>11,350</td>
<td>12,471</td>
</tr>
<tr>
<td>2013</td>
<td>390</td>
<td>5,574</td>
<td>5,964</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>566</td>
<td>566</td>
</tr>
<tr>
<td>2015a</td>
<td>48</td>
<td>294</td>
<td>342</td>
</tr>
<tr>
<td>2016a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year (t)</td>
<td>KMZ North of South of Year (t)</td>
<td>Troll</td>
<td>Sport</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1990</td>
<td>3,997</td>
<td>2,919</td>
<td>6,916</td>
</tr>
<tr>
<td>1991</td>
<td>0</td>
<td>1,001</td>
<td>1,001</td>
</tr>
<tr>
<td>1992</td>
<td>397</td>
<td>55</td>
<td>226</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>1,124</td>
<td>1,124</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>242</td>
<td>242</td>
</tr>
<tr>
<td>1996</td>
<td>866</td>
<td>3,457</td>
<td>4,323</td>
</tr>
<tr>
<td>1997</td>
<td>3</td>
<td>172</td>
<td>175</td>
</tr>
<tr>
<td>1998</td>
<td>0</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>1999</td>
<td>15</td>
<td>381</td>
<td>396</td>
</tr>
<tr>
<td>2000</td>
<td>117</td>
<td>895</td>
<td>1,012</td>
</tr>
<tr>
<td>2001</td>
<td>1,312</td>
<td>1,604</td>
<td>2,916</td>
</tr>
<tr>
<td>2002</td>
<td>1,938</td>
<td>827</td>
<td>2,765</td>
</tr>
<tr>
<td>2003</td>
<td>834</td>
<td>919</td>
<td>1,753</td>
</tr>
<tr>
<td>2004</td>
<td>1,429</td>
<td>1,234</td>
<td>2,663</td>
</tr>
<tr>
<td>2005</td>
<td>247</td>
<td>317</td>
<td>564</td>
</tr>
<tr>
<td>2006</td>
<td>196</td>
<td>725</td>
<td>921</td>
</tr>
<tr>
<td>2007</td>
<td>270</td>
<td>2,336</td>
<td>2,606</td>
</tr>
<tr>
<td>2008</td>
<td>6,376</td>
<td>1,105</td>
<td>7,481</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>42</td>
<td>112</td>
<td>154</td>
</tr>
<tr>
<td>2011</td>
<td>417</td>
<td>176</td>
<td>593</td>
</tr>
<tr>
<td>2012</td>
<td>336</td>
<td>2,087</td>
<td>2,423</td>
</tr>
<tr>
<td>2013</td>
<td>4,265</td>
<td>6,236</td>
<td>10,501</td>
</tr>
<tr>
<td>2014</td>
<td>1,292</td>
<td>1,434</td>
<td>2,726</td>
</tr>
<tr>
<td>2015</td>
<td>273</td>
<td>197</td>
<td>470</td>
</tr>
<tr>
<td>2016a</td>
<td>0</td>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>

TABLE II-6. Harvest levels and rates of age-3 and age-4 Klamath River fall Chinook. (Page 2 of 4)
TABLE II-6. Harvest levels and rates of age-3 and age-4 Klamath River fall Chinook. (Page 3 of 4)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Troll</th>
<th>Sport</th>
<th>Subtotal</th>
<th>KMZ</th>
<th>North of KMZ</th>
<th>KMZ</th>
<th>South of KMZ</th>
<th>Subtotal</th>
<th>Ocean Total</th>
<th>Net</th>
<th>Sport</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.21</td>
<td>0.06</td>
<td>0.27</td>
<td>0.30</td>
<td>0.11</td>
<td>0.12</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.21</td>
<td>0.13</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.14</td>
<td>0.04</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.11</td>
<td>0.06</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.12</td>
<td>0.03</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.03</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.32</td>
<td>0.09</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.10</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.17</td>
<td>0.06</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.12</td>
<td>0.03</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.18</td>
<td>0.07</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.12</td>
<td>0.07</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.06</td>
<td>0.05</td>
<td>0.11</td>
<td>0.12</td>
<td>0.14</td>
<td>0.06</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.10</td>
<td>0.04</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.13</td>
<td>0.00</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.15</td>
<td>0.05</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.03</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.25</td>
<td>0.06</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.28</td>
<td>0.04</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.23</td>
<td>0.04</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.30</td>
<td>0.05</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.34</td>
<td>0.14</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.29</td>
<td>0.12</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.11</td>
<td>0.05</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Harvest levels and rates are presented for age-3 and age-4 Klamath River fall Chinook.
- Data encompass Ocean and River Fisheries for the specified years.
- Harvest rates in bold indicate significant changes or highlights in the data.
<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Troll</th>
<th>Sport</th>
<th>Subtotal</th>
<th>KMZ</th>
<th>Sport</th>
<th>Subtotal</th>
<th>Net</th>
<th>Sport</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0.04</td>
<td>0.03</td>
<td>0.07</td>
<td>0.38</td>
<td>0.10</td>
<td>0.48</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.11</td>
<td>0.15</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>0.06</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.06</td>
<td>0.13</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.09</td>
<td>0.14</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>0.08</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.07</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.10</td>
<td>0.12</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>0.16</td>
<td>0.20</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.11</td>
<td>0.21</td>
<td>0.32</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.14</td>
<td>0.05</td>
<td>0.19</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>0.01</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0.08</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.12</td>
<td>0.14</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.11</td>
<td>0.05</td>
<td>0.16</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.09</td>
<td>0.12</td>
<td>0.21</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Harvest Rates

- **Ocean Harvest Rates**: The fraction of Sept. 1 (t-1) ocean abundance harvested in these fisheries.
- **River Harvest Rates**: The fraction of the river run (t) harvested in these fisheries.

Notes:

- **a/ Preliminary (incomplete cohort)**.
- **b/ Ocean harvest rates are the fraction of Sept. 1 (t-1) ocean abundance harvested in these fisheries. River harvest rates are the fraction of the river run (t) harvested in these fisheries.**
<table>
<thead>
<tr>
<th>Year</th>
<th>Inriver Run Index in Thousands of Fish<sup>a</sup></th>
<th>Ocean Harvest Rate by Age<sup>b</sup></th>
<th>Rogue Ocean Population Index (ROPI) in Thousands of Fish<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age-2</td>
<td>Age-3</td>
<td>Age-4</td>
</tr>
<tr>
<td>1990</td>
<td>4.8</td>
<td>9.7</td>
<td>10.4</td>
</tr>
<tr>
<td>1991</td>
<td>3.9</td>
<td>10.1</td>
<td>6.6</td>
</tr>
<tr>
<td>1992</td>
<td>33.1</td>
<td>18.5</td>
<td>22.1</td>
</tr>
<tr>
<td>1993</td>
<td>12.0</td>
<td>31.5</td>
<td>6.8</td>
</tr>
<tr>
<td>1994</td>
<td>14.4</td>
<td>38.2</td>
<td>31.3</td>
</tr>
<tr>
<td>1995</td>
<td>20.2</td>
<td>46.1</td>
<td>19.4</td>
</tr>
<tr>
<td>1996</td>
<td>16.8</td>
<td>26.1</td>
<td>23.3</td>
</tr>
<tr>
<td>1997</td>
<td>18.6</td>
<td>23.7</td>
<td>14.8</td>
</tr>
<tr>
<td>1998</td>
<td>7.1</td>
<td>29.0</td>
<td>12.9</td>
</tr>
<tr>
<td>1999</td>
<td>19.6</td>
<td>15.5</td>
<td>16.9</td>
</tr>
<tr>
<td>2000</td>
<td>13.6</td>
<td>61.7</td>
<td>23.0</td>
</tr>
<tr>
<td>2001</td>
<td>27.9</td>
<td>29.5</td>
<td>33.9</td>
</tr>
<tr>
<td>2002</td>
<td>43.8</td>
<td>64.1</td>
<td>63.1</td>
</tr>
<tr>
<td>2003</td>
<td>20.1</td>
<td>66.9</td>
<td>99.0</td>
</tr>
<tr>
<td>2004</td>
<td>20.3</td>
<td>30.6</td>
<td>69.5</td>
</tr>
<tr>
<td>2005<sup>f</sup></td>
<td>5.0</td>
<td>17.7</td>
<td>28.7</td>
</tr>
<tr>
<td>2006</td>
<td>7.4</td>
<td>11.6</td>
<td>19.6</td>
</tr>
<tr>
<td>2007</td>
<td>3.4</td>
<td>15.8</td>
<td>16.6</td>
</tr>
<tr>
<td>2008</td>
<td>16.2</td>
<td>7.6</td>
<td>14.1</td>
</tr>
<tr>
<td>2009</td>
<td>15.2</td>
<td>34.3</td>
<td>28.0</td>
</tr>
<tr>
<td>2010</td>
<td>15.1</td>
<td>23.6</td>
<td>26.5</td>
</tr>
<tr>
<td>2011</td>
<td>31.9</td>
<td>25.1</td>
<td>41.1</td>
</tr>
<tr>
<td>2012</td>
<td>11.0</td>
<td>39.9</td>
<td>28.0</td>
</tr>
<tr>
<td>2013</td>
<td>24.3</td>
<td>17.0</td>
<td>66.1</td>
</tr>
<tr>
<td>2014</td>
<td>12.5</td>
<td>20.5</td>
<td>29.2</td>
</tr>
<tr>
<td>2015</td>
<td>8.5</td>
<td>6.8</td>
<td>23.1</td>
</tr>
<tr>
<td>2016</td>
<td>17.7</td>
<td>8.1</td>
<td>17.7</td>
</tr>
<tr>
<td>2017</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

^a Huntley Park passage estimate and estuary harvest. Age composition from Huntley Park scale analysis.
^b Exploitation rates since 1981 are based on Klamath River fall Chinook cohort analysis.
^c Based on cohort reconstruction methods. Index values predicted from regression equations; postseason estimates are not available.
^d Rogue ocean abundances initially reconstructed to May 1 (t); converted to Sept. 1 (t-1) forecasts by dividing the May 1 (t) number by the assumed Sept. 1 (t-1) through May 1 (t) survival rate: 0.5 age-3, 0.8 age-4, 0.8 age-5, 0.8 age-6.
^e Preliminary, complete cohort not available.
^f Preseason forecast.
<table>
<thead>
<tr>
<th>Year</th>
<th>March Preseason Forecasta</th>
<th>April STT Modeled Forecastb</th>
<th>Postseason Return</th>
<th>March Pre/Postseason</th>
<th>April Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>68.4</td>
<td>66.3</td>
<td>81.0</td>
<td>0.84</td>
<td>0.82</td>
</tr>
<tr>
<td>1993</td>
<td>84.5</td>
<td>82.7</td>
<td>102.9</td>
<td>0.82</td>
<td>0.80</td>
</tr>
<tr>
<td>1994</td>
<td>85.4</td>
<td>94.7</td>
<td>132.8</td>
<td>0.64</td>
<td>0.71</td>
</tr>
<tr>
<td>1995</td>
<td>103.7</td>
<td>125.0</td>
<td>106.5</td>
<td>0.97</td>
<td>1.17</td>
</tr>
<tr>
<td>1996</td>
<td>88.9</td>
<td>94.2</td>
<td>143.2</td>
<td>0.62</td>
<td>0.66</td>
</tr>
<tr>
<td>1997</td>
<td>166.4</td>
<td>158.0</td>
<td>161.7</td>
<td>1.03</td>
<td>0.98</td>
</tr>
<tr>
<td>1998</td>
<td>150.8</td>
<td>141.8</td>
<td>142.3</td>
<td>1.06</td>
<td>1.00</td>
</tr>
<tr>
<td>1999</td>
<td>147.5</td>
<td>102.1</td>
<td>166.1</td>
<td>0.89</td>
<td>0.61</td>
</tr>
<tr>
<td>2000</td>
<td>171.1</td>
<td>208.2</td>
<td>155.7</td>
<td>1.10</td>
<td>1.34</td>
</tr>
<tr>
<td>2001</td>
<td>127.2</td>
<td>132.7</td>
<td>232.6</td>
<td>0.55</td>
<td>0.57</td>
</tr>
<tr>
<td>2002</td>
<td>281.0</td>
<td>273.8</td>
<td>276.9</td>
<td>1.01</td>
<td>0.99</td>
</tr>
<tr>
<td>2003</td>
<td>280.4</td>
<td>253.2</td>
<td>373.2</td>
<td>0.75</td>
<td>0.68</td>
</tr>
<tr>
<td>2004</td>
<td>292.2</td>
<td>287.0</td>
<td>367.9</td>
<td>0.79</td>
<td>0.78</td>
</tr>
<tr>
<td>2005</td>
<td>352.2</td>
<td>354.6</td>
<td>268.7</td>
<td>1.31</td>
<td>1.32</td>
</tr>
<tr>
<td>2006</td>
<td>253.9</td>
<td>249.1</td>
<td>230.4</td>
<td>1.10</td>
<td>1.08</td>
</tr>
<tr>
<td>2007</td>
<td>182.4</td>
<td>185.2</td>
<td>112.6</td>
<td>1.62</td>
<td>1.64</td>
</tr>
<tr>
<td>2008</td>
<td>162.5</td>
<td>165.9</td>
<td>196.9</td>
<td>0.83</td>
<td>0.84</td>
</tr>
<tr>
<td>2009</td>
<td>259.9</td>
<td>269.8</td>
<td>212.0</td>
<td>1.23</td>
<td>1.27</td>
</tr>
<tr>
<td>2010</td>
<td>310.8</td>
<td>319.1</td>
<td>324.9</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>2011</td>
<td>398.2</td>
<td>399.5</td>
<td>324.1</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>2012</td>
<td>353.5</td>
<td>353.0</td>
<td>298.1</td>
<td>1.19</td>
<td>1.18</td>
</tr>
<tr>
<td>2013</td>
<td>432.5</td>
<td>434.7</td>
<td>784.1</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>2014</td>
<td>973.3</td>
<td>919.4</td>
<td>684.2</td>
<td>1.42</td>
<td>1.34</td>
</tr>
<tr>
<td>2015</td>
<td>500.3</td>
<td>516.2</td>
<td>795.9</td>
<td>0.63</td>
<td>0.65</td>
</tr>
<tr>
<td>2016$^{c/}$</td>
<td>589.0</td>
<td>579.4</td>
<td>406.6</td>
<td>1.45</td>
<td>1.42</td>
</tr>
<tr>
<td>2017</td>
<td>260.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>March Preseason Forecasta</th>
<th>April STT Modeled Forecastb</th>
<th>Postseason Return</th>
<th>March Pre/Postseason</th>
<th>April Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>17.4</td>
<td>16.7</td>
<td>12.5</td>
<td>1.39</td>
<td>1.34</td>
</tr>
<tr>
<td>1993</td>
<td>12.5</td>
<td>11.9</td>
<td>13.3</td>
<td>0.94</td>
<td>0.89</td>
</tr>
<tr>
<td>1994</td>
<td>14.7</td>
<td>13.2</td>
<td>12.2</td>
<td>1.20</td>
<td>1.08</td>
</tr>
<tr>
<td>1995</td>
<td>12.4</td>
<td>11.5</td>
<td>16.0</td>
<td>0.78</td>
<td>0.72</td>
</tr>
<tr>
<td>1996</td>
<td>8.8</td>
<td>8.1</td>
<td>14.6</td>
<td>0.60</td>
<td>0.55</td>
</tr>
<tr>
<td>1997</td>
<td>7.5</td>
<td>7.2</td>
<td>12.3</td>
<td>0.61</td>
<td>0.59</td>
</tr>
<tr>
<td>1998</td>
<td>8.1</td>
<td>7.0</td>
<td>7.3</td>
<td>1.11</td>
<td>0.96</td>
</tr>
<tr>
<td>1999</td>
<td>2.6</td>
<td>2.5</td>
<td>3.3</td>
<td>0.79</td>
<td>0.76</td>
</tr>
<tr>
<td>2000</td>
<td>3.5</td>
<td>2.7</td>
<td>10.2</td>
<td>0.34</td>
<td>0.26</td>
</tr>
<tr>
<td>2001</td>
<td>16.7</td>
<td>18.5</td>
<td>15.7</td>
<td>1.06</td>
<td>1.18</td>
</tr>
<tr>
<td>2002</td>
<td>18.7</td>
<td>18.3</td>
<td>24.9</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>2003</td>
<td>24.6</td>
<td>23.4</td>
<td>26.0</td>
<td>0.95</td>
<td>0.90</td>
</tr>
<tr>
<td>2004</td>
<td>24.1</td>
<td>24.2</td>
<td>22.3</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>2005</td>
<td>20.2</td>
<td>21.4</td>
<td>16.8</td>
<td>1.20</td>
<td>1.27</td>
</tr>
<tr>
<td>2006</td>
<td>16.6</td>
<td>16.6</td>
<td>18.1</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>2007</td>
<td>10.1</td>
<td>10.0</td>
<td>4.3</td>
<td>2.35</td>
<td>2.33</td>
</tr>
<tr>
<td>2008</td>
<td>3.8</td>
<td>3.8</td>
<td>7.1</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>2009</td>
<td>8.5</td>
<td>8.6</td>
<td>7.5</td>
<td>1.13</td>
<td>1.15</td>
</tr>
<tr>
<td>2010</td>
<td>9.7</td>
<td>10.0</td>
<td>10.9</td>
<td>0.89</td>
<td>0.92</td>
</tr>
<tr>
<td>2011</td>
<td>12.5</td>
<td>13.1</td>
<td>15.2</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>2012</td>
<td>16.2</td>
<td>16.2</td>
<td>13.9</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>2013</td>
<td>14.2</td>
<td>14.3</td>
<td>25.8</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>2014</td>
<td>34.2</td>
<td>33.4</td>
<td>25.8</td>
<td>1.33</td>
<td>1.29</td>
</tr>
<tr>
<td>2015</td>
<td>18.9</td>
<td>19.4</td>
<td>32.4</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>2016$^{d/}$</td>
<td>22.2</td>
<td>22.4</td>
<td>13.0</td>
<td>1.71</td>
<td>1.72</td>
</tr>
<tr>
<td>2017</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE II-8. Predicted and postseason returns of Columbia River adult summer and fall Chinook in thousands of fish.

<table>
<thead>
<tr>
<th>Year</th>
<th>March Preseason Forecasta</th>
<th>April STT Modeled Forecastb</th>
<th>Postseason Return</th>
<th>March Pre/Postseason</th>
<th>April Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>113.2</td>
<td>121.5</td>
<td>62.6</td>
<td>1.81</td>
<td>1.94</td>
</tr>
<tr>
<td>1993</td>
<td>79.3</td>
<td>77.7</td>
<td>52.3</td>
<td>1.52</td>
<td>1.49</td>
</tr>
<tr>
<td>1994</td>
<td>36.1</td>
<td>46.5</td>
<td>53.6</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>1995</td>
<td>35.8</td>
<td>42.4</td>
<td>46.4</td>
<td>0.77</td>
<td>0.91</td>
</tr>
<tr>
<td>1996</td>
<td>37.7</td>
<td>48.3</td>
<td>75.5</td>
<td>0.50</td>
<td>0.64</td>
</tr>
<tr>
<td>1997</td>
<td>54.2</td>
<td>68.7</td>
<td>57.4</td>
<td>0.94</td>
<td>1.20</td>
</tr>
<tr>
<td>1998</td>
<td>19.2</td>
<td>22.5</td>
<td>45.3</td>
<td>0.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1999</td>
<td>34.8</td>
<td>38.2</td>
<td>40.0</td>
<td>0.87</td>
<td>0.96</td>
</tr>
<tr>
<td>2000</td>
<td>23.7</td>
<td>26.4</td>
<td>27.0</td>
<td>0.88</td>
<td>0.98</td>
</tr>
<tr>
<td>2001</td>
<td>32.2</td>
<td>30.5</td>
<td>94.3</td>
<td>0.34</td>
<td>0.32</td>
</tr>
<tr>
<td>2002</td>
<td>137.6</td>
<td>133.0</td>
<td>156.4</td>
<td>0.88</td>
<td>0.85</td>
</tr>
<tr>
<td>2003</td>
<td>115.9</td>
<td>116.9</td>
<td>155.0</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>2004</td>
<td>77.1</td>
<td>79.0</td>
<td>108.9</td>
<td>0.71</td>
<td>0.73</td>
</tr>
<tr>
<td>2005</td>
<td>74.1</td>
<td>78.4</td>
<td>78.3</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>2006</td>
<td>55.8</td>
<td>57.5</td>
<td>58.3</td>
<td>0.96</td>
<td>0.99</td>
</tr>
<tr>
<td>2007</td>
<td>54.9</td>
<td>54.4</td>
<td>32.7</td>
<td>1.68</td>
<td>1.66</td>
</tr>
<tr>
<td>2008</td>
<td>59.0</td>
<td>55.9</td>
<td>60.3</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>2009</td>
<td>88.8</td>
<td>88.2</td>
<td>76.7</td>
<td>1.16</td>
<td>1.15</td>
</tr>
<tr>
<td>2010</td>
<td>90.6</td>
<td>85.6</td>
<td>103.0</td>
<td>0.88</td>
<td>0.83</td>
</tr>
<tr>
<td>2011</td>
<td>133.5</td>
<td>128.9</td>
<td>109.0</td>
<td>1.22</td>
<td>1.18</td>
</tr>
<tr>
<td>2012</td>
<td>127.0</td>
<td>128.4</td>
<td>84.8</td>
<td>1.50</td>
<td>1.51</td>
</tr>
<tr>
<td>2013</td>
<td>88.0</td>
<td>87.4</td>
<td>103.2</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>2014</td>
<td>110.0</td>
<td>100.7</td>
<td>101.8</td>
<td>1.08</td>
<td>0.99</td>
</tr>
<tr>
<td>2015</td>
<td>94.9</td>
<td>96.8</td>
<td>128.7</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>2016c</td>
<td>133.7</td>
<td>142.5</td>
<td>81.9</td>
<td>1.63</td>
<td>1.74</td>
</tr>
<tr>
<td>2017</td>
<td>92.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>SCH</th>
<th>March Pre/Postseason</th>
<th>April Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>40.9</td>
<td>41.3</td>
<td>29.5</td>
</tr>
<tr>
<td>1993</td>
<td>19.9</td>
<td>18.2</td>
<td>16.8</td>
</tr>
<tr>
<td>1994</td>
<td>20.2</td>
<td>28.9</td>
<td>18.5</td>
</tr>
<tr>
<td>1995</td>
<td>17.5</td>
<td>22.5</td>
<td>33.8</td>
</tr>
<tr>
<td>1996</td>
<td>27.6</td>
<td>35.4</td>
<td>33.1</td>
</tr>
<tr>
<td>1997</td>
<td>21.9</td>
<td>25.7</td>
<td>27.4</td>
</tr>
<tr>
<td>1998</td>
<td>14.2</td>
<td>14.2</td>
<td>20.2</td>
</tr>
<tr>
<td>1999</td>
<td>65.8</td>
<td>61.0</td>
<td>50.2</td>
</tr>
<tr>
<td>2000</td>
<td>21.9</td>
<td>26.9</td>
<td>20.5</td>
</tr>
<tr>
<td>2001</td>
<td>56.6</td>
<td>61.9</td>
<td>125.0</td>
</tr>
<tr>
<td>2002</td>
<td>144.4</td>
<td>136.0</td>
<td>160.8</td>
</tr>
<tr>
<td>2003</td>
<td>96.9</td>
<td>101.9</td>
<td>180.6</td>
</tr>
<tr>
<td>2004</td>
<td>138.0</td>
<td>150.0</td>
<td>175.3</td>
</tr>
<tr>
<td>2005</td>
<td>114.1</td>
<td>115.8</td>
<td>93.1</td>
</tr>
<tr>
<td>2006</td>
<td>50.0</td>
<td>51.8</td>
<td>27.9</td>
</tr>
<tr>
<td>2007</td>
<td>21.8</td>
<td>21.3</td>
<td>14.6</td>
</tr>
<tr>
<td>2008</td>
<td>87.2</td>
<td>86.2</td>
<td>91.9</td>
</tr>
<tr>
<td>2009</td>
<td>59.3</td>
<td>56.5</td>
<td>49.0</td>
</tr>
<tr>
<td>2010</td>
<td>169.0</td>
<td>162.9</td>
<td>130.8</td>
</tr>
<tr>
<td>2011</td>
<td>116.4</td>
<td>116.7</td>
<td>70.1</td>
</tr>
<tr>
<td>2012</td>
<td>63.8</td>
<td>60.0</td>
<td>56.8</td>
</tr>
<tr>
<td>2013</td>
<td>38.0</td>
<td>36.7</td>
<td>86.6</td>
</tr>
<tr>
<td>2014</td>
<td>115.1</td>
<td>103.3</td>
<td>127.0</td>
</tr>
<tr>
<td>2015</td>
<td>160.5</td>
<td>163.9</td>
<td>166.4</td>
</tr>
<tr>
<td>2016c</td>
<td>89.5</td>
<td>100.7</td>
<td>44.6</td>
</tr>
<tr>
<td>2017</td>
<td>158.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE II-8. Predicted and postseason returns of Columbia River adult summer and fall Chinook in thousands of fish.

(Page 3 of 3)

<table>
<thead>
<tr>
<th>Year</th>
<th>March Preseason Forecast</th>
<th>April STT Modeled Forecast</th>
<th>Postseason Return</th>
<th>March Pre/Postseason</th>
<th>April Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>42.5</td>
<td>40.7</td>
<td>31.1</td>
<td>1.37</td>
<td>1.31</td>
</tr>
<tr>
<td>1993</td>
<td>33.0</td>
<td>32.3</td>
<td>27.5</td>
<td>1.20</td>
<td>1.17</td>
</tr>
<tr>
<td>1994</td>
<td>23.9</td>
<td>26.7</td>
<td>33.7</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>1995</td>
<td>25.0</td>
<td>30.0</td>
<td>34.2</td>
<td>0.73</td>
<td>0.88</td>
</tr>
<tr>
<td>1996</td>
<td>40.8</td>
<td>43.2</td>
<td>59.7</td>
<td>0.68</td>
<td>0.72</td>
</tr>
<tr>
<td>1997</td>
<td>72.1</td>
<td>61.9</td>
<td>59.0</td>
<td>1.22</td>
<td>1.05</td>
</tr>
<tr>
<td>1998</td>
<td>47.8</td>
<td>44.9</td>
<td>36.8</td>
<td>1.30</td>
<td>1.22</td>
</tr>
<tr>
<td>1999</td>
<td>38.3</td>
<td>27.7</td>
<td>50.7</td>
<td>0.76</td>
<td>0.55</td>
</tr>
<tr>
<td>2000</td>
<td>50.6</td>
<td>61.6</td>
<td>36.8</td>
<td>1.38</td>
<td>1.67</td>
</tr>
<tr>
<td>2001</td>
<td>43.5</td>
<td>45.3</td>
<td>76.4</td>
<td>0.57</td>
<td>0.59</td>
</tr>
<tr>
<td>2002</td>
<td>96.2</td>
<td>91.8</td>
<td>108.4</td>
<td>0.89</td>
<td>0.85</td>
</tr>
<tr>
<td>2003</td>
<td>104.8</td>
<td>94.6</td>
<td>150.2</td>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>2004</td>
<td>90.4</td>
<td>88.8</td>
<td>117.6</td>
<td>0.77</td>
<td>0.76</td>
</tr>
<tr>
<td>2005</td>
<td>89.4</td>
<td>89.7</td>
<td>98.0</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>2006</td>
<td>88.3</td>
<td>86.6</td>
<td>80.4</td>
<td>1.10</td>
<td>1.08</td>
</tr>
<tr>
<td>2007</td>
<td>68.0</td>
<td>69.1</td>
<td>46.9</td>
<td>1.45</td>
<td>1.47</td>
</tr>
<tr>
<td>2008</td>
<td>54.0</td>
<td>55.1</td>
<td>75.5</td>
<td>0.72</td>
<td>0.73</td>
</tr>
<tr>
<td>2009</td>
<td>94.4</td>
<td>97.9</td>
<td>73.1</td>
<td>1.29</td>
<td>1.34</td>
</tr>
<tr>
<td>2010</td>
<td>79.0</td>
<td>74.6</td>
<td>79.0</td>
<td>1.00</td>
<td>0.94</td>
</tr>
<tr>
<td>2011</td>
<td>100.0</td>
<td>100.4</td>
<td>85.4</td>
<td>1.17</td>
<td>1.18</td>
</tr>
<tr>
<td>2012</td>
<td>90.8</td>
<td>90.7</td>
<td>58.7</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>2013</td>
<td>105.2</td>
<td>96.3</td>
<td>243.4</td>
<td>0.43</td>
<td>0.40</td>
</tr>
<tr>
<td>2014</td>
<td>360.1</td>
<td>340.2</td>
<td>203.8</td>
<td>1.77</td>
<td>1.67</td>
</tr>
<tr>
<td>2015</td>
<td>113.3</td>
<td>116.9</td>
<td>170.6</td>
<td>0.66</td>
<td>0.69</td>
</tr>
<tr>
<td>2016</td>
<td>101.0</td>
<td>99.4</td>
<td>88.3</td>
<td>1.14</td>
<td>1.13</td>
</tr>
<tr>
<td>2017</td>
<td>45.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

SUMMER

<table>
<thead>
<tr>
<th>Year</th>
<th>March Preseason Forecast</th>
<th>April STT Modeled Forecast</th>
<th>Postseason Return</th>
<th>March Pre/Postseason</th>
<th>April Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>52.0</td>
<td>55.5</td>
<td>0.94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>70.7</td>
<td>53.9</td>
<td>1.31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>88.8</td>
<td>72.3</td>
<td>1.23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>91.1</td>
<td>80.6</td>
<td>1.13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>91.2</td>
<td>92.6</td>
<td>58.3</td>
<td>1.56</td>
<td>1.59</td>
</tr>
<tr>
<td>2013</td>
<td>73.5</td>
<td>78.5</td>
<td>67.6</td>
<td>1.09</td>
<td>1.16</td>
</tr>
<tr>
<td>2014</td>
<td>67.5</td>
<td>64.7</td>
<td>78.3</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>2015</td>
<td>73.0</td>
<td>100.1</td>
<td>126.9</td>
<td>0.58</td>
<td>0.79</td>
</tr>
<tr>
<td>2016</td>
<td>93.3</td>
<td>95.6</td>
<td>91.0</td>
<td>1.03</td>
<td>1.05</td>
</tr>
<tr>
<td>2017</td>
<td>63.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a/ March preseason forecasts are ocean escapements based on terminal run size and stock-specific cohort relationships affected by the historical "normal" ocean fisheries, generally between 1979 and the most recent complete broods.

b/ STT-modeled forecasts adjust March preseason forecasts for Council-adopted ocean regulations each year, and should provide a more accurate estimate of expected ocean escapement.

c/ Postseason estimates are preliminary.
<table>
<thead>
<tr>
<th>Year</th>
<th>Preseason Forecast</th>
<th>Postseason Return</th>
<th>Pre/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>50.4</td>
<td>32.3</td>
<td>1.53</td>
<td>3.2</td>
<td>3.8</td>
<td>0.84</td>
<td>1.0</td>
<td>1.4</td>
<td>0.71</td>
<td>14.0</td>
<td>6.9</td>
<td>2.00</td>
</tr>
<tr>
<td>1994</td>
<td>46.6</td>
<td>28.1</td>
<td>1.66</td>
<td>3.2</td>
<td>0.7</td>
<td>4.00</td>
<td>1.3</td>
<td>5.5</td>
<td>0.30</td>
<td>8.4</td>
<td>5.9</td>
<td>1.27</td>
</tr>
<tr>
<td>1995</td>
<td>38.5</td>
<td>22.3</td>
<td>1.73</td>
<td>3.5</td>
<td>0.2</td>
<td>17.50</td>
<td>1.6</td>
<td>3.4</td>
<td>0.48</td>
<td>5.0</td>
<td>9.2</td>
<td>0.52</td>
</tr>
<tr>
<td>1996</td>
<td>27.0</td>
<td>29.2</td>
<td>0.92</td>
<td>1.7</td>
<td>0.5</td>
<td>2.43</td>
<td>1.0</td>
<td>1.2</td>
<td>0.83</td>
<td>7.1</td>
<td>10.9</td>
<td>0.58</td>
</tr>
<tr>
<td>1997</td>
<td>34.0</td>
<td>41.7</td>
<td>0.99</td>
<td>1.2</td>
<td>1.2</td>
<td>1.00</td>
<td>0.1</td>
<td>0.0</td>
<td>-</td>
<td>6.4</td>
<td>6.1</td>
<td>1.03</td>
</tr>
<tr>
<td>1998</td>
<td>28.0</td>
<td>31.5</td>
<td>0.95</td>
<td>0.5</td>
<td>0.3</td>
<td>1.67</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>6.6</td>
<td>15.0</td>
<td>0.44</td>
</tr>
<tr>
<td>1999</td>
<td>27.0</td>
<td>42.1</td>
<td>0.66</td>
<td>2.3</td>
<td>0.3</td>
<td>7.67</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>7.6</td>
<td>5.3</td>
<td>1.46</td>
</tr>
<tr>
<td>2000</td>
<td>19.0</td>
<td>32.6</td>
<td>0.57</td>
<td>5.0</td>
<td>0.1</td>
<td>50.00</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>7.3</td>
<td>17.3</td>
<td>0.42</td>
</tr>
<tr>
<td>2001</td>
<td>34.9</td>
<td>65.6</td>
<td>0.55</td>
<td>1.6</td>
<td>0.9</td>
<td>16.00</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>9.1</td>
<td>14.1</td>
<td>0.65</td>
</tr>
<tr>
<td>2002</td>
<td>52.8</td>
<td>57.0</td>
<td>0.99</td>
<td>1.6</td>
<td>0.9</td>
<td>2.29</td>
<td>0.0</td>
<td>0.1</td>
<td>-</td>
<td>13.8</td>
<td>20.0</td>
<td>0.69</td>
</tr>
<tr>
<td>2003</td>
<td>45.8</td>
<td>30.0</td>
<td>1.51</td>
<td>1.6</td>
<td>0.2</td>
<td>8.00</td>
<td>0.0</td>
<td>0.3</td>
<td>-</td>
<td>13.7</td>
<td>10.3</td>
<td>1.38</td>
</tr>
<tr>
<td>2004</td>
<td>34.2</td>
<td>18.1</td>
<td>1.83</td>
<td>0.8</td>
<td>0.0</td>
<td>200.00</td>
<td>0.5</td>
<td>0.0</td>
<td>-</td>
<td>20.3</td>
<td>24.3</td>
<td>0.83</td>
</tr>
<tr>
<td>2005</td>
<td>19.5</td>
<td>16.5</td>
<td>1.07</td>
<td>0.4</td>
<td>0.0</td>
<td>13.33</td>
<td>0.7</td>
<td>0.4</td>
<td>3.50</td>
<td>23.4</td>
<td>23.4</td>
<td>0.99</td>
</tr>
<tr>
<td>2006</td>
<td>16.9</td>
<td>31.9</td>
<td>0.53</td>
<td>0.4</td>
<td>0.0</td>
<td>25.00</td>
<td>0.6</td>
<td>0.4</td>
<td>1.51</td>
<td>24.1</td>
<td>22.5</td>
<td>1.07</td>
</tr>
<tr>
<td>2007</td>
<td>18.8</td>
<td>26.5</td>
<td>0.71</td>
<td>0.4</td>
<td>0.0</td>
<td>66.67</td>
<td>1.1</td>
<td>0.4</td>
<td>2.75</td>
<td>15.0</td>
<td>13.0</td>
<td>1.15</td>
</tr>
<tr>
<td>2008</td>
<td>35.3</td>
<td>29.1</td>
<td>1.21</td>
<td>0.8</td>
<td>0.0</td>
<td>0.00</td>
<td>0.7</td>
<td>0.2</td>
<td>3.50</td>
<td>23.8</td>
<td>15.0</td>
<td>1.59</td>
</tr>
<tr>
<td>2009</td>
<td>23.0</td>
<td>20.9</td>
<td>1.10</td>
<td>0.1</td>
<td>0.0</td>
<td>25.00</td>
<td>0.6</td>
<td>0.1</td>
<td>6.00</td>
<td>23.4</td>
<td>12.5</td>
<td>1.87</td>
</tr>
<tr>
<td>2010</td>
<td>30.3</td>
<td>35.8</td>
<td>0.85</td>
<td>2.3</td>
<td>0.7</td>
<td>3.29</td>
<td>0.9</td>
<td>0.1</td>
<td>11.25</td>
<td>13.0</td>
<td>10.0</td>
<td>1.30</td>
</tr>
<tr>
<td>2011</td>
<td>37.5</td>
<td>33.3</td>
<td>1.13</td>
<td>0.4</td>
<td>0.7</td>
<td>0.57</td>
<td>1.5</td>
<td>0.1</td>
<td>15.00</td>
<td>14.3</td>
<td>9.2</td>
<td>1.55</td>
</tr>
<tr>
<td>2012</td>
<td>44.0</td>
<td>32.6</td>
<td>1.35</td>
<td>0.4</td>
<td>1.6</td>
<td>0.25</td>
<td>1.3</td>
<td>0.1</td>
<td>13.00</td>
<td>8.3</td>
<td>15.8</td>
<td>0.53</td>
</tr>
<tr>
<td>2013</td>
<td>47.2</td>
<td>31.4</td>
<td>1.50</td>
<td>2.0</td>
<td>1.1</td>
<td>1.82</td>
<td>0.3</td>
<td>0.1</td>
<td>3.00</td>
<td>12.9</td>
<td>13.0</td>
<td>0.99</td>
</tr>
<tr>
<td>2014</td>
<td>43.9</td>
<td>25.5</td>
<td>1.72</td>
<td>1.2</td>
<td>0.3</td>
<td>4.00</td>
<td>0.3</td>
<td>0.0</td>
<td>7.50</td>
<td>18.0</td>
<td>10.1</td>
<td>1.78</td>
</tr>
<tr>
<td>2015</td>
<td>38.6</td>
<td>18.6</td>
<td>2.08</td>
<td>1.2</td>
<td>0.9</td>
<td>1.33</td>
<td>0.6</td>
<td>0.0</td>
<td>0.00</td>
<td>11.8</td>
<td>14.7</td>
<td>0.80</td>
</tr>
<tr>
<td>2016<sup>a</sup></td>
<td>27.9</td>
<td>NA</td>
<td>NA</td>
<td>0.7</td>
<td>NA</td>
<td>NA</td>
<td>0.4</td>
<td>NA</td>
<td>NA</td>
<td>15.1</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>2017</td>
<td>21.2</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>15.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year</td>
<td>Preseason Forecast</td>
<td>Preseason Return</td>
<td>Pre/Post-season</td>
<td>Postseason Forecast</td>
<td>Postseason Return</td>
<td>Pre/Post-season</td>
<td>Returns</td>
<td>Preseason Forecast</td>
<td>Preseason Return</td>
<td>Pre/Post-season</td>
<td>Postseason Forecast</td>
<td>Postseason Return</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Stillaguamish c/</td>
<td></td>
<td></td>
<td>Snohomish c/</td>
<td></td>
<td></td>
<td>Snohomish c/</td>
<td></td>
<td></td>
<td></td>
<td>Tulalip c/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural</td>
<td></td>
<td></td>
<td>Hatchery</td>
<td></td>
<td></td>
<td>Natural</td>
<td></td>
<td></td>
<td></td>
<td>Hatchery</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>NA</td>
<td>1.3</td>
<td>-</td>
<td>.2</td>
<td>2.7</td>
<td>0.58</td>
<td>4.9</td>
<td>5.5</td>
<td>0.89</td>
<td>2.8</td>
<td>1.4</td>
<td>2.03</td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>1.3</td>
<td>-</td>
<td>1.8</td>
<td>5.4</td>
<td>0.33</td>
<td>4.5</td>
<td>5.0</td>
<td>0.90</td>
<td>2.8</td>
<td>1.8</td>
<td>1.59</td>
</tr>
<tr>
<td>1995</td>
<td>1.8</td>
<td>0.9</td>
<td>1.92</td>
<td>2.2</td>
<td>4.0</td>
<td>0.54</td>
<td>4.3</td>
<td>4.0</td>
<td>1.08</td>
<td>2.3</td>
<td>8.5</td>
<td>0.27</td>
</tr>
<tr>
<td>1996</td>
<td>1.3</td>
<td>1.2</td>
<td>1.04</td>
<td>6.7</td>
<td>4.6</td>
<td>1.47</td>
<td>4.2</td>
<td>5.9</td>
<td>0.71</td>
<td>2.7</td>
<td>11.5</td>
<td>0.24</td>
</tr>
<tr>
<td>1997</td>
<td>1.6</td>
<td>1.2</td>
<td>1.36</td>
<td>7.7</td>
<td>12.0</td>
<td>0.64</td>
<td>5.2</td>
<td>4.4</td>
<td>1.19</td>
<td>4.0</td>
<td>8.7</td>
<td>0.46</td>
</tr>
<tr>
<td>1998</td>
<td>1.6</td>
<td>1.6</td>
<td>1.03</td>
<td>6.5</td>
<td>4.7</td>
<td>1.37</td>
<td>5.6</td>
<td>6.4</td>
<td>0.88</td>
<td>2.5</td>
<td>7.2</td>
<td>0.35</td>
</tr>
<tr>
<td>1999</td>
<td>1.5</td>
<td>1.1</td>
<td>1.36</td>
<td>7.8</td>
<td>4.7</td>
<td>1.65</td>
<td>5.6</td>
<td>4.8</td>
<td>1.16</td>
<td>4.5</td>
<td>15.2</td>
<td>0.30</td>
</tr>
<tr>
<td>2000</td>
<td>2.0</td>
<td>1.7</td>
<td>1.21</td>
<td>6.2</td>
<td>1.9</td>
<td>3.20</td>
<td>6.0</td>
<td>6.1</td>
<td>0.98</td>
<td>5.0</td>
<td>8.3</td>
<td>0.60</td>
</tr>
<tr>
<td>2001</td>
<td>1.7</td>
<td>1.4</td>
<td>1.22</td>
<td>4.1</td>
<td>0.9</td>
<td>4.57</td>
<td>5.8</td>
<td>8.4</td>
<td>0.69</td>
<td>5.5</td>
<td>5.1</td>
<td>1.08</td>
</tr>
<tr>
<td>2002</td>
<td>2.0</td>
<td>1.6</td>
<td>1.25</td>
<td>6.8</td>
<td>2.6</td>
<td>2.66</td>
<td>6.7</td>
<td>7.3</td>
<td>0.92</td>
<td>5.8</td>
<td>5.2</td>
<td>1.12</td>
</tr>
<tr>
<td>2003</td>
<td>2.0</td>
<td>1.0</td>
<td>1.98</td>
<td>9.4</td>
<td>5.8</td>
<td>1.63</td>
<td>5.5</td>
<td>5.6</td>
<td>0.99</td>
<td>6.0</td>
<td>8.7</td>
<td>0.69</td>
</tr>
<tr>
<td>2004</td>
<td>3.3</td>
<td>1.6</td>
<td>1.19</td>
<td>10.1</td>
<td>6.4</td>
<td>1.58</td>
<td>15.7</td>
<td>11.2</td>
<td>1.40</td>
<td>6.8</td>
<td>6.5</td>
<td>1.05</td>
</tr>
<tr>
<td>2005</td>
<td>2.0</td>
<td>1.2</td>
<td>1.42</td>
<td>9.9</td>
<td>4.0</td>
<td>2.48</td>
<td>14.2</td>
<td>5.0</td>
<td>2.84</td>
<td>6.4</td>
<td>7.4</td>
<td>0.86</td>
</tr>
<tr>
<td>2006</td>
<td>1.6</td>
<td>1.3</td>
<td>1.26</td>
<td>9.6</td>
<td>4.3</td>
<td>2.23</td>
<td>8.7</td>
<td>8.8</td>
<td>0.99</td>
<td>9.3</td>
<td>5.8</td>
<td>1.60</td>
</tr>
<tr>
<td>2007</td>
<td>1.9</td>
<td>0.8</td>
<td>2.38</td>
<td>8.7</td>
<td>6.6</td>
<td>1.32</td>
<td>12.3</td>
<td>4.0</td>
<td>3.08</td>
<td>8.4</td>
<td>6.1</td>
<td>1.38</td>
</tr>
<tr>
<td>2008</td>
<td>1.1</td>
<td>1.8</td>
<td>0.61</td>
<td>8.8</td>
<td>6.3</td>
<td>1.40</td>
<td>6.5</td>
<td>8.7</td>
<td>0.75</td>
<td>2.7</td>
<td>3.2</td>
<td>0.84</td>
</tr>
<tr>
<td>2009</td>
<td>1.7</td>
<td>1.2</td>
<td>1.42</td>
<td>4.9</td>
<td>2.2</td>
<td>2.23</td>
<td>8.4</td>
<td>2.3</td>
<td>3.65</td>
<td>4.0</td>
<td>1.7</td>
<td>2.35</td>
</tr>
<tr>
<td>2010</td>
<td>1.4</td>
<td>1.0</td>
<td>1.40</td>
<td>5.6</td>
<td>2.7</td>
<td>2.07</td>
<td>9.9</td>
<td>4.8</td>
<td>2.06</td>
<td>3.4</td>
<td>3.2</td>
<td>1.06</td>
</tr>
<tr>
<td>2011</td>
<td>1.8</td>
<td>1.3</td>
<td>1.38</td>
<td>5.2</td>
<td>3.1</td>
<td>1.68</td>
<td>7.4</td>
<td>2.0</td>
<td>3.70</td>
<td>3.5</td>
<td>5.8</td>
<td>0.60</td>
</tr>
<tr>
<td>2012</td>
<td>0.9</td>
<td>1.7</td>
<td>0.53</td>
<td>3.9</td>
<td>8.4</td>
<td>0.46</td>
<td>2.8</td>
<td>3.4</td>
<td>0.82</td>
<td>5.9</td>
<td>0.6</td>
<td>9.83</td>
</tr>
<tr>
<td>2013</td>
<td>1.3</td>
<td>0.9</td>
<td>1.44</td>
<td>5.9</td>
<td>6.1</td>
<td>0.97</td>
<td>3.6</td>
<td>2.6</td>
<td>1.38</td>
<td>10.9</td>
<td>1.9</td>
<td>5.74</td>
</tr>
<tr>
<td>2014</td>
<td>1.6</td>
<td>0.4</td>
<td>4.00</td>
<td>5.4</td>
<td>6.2</td>
<td>0.87</td>
<td>5.3</td>
<td>2.4</td>
<td>2.21</td>
<td>4.7</td>
<td>1.8</td>
<td>2.61</td>
</tr>
<tr>
<td>2015</td>
<td>0.5</td>
<td>0.5</td>
<td>1.00</td>
<td>3.3</td>
<td>4.8</td>
<td>0.69</td>
<td>4.2</td>
<td>2.3</td>
<td>1.83</td>
<td>1.3</td>
<td>2.1</td>
<td>0.62</td>
</tr>
<tr>
<td>2016c/</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>5.0</td>
<td>NA</td>
<td>NA</td>
<td>3.3</td>
<td>NA</td>
<td>NA</td>
<td>1.4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2017</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>5.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year</td>
<td>Preseason Forecast</td>
<td>Postseason Return</td>
<td>Pre/Post-season</td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1993</td>
<td>61.8</td>
<td>43.1</td>
<td>1.68</td>
<td>26.5</td>
<td>9.6</td>
<td>1.34</td>
<td>0.7</td>
<td>1.0</td>
<td>3.50</td>
<td>3.1</td>
<td>1.6</td>
<td>1.29</td>
</tr>
<tr>
<td>1994</td>
<td>52.7</td>
<td>49.9</td>
<td>1.08</td>
<td>18.0</td>
<td>10.5</td>
<td>0.60</td>
<td>3.9</td>
<td>1.2</td>
<td>2.44</td>
<td>1.0</td>
<td>1.0</td>
<td>2.00</td>
</tr>
<tr>
<td>1995</td>
<td>49.6</td>
<td>75.4</td>
<td>0.67</td>
<td>21.7</td>
<td>24.9</td>
<td>0.63</td>
<td>3.0</td>
<td>0.7</td>
<td>30.00</td>
<td>0.9</td>
<td>2.3</td>
<td>0.33</td>
</tr>
<tr>
<td>1996</td>
<td>51.9</td>
<td>53.2</td>
<td>0.89</td>
<td>19.0</td>
<td>16.5</td>
<td>0.53</td>
<td>2.8</td>
<td>1.4</td>
<td>14.00</td>
<td>0.9</td>
<td>2.0</td>
<td>0.29</td>
</tr>
<tr>
<td>1997</td>
<td>65.1</td>
<td>38.3</td>
<td>1.40</td>
<td>18.2</td>
<td>15.9</td>
<td>0.88</td>
<td>2.2</td>
<td>1.0</td>
<td>7.33</td>
<td>0.8</td>
<td>2.9</td>
<td>0.23</td>
</tr>
<tr>
<td>1998</td>
<td>67.8</td>
<td>49.6</td>
<td>1.24</td>
<td>21.8</td>
<td>14.6</td>
<td>0.79</td>
<td>1.7</td>
<td>1.7</td>
<td>1.00</td>
<td>0.9</td>
<td>2.1</td>
<td>0.47</td>
</tr>
<tr>
<td>1999</td>
<td>59.4</td>
<td>67.3</td>
<td>0.71</td>
<td>19.6</td>
<td>33.5</td>
<td>1.15</td>
<td>1.9</td>
<td>0.7</td>
<td>2.71</td>
<td>0.9</td>
<td>2.7</td>
<td>0.33</td>
</tr>
<tr>
<td>2000</td>
<td>77.5</td>
<td>47.4</td>
<td>1.39</td>
<td>17.5</td>
<td>39.5</td>
<td>1.26</td>
<td>2.0</td>
<td>1.2</td>
<td>1.67</td>
<td>1.1</td>
<td>1.7</td>
<td>0.65</td>
</tr>
<tr>
<td>2001</td>
<td>73.7</td>
<td>76.6</td>
<td>0.76</td>
<td>16.2</td>
<td>60.6</td>
<td>0.80</td>
<td>0.0</td>
<td>1.7</td>
<td>0.00</td>
<td>3.5</td>
<td>2.0</td>
<td>1.75</td>
</tr>
<tr>
<td>2002</td>
<td>90.8</td>
<td>69.3</td>
<td>1.07</td>
<td>16.9</td>
<td>57.0</td>
<td>0.79</td>
<td>0.0</td>
<td>1.6</td>
<td>0.00</td>
<td>3.6</td>
<td>2.2</td>
<td>0.97</td>
</tr>
<tr>
<td>2003</td>
<td>86.6</td>
<td>57.2</td>
<td>1.14</td>
<td>19.6</td>
<td>38.6</td>
<td>1.28</td>
<td>0.0</td>
<td>1.3</td>
<td>0.00</td>
<td>3.4</td>
<td>2.8</td>
<td>0.72</td>
</tr>
<tr>
<td>2004</td>
<td>86.5</td>
<td>66.6</td>
<td>1.16</td>
<td>17.5</td>
<td>42.3</td>
<td>0.61</td>
<td>0.0</td>
<td>1.4</td>
<td>0.00</td>
<td>3.6</td>
<td>4.1</td>
<td>0.85</td>
</tr>
<tr>
<td>2005</td>
<td>83.1</td>
<td>73.9</td>
<td>0.95</td>
<td>17.7</td>
<td>19.0</td>
<td>0.46</td>
<td>0.0</td>
<td>1.4</td>
<td>0.00</td>
<td>4.2</td>
<td>2.1</td>
<td>2.00</td>
</tr>
<tr>
<td>2006</td>
<td>85.8</td>
<td>104.1</td>
<td>0.82</td>
<td>21.3</td>
<td>37.0</td>
<td>0.58</td>
<td>0.0</td>
<td>1.2</td>
<td>0.00</td>
<td>4.2</td>
<td>3.2</td>
<td>1.31</td>
</tr>
<tr>
<td>2007</td>
<td>83.0</td>
<td>140.3</td>
<td>0.59</td>
<td>17.0</td>
<td>30.1</td>
<td>0.56</td>
<td>0.0</td>
<td>0.8</td>
<td>0.00</td>
<td>4.4</td>
<td>1.3</td>
<td>3.38</td>
</tr>
<tr>
<td>2008</td>
<td>101.6</td>
<td>90.6</td>
<td>1.12</td>
<td>21.1</td>
<td>32.2</td>
<td>0.65</td>
<td>0.0</td>
<td>0.7</td>
<td>0.00</td>
<td>3.2</td>
<td>1.2</td>
<td>2.67</td>
</tr>
<tr>
<td>2009</td>
<td>93.0</td>
<td>72.7</td>
<td>1.28</td>
<td>17.2</td>
<td>13.3</td>
<td>1.29</td>
<td>0.0</td>
<td>1.5</td>
<td>0.00</td>
<td>2.4</td>
<td>1.3</td>
<td>1.85</td>
</tr>
<tr>
<td>2010</td>
<td>97.4</td>
<td>82.9</td>
<td>1.17</td>
<td>12.7</td>
<td>15.8</td>
<td>0.80</td>
<td>0.0</td>
<td>0.7</td>
<td>0.00</td>
<td>1.9</td>
<td>2.6</td>
<td>0.73</td>
</tr>
<tr>
<td>2011</td>
<td>118.6</td>
<td>83.9</td>
<td>1.41</td>
<td>8.9</td>
<td>20.6</td>
<td>0.43</td>
<td>0.0</td>
<td>0.7</td>
<td>0.00</td>
<td>2.5</td>
<td>2.9</td>
<td>0.86</td>
</tr>
<tr>
<td>2012</td>
<td>95.8</td>
<td>61.9</td>
<td>1.55</td>
<td>8.9</td>
<td>23.0</td>
<td>0.39</td>
<td>0.0</td>
<td>1.2</td>
<td>0.00</td>
<td>2.9</td>
<td>2.1</td>
<td>1.38</td>
</tr>
<tr>
<td>2013</td>
<td>102.0</td>
<td>75.5</td>
<td>1.35</td>
<td>5.0</td>
<td>22.2</td>
<td>0.23</td>
<td>2.7</td>
<td>2.1</td>
<td>1.29</td>
<td>1.6</td>
<td>4.8</td>
<td>0.33</td>
</tr>
<tr>
<td>2014</td>
<td>96.7</td>
<td>37.1</td>
<td>2.61</td>
<td>4.8</td>
<td>7.1</td>
<td>0.68</td>
<td>3.8</td>
<td>2.0</td>
<td>1.90</td>
<td>1.5</td>
<td>4.2</td>
<td>0.36</td>
</tr>
<tr>
<td>2015</td>
<td>62.4</td>
<td>49.8</td>
<td>1.25</td>
<td>3.8</td>
<td>4.9</td>
<td>0.78</td>
<td>4.9</td>
<td>2.8</td>
<td>1.75</td>
<td>3.5</td>
<td>4.5</td>
<td>0.78</td>
</tr>
<tr>
<td>2016</td>
<td>43.1</td>
<td>NA</td>
<td>NA</td>
<td>4.5</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>NA</td>
<td>NA</td>
<td>2.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2017</td>
<td>80.4</td>
<td>-</td>
<td>-</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE II-9. Preseason forecasts and postseason estimates of Puget Sound run size for summer/fall Chinook in thousands of fish. (Page 3 of 4)
TABLE II-9. Comparison of preseason forecasts and postseason estimates of Puget Sound run size for summer/fall Chinook in thousands of fish.a/ (Page 4 of 4)

<table>
<thead>
<tr>
<th>Year</th>
<th>Preseason Forecast</th>
<th>Postseason Return</th>
<th>Pre/Post-Season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hood Canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatchery and Natural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>NA</td>
<td>9.2</td>
<td>-</td>
</tr>
<tr>
<td>1994</td>
<td>11.7</td>
<td>8.1</td>
<td>1.44</td>
</tr>
<tr>
<td>1995</td>
<td>11.5</td>
<td>7.8</td>
<td>1.47</td>
</tr>
<tr>
<td>1996</td>
<td>3.9</td>
<td>16.2</td>
<td>0.24</td>
</tr>
<tr>
<td>1997</td>
<td>9.0</td>
<td>30.2</td>
<td>0.30</td>
</tr>
<tr>
<td>1998</td>
<td>2.7</td>
<td>20.9</td>
<td>0.13</td>
</tr>
<tr>
<td>1999</td>
<td>6.7</td>
<td>30.4</td>
<td>0.22</td>
</tr>
<tr>
<td>2000</td>
<td>14.0</td>
<td>34.4</td>
<td>0.41</td>
</tr>
<tr>
<td>2001</td>
<td>19.2</td>
<td>26.1</td>
<td>0.74</td>
</tr>
<tr>
<td>2002</td>
<td>25.3</td>
<td>30.2</td>
<td>0.84</td>
</tr>
<tr>
<td>2003</td>
<td>24.0</td>
<td>33.0</td>
<td>0.73</td>
</tr>
<tr>
<td>2004</td>
<td>29.6</td>
<td>34.3</td>
<td>0.86</td>
</tr>
<tr>
<td>2005</td>
<td>30.6</td>
<td>54.7</td>
<td>0.56</td>
</tr>
<tr>
<td>2006</td>
<td>30.2</td>
<td>40.7</td>
<td>0.74</td>
</tr>
<tr>
<td>2007</td>
<td>47.5</td>
<td>32.5</td>
<td>1.46</td>
</tr>
<tr>
<td>2008</td>
<td>36.8</td>
<td>33.1</td>
<td>1.11</td>
</tr>
<tr>
<td>2009</td>
<td>42.6</td>
<td>38.0</td>
<td>1.12</td>
</tr>
<tr>
<td>2010</td>
<td>45.0</td>
<td>37.8</td>
<td>1.19</td>
</tr>
<tr>
<td>2011</td>
<td>40.6</td>
<td>53.2</td>
<td>0.76</td>
</tr>
<tr>
<td>2012</td>
<td>46.8</td>
<td>90.3</td>
<td>0.52</td>
</tr>
<tr>
<td>2013</td>
<td>66.2</td>
<td>71.7</td>
<td>0.92</td>
</tr>
<tr>
<td>2014</td>
<td>84.1</td>
<td>25.2</td>
<td>3.3</td>
</tr>
<tr>
<td>2015</td>
<td>62.1</td>
<td>32.9</td>
<td>1.9</td>
</tr>
<tr>
<td>2016b/</td>
<td>45.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2017</td>
<td>50.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a/ Puget Sound run size is defined as the run available to Puget Sound net fisheries. Does not include fish caught by troll and recreational fisheries inside Puget Sound.
b/ Postseason returns are preliminary.
c/ These numbers are in terms of terminal run of Chinook returning to area 8A. This includes all adult Chinook harvested in the net fisheries in Areas 8A, 8D, the Stillaguamish and Snohomish Rivers harvest in sport fisheries in Area 8D and the Stillaguamish and Snohomish Rivers and escapement.
FIGURE II-1. The Sacramento Index (SI) and relative levels of its components. The Sacramento River fall Chinook S_{MSY} of 122,000 adult spawners is noted on the vertical axis.

FIGURE II-2. Sacramento Index (SI) forecast based on log-log regression of the SI on jack escapement from the previous year, accounting for autocorrelated errors. The solid line represents the fitted model and the black dot denotes the SI forecast. Years shown are SI years.
FIGURE II-3. Regression estimators for Klamath River fall Chinook ocean abundance (September 1) based on that year’s river return of same cohort. Numbers in plots denote brood years.
FIGURE II-4. Selected preseason vs. postseason forecasts for Chinook stocks with substantial contribution to Council area fisheries.
CHAPTER III - COHO SALMON ASSESSMENT

COLUMBIA RIVER AND OREGON/ CALIFORNIA COAST COHO

OREGON PRODUCTION INDEX AREA

The majority of coho harvested in the Oregon Production Index (OPI) area originate from stocks produced in rivers located within the OPI area (Leadbetter Point, Washington, to the U.S./Mexico border). These stocks include hatchery and natural production from the Columbia River, Oregon Coast, and northern California, and are divided into the following components: (1) public hatchery (OPIH), (2) Oregon coastal natural (OCN), including river and lake components, (3) Lower Columbia natural (LCN), and (4) natural and hatchery stocks south of Cape Blanco, Oregon, which include the Rogue, Klamath, and Northern California coastal stocks. Direct comparisons of 2017 abundance forecasts with recent year preseason abundance forecasts and postseason estimates are reported in Table III-1.

Beginning in 2008, a new method was developed to estimate coho abundances for both the natural and hatchery components of the Columbia River and the Oregon coast. The traditional method of stock abundance estimation used only catch data from Leadbetter Point, Washington, to the U.S./Mexico border. The assumption prior to 2008 was that OPI stocks that were caught north of the OPI area were balanced by northern stocks that were caught inside the OPI area. This assumption was valid as long as fisheries north and south were balanced. However, in recent years, fisheries to the south have been more restrictive than those to the north, leading to underestimation of harvest of OPI area stocks. In addition, the estimation technique was not consistent with the methods used in Coho FRAM. The Mixed Stock Model (MSM) used for constructing the FRAM base period data was used to estimate the contribution of various coho stocks, including the OPI area stocks, to ocean fisheries and was based on CWT recoveries and associated tag rates. The MSM includes all fisheries that impact a particular stock, and therefore should provide a better overall accounting of total harvest and mortality of both Columbia River and Oregon coast coho stocks. The new run size estimates are based on the 1986-1997 base period and FRAM run reconstructions for more recent years. The Oregon Production Index Technical Team (OPITT) decided to use the MSM run reconstruction database for future accounting and forecasts. The MSM estimates were refined for use in 2009, with particular attention to the base period reconstruction for OCN coho. In 2010, the relationship between the MSM and previous time series was reconsidered. The changes in fishery effort patterns that resulted in biased harvest estimates began in the mid- to late-1990s, so the first few years of the MSM time series should be equivalent to the previous time series. This was used as justification to use the MSM data set as a continuation of the previous time series starting in 1986. In 2013, the OPI hatchery and OCN predictors used the longer, merged time series. This results in a higher level of statistical significance for the predictors and lower residuals in most recent years.

Hatchery Coho

OPI area public hatchery coho smolt production occurs primarily in Columbia River facilities and net pens. Several facilities located in Oregon coastal rivers and in the Klamath River Basin, California, collectively produce fewer coho. Salmon Trout Enhancement Hatchery Coho Smolt Program (STEP) program releases were discontinued after the 2004 brood. OPI area smolt releases since 1960 are reported by geographic area in Appendix C, Table C-1.

There have been no Oregon coastal private hatchery coho (PRIH) smolt releases since 1990.

Predictor Description

Prior to 2008, the OPIH stock predictor was a multiple linear regression with the following variables: (1) Columbia River jacks (Jack CR), (2) Oregon coastal and Klamath River Basin jacks (Jack OC), and (3) a...
correction term for the proportion of delayed smolts released from Columbia River hatcheries (Jack CR * [SmD/SmCR]).

In 2008, the stock predictor was modified slightly from that used in previous years. Because of the shorter data set (1986-2007 vs. 1970-2007) and the near-total phase-out of coastal coho salmon hatcheries, the factor for Oregon and California jacks (Jack OC) was not statistically significant in the regression. A simplified model with all OPI jacks combined into one term (Jack OPI) was used, and all parameters were statistically significant. In 2011, the longer (1970-2010) time series was used with the simplified model.

The OPIH stock predictor is partitioned into Columbia River early and late stocks based on the proportion of the 2016 jack returns of each stock adjusted for stock-specific maturation rates. The coastal hatchery stock is partitioned into northern and southern coastal stock components. The northern OPIH coastal stock is comprised of hatchery production from the central Oregon Coast. The southern OPIH coastal stock is comprised of hatchery production from the Rogue River basin in southern Oregon and the Klamath and Trinity basins in northern California. The 2017 partition was based on the proportion of the smolt releases in 2016.

For the 2017 abundance forecast, the database includes 1970-2015 recruits and 1969-2015 jack returns (in thousands of fish). The model was:

\[
OPIH(t) = a \times \text{Jack OPI}(t-1) + b \times (\text{Jack CR}(t-1) \times [\text{SmD}(t-1)/\text{SmCR}(t-1)])
\]

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>19.17</td>
</tr>
<tr>
<td>b</td>
<td>27.09</td>
</tr>
</tbody>
</table>

The OPIH stock data set and a definition of the above terms are presented in Appendix C, TABLE C-2.

Predictor Performance

Recent year OPIH stock preseason abundance forecasts, partitioned by production area, stock, and as a total, are compared with postseason estimates in Table III-1. The 2016 preseason abundance prediction of 396,500 OPIH coho was 1.7 times higher than the preliminary postseason estimate of 223,100 coho.

Since 1983, the OPIH predictor has performed well (Figure III-1a). The years with the highest variations were due principally to high interannual variability in the jack-to-adult ratios.

Stock Forecast and Status

Using the appropriate values from Appendix C, Table C-2, the OPIH abundance forecast for 2017 is 394,300 coho, 99 percent of the 2016 prediction and 1.68 times higher than the preliminary 2016 postseason estimate.

Oregon Coastal Natural Coho

The OCN stock is composed of natural production north of Cape Blanco, Oregon from river (OCNR) and lake (OCNL) systems, which are forecasted independently.

Under the FMP, ESA consultation standards are used in place of ACLs for ESA-listed stocks like OCN (and Southern Oregon/Northern California (SONCC) and Central California Coho (CCC)) coho.
Predictor Description

Oregon Coastal Natural Rivers

Prior to 2010, a variety of methods were used to forecast OCNR coho abundance. Beginning in 2011, generalized additive models (GAMs) were used to relate OCNR recruitment to ocean environment indices. Nine variables were evaluated, ranging from indices of large-scale ocean patterns (e.g., Pacific Decadal Oscillation (PDO)) to local ecosystem variables (e.g., sea surface temperature at Charleston, OR). It was found that high explanatory power and promising forecast skill could be achieved when the mean May-July PDO averaged over the four years prior to the return year was used in combination with two other variables in a GAM. The multi-year average of the PDO, in essence, explains the lower frequency (multi-year) variability in recruitment, and can be viewed as a replacement of the Regime Index used previously. A final set of six models using six different environmental indices plus parent spawner abundance was chosen from the possible model combinations. When averaging the predictions from the set of models (the ensemble mean), a higher skill (in terms of variance explained or cross-validation) was achieved than by selecting any single model. Making multiple forecasts from a set of models also provides a range of possible outcomes that reflects, to some degree, the uncertainty in understanding how salmon productivity is driven by ocean conditions.

The GAM with 3 predictor variables can be expressed in the following general form:

\[\hat{Y} = f(X_1) + f(X_2) + f(X_3) + \varepsilon \]

Where \(\hat{Y} \) is the prediction, \(X_1 \) through \(X_3 \) are the predictor variables, and \(\varepsilon \) is the deviation of \(\hat{Y} \) from the observation \(Y \). For the prediction, \(Y \) was the log-transformation of annual recruit abundance. The term \(f \) represents a smooth function, which in this case is a cubic spline.

The ensemble mean predictor used for the 2017 forecast was the geometric mean of the six GAM predictors:

Ensemble Mean of six forecasts based on environmental conditions and spawners.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Prediction</th>
<th>(r^2)</th>
<th>OCV(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDO Spring Transition (Julian date; t-1)</td>
<td>Log Spawners (t-3)</td>
<td>110,658</td>
<td>0.66</td>
</tr>
<tr>
<td>PDO Multivariate ENSO Index (Oct-Dec; t-1)</td>
<td>Upwelling (July-Sept; t-1)</td>
<td>71,531</td>
<td>0.68</td>
</tr>
<tr>
<td>PDO Spring Transition (Julian date; t-1)</td>
<td>Multivariate ENSO Index (Oct-Dec; t-1)</td>
<td>86,843</td>
<td>0.68</td>
</tr>
<tr>
<td>PDO Upwelling (July-Sept; t-1)</td>
<td>Sea Surface Temperature (May-Jul; t-1)</td>
<td>65,315</td>
<td>0.63</td>
</tr>
<tr>
<td>PDO Sea Surface Height (Apr-June; t-1)</td>
<td>Upwelling (July-Sept; t-1)</td>
<td>94,746</td>
<td>0.69</td>
</tr>
<tr>
<td>PDO Upwelling (Sept-Nov; t-1)</td>
<td>Sea Surface Temperature (Jan; t)</td>
<td>114,997</td>
<td>0.67</td>
</tr>
<tr>
<td>Ensemble Mean (90% prediction intervals)</td>
<td></td>
<td>88,766</td>
<td>0.71</td>
</tr>
</tbody>
</table>

\(a/\) OCV – ordinary cross-validation score

The OCNR stock data set and a definition of the above terms are presented in Appendix C, Table C-4.

Oregon Coastal Natural Lakes

Since 1988, except for 2008, the abundance of OCNL index coho has been predicted using the most recent three-year average adult stock abundance. OCNL coho production occurs from three lake systems (Tennmile, Siltcoos, and Tahkenitch). Production from these systems has declined substantially from the levels observed during 1950-1973, but has steadily increased in recent years. Following the same reasoning used for the OCN Rivers predictor in 2008, OPITT chose to use the 2007 postseason abundance estimate of 10,000 coho for the 2008 preseason prediction instead of using the most recent three-year average.

For 2017, OPITT chose to use the most recent three-year average adult stock abundance, which predicts 13,100 coho.
Predictor Performance

Recent year OCN preseason abundance predictions are compared to postseason estimates in Table III-1. The 2016 preseason abundance prediction of 152,700 OCN coho was 1.84 times higher than the preliminary postseason estimate of 83,200 coho.

Stock Forecasts and Status

The 2017 preseason prediction for OCN (river and lake systems combined) is 101,900 coho, 67 percent of the 2016 preseason prediction and 1.22 times higher than the 2016 postseason estimate (Table III-1). The 2017 preseason prediction for OCNR and OCNL components are 88,800 and 13,100 coho, respectively.

Based on parent escapement levels and observed OPI smolt-to-jack survival for 2014 brood OPI smolts, the total allowable OCN coho exploitation rate for 2017 fisheries is no greater than 30.0 percent under the Salmon FMP (Amendment 13) and no greater than 30.0 percent under the matrix developed by the OCN Coho Work Group during their review of Amendment 13 (Table V-8; Appendix A, Tables A-2 and A-3, respectively). The work group recommendation was accepted by the Council as expert biological advice in November 2000.

In November 2013, the Council approved a methodology change for a new marine survival index for the OCN coho harvest matrix that uses biological and oceanographic indicators for preseason planning beginning in 20141. Based on this methodology the marine survival index of 5.6 percent allows for a total allowable exploitation rate for 2017 fisheries that is no greater than 30.0 percent (Table V-8: Appendix Table A-4).

Lower Columbia River Natural

LCN coho consist of naturally produced coho mostly from Columbia River tributaries below Bonneville dam; however, coho produced in the upper Willamette are not part of the ESA-listed ESU and are not included in the LCN coho forecast. LCN coho were listed as endangered under the Oregon State ESA in 2002, and as threatened under the Federal ESA on June 28, 2005. Under the FMP, ESA consultation standards are used in place of ACLs for ESA-listed stocks like LCN coho.

Predictor Description

The 2017 prediction for the Clackamas River is based on the recent 2-year average abundances based on spawning ground counts. The Clackamas ocean abundance forecast for 2017 is 1,800. The forecast for other Oregon lower Columbia natural (LCN) populations, including the Sandy River, are also the recent 2-year average. The 2017 LCN coho abundance forecast for all Oregon areas combined is 4,300 coho.

The 2017 predictions for the Washington LCN coho populations are derived by combining estimates of the 2014 brood year natural smolt production based on watershed area and the marine survival rate of 4.5 percent. The 2017 adult abundance forecast for Washington LCN coho is 25,700 coho.

Predictor Performance

The LCN stock predictor methodology was developed in 2007. The preseason abundance compared to the postseason estimate is presented in Table III-1. The 2016 preseason abundance prediction of 40,000 LCN coho was 2.5 times higher than the preliminary postseason estimate of 16,000 coho.

1 For additional information see the November 2013 PFMC Briefing Book, Agenda Item C.2.a, Attachment 1: Technical Revision to the OCN Coho Work Group Harvest Matrix.
Stock Forecast and Status

The 2017 prediction for LCN coho is 30,100 coho (Table III-1). This abundance estimate includes both Oregon and Washington LCN components.

NMFS ESA guidance for harvest of LCN coho in marine and mainstem Columbia River fisheries in recent years has been based on the allowable marine exploitation rate in a matrix developed by ODFW, similar to the OCN matrix. This was based on parent escapement levels in the Sandy and Clackamas and observed OPI smolt-to-jack survival rates. In November 2014, the Council approved a new LCN matrix based on parent escapement levels for ten populations and the observed Columbia River OPI smolt-to-jack survival rate. Based on this methodology, the total allowable marine and mainstem Columbia River exploitation rate for LCN coho in 2017 fisheries would be no more than 18.0 percent.

Oregon Production Index Area Summary of 2017 Stock Forecasts

The 2017 combined OPI area stock abundance is predicted to be 496,200 coho, which is 90 percent of the 2016 preseason prediction of 549,200 coho and 1.57 times higher than the 2016 preliminary postseason estimate of 317,00 coho. The historical OPI abundances are reported in Table III-2.

WASHINGTON COAST COHO

Washington coastal coho stocks include all natural and hatchery stocks originating in Washington coastal streams north of the Columbia River to the western Strait of Juan de Fuca (west of the Sekiu River). The stocks in this group most pertinent to ocean salmon fishery management are Willapa Bay (hatchery), Grays Harbor, Quinault (hatchery), Queets, Hoh, and Quillayute coho. These stocks contribute primarily to ocean fisheries off Washington and B.C.

A variety of preseason abundance estimators currently are employed for Washington coast and Puget Sound coho stocks, primarily based on smolt production and survival (Table I-2). These estimators are used to forecast preseason abundance of adult ocean (age-3) recruits.

A comparison was made of preseason ocean age-3 forecasts with postseason estimates derived from run reconstructions using FRAM (“Backwards” mode) to expand observed escapements to ocean abundance from CWT recovery data. It should be noted that forecast methodology has changed over time, and the overall trends and biases may not reflect the current methods.

Except for Willapa Bay, Washington Coast coho fall within an exception to the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for these stocks.

Willapa Bay

Predictor Description

The hatchery forecast is based on a marine survival rate of 3.8 percent calculated from a regression using PDO (May-Sep) applied to the 2014 brood year smolts released in the spring of 2016. The natural forecast was calculated using a regression between PDO (May-Sep) and natural runsize then corrected for a 5-year average model performance. That was then expanded to ocean-age 3 using SUS pre-terminal recoveries of coded wire tagged coho for return years 2004-13.

Predictor Performance

There was no information available to evaluate performance of predictors for Willapa coho stocks.
Stock Forecasts and Status

The 2017 Willapa Bay hatchery coho abundance forecast is 54,998 ocean abundance compared to a 2016 preseason forecast of 28,093. The 2017 natural coho forecast is 36,720 ocean abundance, compared to a 2016 preseason forecast of 39,516.

OFL, ABC, and ACL

The OFL, ABC, and ACL are defined in terms of spawner escapement (S_{OFL}, S_{ABC}, and S_{ACL}), and are calculated using potential spawner abundance forecasts and established exploitation rates. For Willapa Bay natural coho, $F_{MSY} = 0.74$, the value estimated from a stock-specific spawner-recruit analysis. The OFL for Willapa Bay natural coho is $S_{OFL} = 36,720 \times (1-0.74) = 9,547$. Because Willapa Bay natural coho are a Tier-1 stock, $F_{ABC} = F_{MSY} \times 0.95 = 0.70$, and $F_{ACL} = F_{ABC}$. The ABC for Willapa Bay natural coho is $S_{ABC} = 36,720 \times (1-0.70) = 11,016$, with $S_{ACL} = S_{ABC}$. These preseason estimates will be recalculated with postseason abundance estimates (when available) to assess ACL and OFL compliance.

Grays Harbor

Preseason abundance forecasts are made for natural fish throughout the system and for hatchery fish returning to three freshwater rearing complexes and three saltwater net-pen sites. The forecasts include fish originating from numerous volunteer production projects.

Predictor Description

The Grays Harbor natural coho forecast methodology had not been agreed to by the comanagers at the time of print.

The Chehalis River, Humptulips River, Grays Harbor net-pen, and off-site hatchery program hatchery-origin forecasts were based on recent 10 year average return/smolt rates (excluding two highest return rates) expanded to ocean age-3 recruits. The ocean abundance forecast were 25,964 Chehalis River, 9,179 for Humptulips River and 1,212 for net-pens and off-site hatchery programs.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates for Grays Harbor natural coho derived from FRAM run reconstruction indicated no notable bias (Table III-3, Figure III-1).

Stock Forecasts and Status

The abundance forecast for Grays Harbor natural stock coho for 2017 is unavailable at time of print.

The forecast for hatchery stock ocean abundance is 36,355 ocean age-3 recruits.

OFL

The OFL is defined in terms of spawner escapement (S_{OFL}). For Grays Harbor natural coho $MFMT = 0.65$ and the OFL is $S_{OFL} = ocean\ abundance \times (1-0.65)$. The preseason S_{OFL} value cannot be calculated in the absence of a stock forecast and will be calculated when a forecast becomes available. The preseason S_{OFL} will also be recalculated with postseason abundance estimates (when available) to assess OFL compliance.
Quinault River

Predictor Description
The hatchery forecast was based on the survival of a recent ten year (excluding years 2009 and 2014) mean smolt to ocean age-3 survival of 4.38 percent, applied to the smolt (672,334) released from the Quinault Cook Creek Hatchery.

The natural forecast was based on the recent 10 year average (excluding 2009 and 2014) ocean age-3 abundance.

Predictor Performance
There was no information available to evaluate performance of predictors for these stocks.

Stock Forecasts and Status
The 2017 forecast for Quinault natural coho is 26,300 ocean age-3 recruits, an increase from the 2016 forecast of 17,100.

The Quinault hatchery coho forecast is 29,435 ocean age-3 recruits that are 100 percent marked.

Queets River

Predictor Description
The natural coho forecast represents the estimated smolt out migration (219,107) multiplied by an expected survival rate of 3.68 percent to January age-3. The survival rate estimate is based on a model developed by Quinault Fisheries Department.

The hatchery forecast is based on the smolt releases from 2016 (644,059) multiplied by a five-year average (2010-2014) marine survival rate of 2.12 percent.

Approximately 88 percent of the fish released from the Salmon River facility were marked with an adipose fin clip

Predictor Performance
A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated no persistent tendency to under- or over- predict abundance. The 2015 forecast was higher than the postseason estimate (Table III-3; Figure III-1).

Stock Forecasts and Status
The 2017 Queets natural coho forecast is 6,548 ocean age-3 recruits, an increase compared to the 2016 forecast level of 3,495. This ocean abundance results in classification of this stock’s status as “low” under the 2002 PST Southern Coho Management Plan (Table III-5).

The 2017 Queets hatchery (Salmon River) coho forecast is 13,652 ocean age-3 recruits, an increase compared to the 2016 forecast of 4,494.

OFL
The OFL is defined in terms of spawner escapement (S_{OFL}). For Queets River coho, $MFMT = 0.65$, and the OFL is $S_{OFL} = 6,548 \times (1-0.65) = 24,292$. The preseason S_{OFL} value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.
Hoh River

Predictor Description

The natural coho forecast is based on estimated average smolt production per square mile of watershed from the Clearwater tributary which lies between the Queets River mainstem and the Hoh River, and since the Quinault Fisheries Dept. has a long-standing trapping program on the Clearwater to estimate smolt production, the assumption in forecasting is that these two rivers produce smolts at a comparable rate per square mile of watershed (WDFW 2017). To estimate Hoh River production we used the Clearwater production of 611 smolts per square mile and then multiplied by the size of the Hoh watershed (299 square miles), for a total of 182,689 smolts. The total natural smolt production estimate was then multiplied by an expected marine survival rate of 3.91 percent. This is the mean of two separate forecast models developed: a forecast of 3.13% January age-3 (JA3) for wild Queets system coho (Rick Coshow, Quinault Dept. Fisheries), a forecast of 4.68% JA3 for coastal wild coho stocks, (Zimmerman, WDFW Science Division). Both of the models used correlations between ocean indicators and estimated survival rates over past years; the Queets model used PDO, an ocean upwelling index, and a copepod abundance indicator; WDFW’s coastal model uses Bingham Creek (Satsop R.) wild coho and employed PDO, upwelling, and winter ichthyoplankton.

The 3.91 percent estimate seems to be a reasonable estimator for the Hoh system wild coho, and when coupled with an average freshwater production, yields a runsize forecast that is comparable to last year’s actual return.

No hatchery production is projected for the Hoh system for 2017.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated a tendency to under-predict actual run-size (Table III-3; Figure III-1).

Stock Forecasts and Status

The 2017 Hoh River natural coho forecast is 5,799 ocean age 3 recruits, an increase compared to the 2016 forecast of 2,066. This ocean abundance results in classification of this stock’s status as “abundant” under the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement (S_{OFL}). For Hoh River coho, MFMT = 0.65, and the OFL is $S_{OFL} = 5,799 \times (1-0.65) = 2,030$. The preseason S_{OFL} value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Quillayute River

Quillayute River coho consist of a summer run that is managed primarily for hatchery production, and a fall run that is managed primarily for natural production. Quillayute River coho have both natural and hatchery components to both runs.

Predictor Description

Average smolt production for the Quillayute system during the years it was trapped is estimated at 305,601 smolts. To the south, smolt production is estimated annually in the Queets system by the Quinault Fisheries Department. The Queets production relative to its average production is used to adjust the Quillayute production up or down to estimate smolt production in the Quillayute system. This is done in two steps: first look at the Clearwater River smolt production, estimated at 85,523 coho smolts, which is 1.350 times
its average productions during the years the Bogachiel River was trapped (‘87,’88, ’90) and 1.402 times its average production during the years the Dickey River was trapped (’92-’94). Using 1.350 as a multiplier of the estimated average smolt production of the Quillayute System excluding the Dickey River (217,257 smolt average) yields an estimated 293,377 coho smolts. The Dickey River production is estimated by multiplying 1.402 by its average production during the years it was trapped (88,344 smolts), yielding an additional 123,860 smolts (method from Zimmerman, WDFW, “2014 Wild Coho Forecast …”). The total freshwater production for the system is estimated to be the sum of the two pieces, or 417,237 wild smolts. Separating these into summer and fall coho smolts by the relative number of spawners in brood year 2014 yields estimates of 35,448 wild summer coho smolts and 381,789 wild fall coho smolts. Wild summer coho spawning has been documented to be temporally and spatially isolated from spawning wild fall coho.

Summer Coho
The summer natural coho forecast is based on the estimated total summer coho smolt production (35,448) and a projected ocean survival rate of 5.10 percent. This is a higher ocean survival rate than the 2.76 percent used in 2016.

An examination of the return rates of both hatchery releases and natural smolts indicates that hatchery return rates are 1.5 percent below natural returns. Thus, for the hatchery component, an ocean survival rate of 3.86 percent was selected. The survival rate of 3.86 percent was multiplied by a release of 107,725 smolts.

Fall Coho
The forecast for the natural component was based on the estimated total fall coho smolt production (381,789) multiplied by an expected marine survival rate of 5.10 percent, which was the same as used for the summer natural returns.

The fall hatchery production forecast was based on the same prediction of marine survival (5.10 percent) used for the summer hatchery coho forecast, multiplied by a release of 562,196 smolts.

Predictor Performance
A comparison of preseason ocean age-3 forecasts with postseason estimates for fall natural coho derived from FRAM run reconstruction indicated no notable bias (Table III-3; Figure III-1).

Stock Forecasts and Status
The 2017 Quillayute River summer natural and hatchery coho forecasts are 1,468 and 3,376 ocean recruits, respectively. With 100 percent of the hatchery smolts marked with an adipose fin clip. The 2017 forecast abundances of natural and hatchery summer coho are higher than the 2016 forecasts.

The 2017 Quillayute River fall natural and hatchery coho forecasts are 15,808 and 17,619 ocean recruits, respectively. The 2017 forecast abundance of natural Quillayute fall coho and the hatchery forecast are higher than their respective 2016 forecasts. The hatchery smolts were marked as follows: 406,969 with adipose fin-clip only; 77,636 with adipose fin-clip and CWT; 77,591 with CWT only, and 18,706 without adipose fin-clip or CWT.

The ocean abundance forecast for Quillayute fall natural coho results in classification of the stock abundance as "abundant" under the 2002 PST Southern Coho Management Plan (Table III-5).
North Washington Coast Independent Tributaries

Predictor Description
Production from several smaller rivers and streams along the North Washington Coast (Waatch River, Sooes River, Ozette River, Goodman Creek, Mosquito Creek, Cedar Creek, Kalaloch Creek, Raft River, Camp Creek, Duck Creek, Moclips River, Joe Creek, Copalis River, and Conner Creek), which flow directly into the Pacific Ocean, is forecast as an aggregate. Generally, stock assessment programs on these systems are minimal.

The 2017 forecast of natural coho production for these independent streams is based on a prediction of 400 smolts per square mile of watershed drainage, 424 square miles of watershed, resulting in 169,600 smolts multiplied by an expected marine survival rate of 3.8 percent. This rate was the average of the jack-based and the PDO models.

The hatchery forecast is based on the predicted marine survival of 0.1 percent for the brood year 2014 multiplied by brood year smolt release (163,241) from the Makah National Fish Hatchery.

Predictor Performance
There was no information available to evaluate performance of predictors for these stocks.

Stock Forecasts and Status
The 2017 forecast of natural coho production for these independent streams is 6,460 age-3 ocean recruits. The hatchery forecast is 163 age-3 ocean recruits, and none of the smolts released were marked with an adipose fin clip.

PUGET SOUND COHO STOCKS
Puget Sound coho salmon stocks include natural and hatchery stocks originating from U.S. tributaries in Puget Sound and the Strait of Juan de Fuca. The primary stocks in this group that are most pertinent to ocean salmon fishery management are Strait of Juan de Fuca, Hood Canal, Skagit, Stillaguamish, Snohomish, and South Puget Sound (hatchery) coho. These stocks contribute primarily to ocean fisheries off Washington and B.C.

A variety of preseason abundance estimators currently are employed for Puget Sound coho stocks, primarily based on smolt production and survival (Table I-2). These estimators are used to forecast preseason abundance of adult ocean age-3 recruits. Forecasts for natural Puget Sound coho stocks were generally derived by measured or predicted smolt production from each major watershed or region, multiplied by stock-specific marine survival rate predictions based on a jack return model from the WDFW Big Beef Creek Research Station in Hood Canal, natural coho CWT tagging programs at Baker Lake (Skagit River basin) and South Fork Skykomish River, adult recruits/smolt data generated from the WDFW Deschutes River Research Station, or other information. Puget Sound hatchery forecasts were generally the product of 2014 brood year (BY) smolt releases from each facility, and a predicted marine survival rate for each program. Hatchery marine survival rates were typically based on recent year average survival rates derived from CWT recovery information and/or run reconstructions.

The 2017 total hatchery and natural coho ocean recruit forecast for the Puget Sound region is 597,523, compared to a 2016 forecast of 255,945. The hatchery coho forecast is 309,258 compared to the 2016 forecast of 164,970, and the natural coho forecast for 2017 of 288,265 is increased over the 2016 forecast of 90,975.
A comparison was made of preseason ocean age-3 forecasts with postseason estimates derived from run reconstructions using FRAM (“Backwards” mode). This method expands observed escapements and actual catch to produce a FRAM estimate of post-season ocean abundance. This post-season FRAM estimate is dependent upon Base Period (1986-1992 fishing years) CWT recovery data. It should be noted that forecast methodology has changed over time, and the overall trends and biases may not reflect the current methods.

Puget Sound coho fall within an exception to the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for these stocks.

Strait of Juan de Fuca

Predictor Description
As in past years, the natural and hatchery coho forecasts include both Eastern and Western Strait of Juan de Fuca drainages. The forecasts are based on an ocean survival rate of 5.52 percent, derived from a weighted average of the predictions of ocean survival from two regression models, one using the Elwha hatchery coho jack return rate as an indicator of survival and the other using the NPGO as an indicator. The marine survival rate was then applied to the coho smolt outmigration to produce the forecast of January age-3 recruits.

The hatchery forecasts were based on applying hatchery-specific marine survival rate predictions to the 2014 BY smolt releases for each hatchery. The marine survival rate predictions for the hatchery stocks were based on averages of estimated return rates of adults.

Predictor Performance
A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction in recent years indicated no persistent tendency to under- or over-predict abundance (Table III-4; Figure III-1b). The 2015 preseason forecast overestimated the postseason estimate by a factor of 2.47.

Stock Forecasts and Status
The 2017 forecasts for Strait of Juan de Fuca natural and hatchery coho age-3 ocean recruits are 13,058 and 15,367, respectively.

The preseason forecast of 13,058 age-3 ocean recruits places Strait of Juan de Fuca natural coho in the Low abundance-based status category, which results in an allowable total exploitation rate of no more than 40 percent under both the Council-adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL
The OFL is defined in terms of spawner escapement (S_{OFL}). For Strait of Juan de Fuca coho MFMT = 0.60, and the OFL is S_{OFL} = 13,058 \times (1-0.60) = 5,223. The preseason S_{OFL} value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Nooksack-Samish

Predictor Description
The natural coho forecast is the product of projected natural smolt production from each stream basin in the region, multiplied by stock-specific marine survival rate expectations.
The hatchery forecasts are based on median marine survival rate expectations for Lummi Bay Hatchery or Skookum Hatchery multiplied by the number of smolts released.

Predictor Performance

There was no information available to evaluate performance of predictors for Nooksack-Samish coho stocks.

Stock Forecasts and Status

The 2017 forecasts for Nooksack-Samish natural and hatchery coho ocean abundance age-3 ocean recruits are 13,235 and 45,610 respectively.

Skagit

Predictor Description

The natural coho forecast is the product of measured smolt production from the Skagit basin multiplied by a marine survival rate expectation of 2.0 percent. This natural coho marine survival rate was based upon the NOAA ecosystem indicator data, specifically the ONI January-June, PDO May – September and NPGO May - September.

The hatchery forecasts are based on Marblemount Hatchery CWT recoveries. Brood years 1996-2012 produced an average marine survival rate of 2.45 percent; this was multiplied by the total number of smolts released from all regional hatcheries.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated a tendency to over-predict actual run size, especially early in the time series (Table III-4; Figure III-1b).

Stock Forecasts and Status

The 2017 forecasts for Skagit River natural and hatchery coho ocean recruits are 11,160 and 7,551 respectively.

The preseason forecast of 11,160 age-3 ocean recruits places Skagit natural coho in the Critical abundance based status category, which results in an allowable total exploitation rate of no more than 20 percent under both the Council adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement (S_{OFL}). For Skagit River coho, $MFMT = 0.20$ and the OFL is $S_{OFL} = 11,160 \times (1-0.20) = 8,928$. The preseason S_{OFL} value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Stillaguamish

Predictor Description

The natural coho forecast was based on the regression of adult terminal returns on adjusted smolt trap catch per unit effort (CPUE). The 2017 terminal run size was calculated using 2016 terminal escapement estimate...
multiplied by the ratio 2016 CPUE (0.4) to 2015 CPUE (0.9). The resulting terminal run-size estimate was then expanded by a pre-terminal Puget Sound exploitation rate to generate the ocean age-3 forecast.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction in recent years indicated no persistent tendency to under- or over-predict abundance (Table III-4; Figure III-1b). The 2015 preseason forecast over-predicted the postseason estimate by a factor of 5.13.

Stock Forecasts and Status

The preseason forecast of 7,622 age-3 ocean recruits places Stillaguamish natural coho in the Critical abundance based status category, which results in an allowable total exploitation rate of no more than 20 percent under both the Council-adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement (S_{OFL}). For Stillaguamish coho, $MFMT = 0.20$ and the OFL is $S_{OFL} = 7,622 \times (1-0.20) = 6,098$. The preseason S_{OFL} value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Snohomish

Predictor Description

The natural coho forecast used the estimated 2014 BY smolt production multiplied by a marine survival rate expectation. The hatchery forecasts were based on BY 2014 releases multiplied by a marine survival rate.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated no persistent tendency to under- or over-predict abundance (Table III-4; Figure III-1b). The 2015 forecast over-estimated the postseason estimate by a factor of 4.97.

Stock Forecasts and Status

The 2017 forecast for Snohomish River natural coho ocean recruits is 107,325. The Snohomish regional hatchery coho forecast is 61,953.

The preseason forecast of 107,325 age-3 ocean recruits places Snohomish natural coho in the Low abundance-based status category, which results in an allowable total exploitation rate of no more than 40 percent under the Council-adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement (S_{OFL}). For Snohomish coho, $MFMT = 0.20$ and the OFL is $S_{OFL} = 107,325 \times (1-0.20) = 85,860$. The preseason S_{OFL} value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.
Hood Canal

Predictor Description
The natural coho forecast is based on a regression of CWT natural Big Beef Creek jacks on Hood Canal December age-2 recruits, using brood years 1983-1998 and 2002-2012. The 1999-2001 broods were excluded because of the unusually high recruit-per-tagged jack ratio, which is not expected to occur this year.

The hatchery coho forecasts are based on average cohort reconstruction-based December age-2 recruits/smolt for the six most recent available broods from each facility, applied to the 2014 brood smolt releases for each facility.

Predictor Performance
A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated no persistent tendency to under- or over-predict abundance in recent years. The 2015 preseason forecast was slightly lower than the postseason estimate by a factor of 0.96 (Table III-4; Figure III-1b).

Stock Forecasts and Status
Converted to ocean age-3 forecasts, the Hood Canal region natural and hatchery coho ocean recruits are 115,606 and 74,897, respectively.

The preseason forecast of 115,606 age-3 ocean recruits places Hood Canal natural coho in the Normal abundance based status category, which results in an allowable total exploitation rate of no more than 65 percent under both the Council adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL
The OFL is defined in terms of spawner escapement (SOFL). For Hood Canal coho MFMT = 0.45, and the OFL is SOFL = 115,606 × (1-0.45) = 63,583. The preseason SOFL value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

South Sound

Predictor Description
The natural coho forecast is the product of projected smolt production from each of the stream basins in the region multiplied by a marine survival rate expectation for natural coho in the region. The upper South Sound natural stocks’ marine survival rate of 3.6 percent was based upon methods from Zimmerman, WDFW, 2017 Wild Coho Forecast paper. The deep South Sound stocks’ marine survival prediction of 3.5 percent also came from the methods of Zimmerman, WDFW 2017 Wild Coho Forecast paper. This method used correlations between ocean indicators and estimated survival rates over past years.

Stock Forecasts and Status
The 2017 preseason forecast of age-3 ocean recruits for South Sound region natural and hatchery coho are 20,232 and 102,360 respectively.
STOCK STATUS DETERMINATION UPDATES
No stocks were classified as overfished, but Queets River coho and Skagit coho met the criteria for approaching an overfished condition in 2017 (Table V-4). Status determination criteria for Willapa Bay coho have been identified. The MSST is 8,600 and the MFMT is 74 percent. The Annual Catch Limit is 71 percent and the Conservation Objective is 17,200 natural area spawners.

SELECTIVE FISHERY CONSIDERATIONS FOR COHO
As the region has moved forward with mass marking of hatchery coho salmon stocks, selective fishing options have become an important consideration for fishery managers. Projected coho mark rates in Canadian, Puget Sound, and north Washington Coast fisheries are slightly lower than 2016 projections. Table III-6 summarizes projected 2017 mark rates for coho fisheries by month from Southern British Columbia, Canada to the Oregon Coast, based on preseason abundance forecasts.
TABLE III-1. Preliminary preseason and postseason coho stock abundance estimates for Oregon production index area stocks in thousands of fish. (Page 1 of 3)

<table>
<thead>
<tr>
<th>Stock</th>
<th>Year</th>
<th>Preseason</th>
<th>Postseason</th>
<th>Preseason/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon Production Index Area Hatchery Total</td>
<td>2000</td>
<td>671.4</td>
<td>677.1</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>1,707.6</td>
<td>1,454.2</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>361.7</td>
<td>660.1</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>863.1</td>
<td>952.5</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>623.9</td>
<td>634.6</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>389.9</td>
<td>443.1</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>398.8</td>
<td>440.6</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>593.6</td>
<td>476.5</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>216.1</td>
<td>565.4</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>1,073.1</td>
<td>1,066.2</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>408.0</td>
<td>551.3</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>375.1</td>
<td>442.3</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>341.7</td>
<td>182.3</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>525.4</td>
<td>316.9</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>983.1</td>
<td>1,263.6</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>808.4</td>
<td>251.7</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>396.5</td>
<td>233.8</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>394.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Columbia River Early</td>
<td>2000</td>
<td>326.3</td>
<td>378.0</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>1,036.5</td>
<td>873.0</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>161.6</td>
<td>324.7</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>440.0</td>
<td>645.7</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>313.6</td>
<td>389.0</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>284.6</td>
<td>282.7</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>245.8</td>
<td>251.4</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>424.9</td>
<td>291.0</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>110.3</td>
<td>333.9</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>672.7</td>
<td>681.4</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>245.3</td>
<td>274.3</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>216.0</td>
<td>288.5</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>229.8</td>
<td>114.7</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>331.6</td>
<td>190.8</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>526.6</td>
<td>760.5</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>515.2</td>
<td>150.5</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>153.7</td>
<td>127.0</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>231.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Columbia River Late</td>
<td>2000</td>
<td>278.0</td>
<td>260.1</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>491.8</td>
<td>488.3</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>143.5</td>
<td>271.8</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>377.9</td>
<td>248.0</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>274.7</td>
<td>203.0</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>78.0</td>
<td>111.6</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>113.8</td>
<td>156.3</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>139.5</td>
<td>171.0</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>86.4</td>
<td>207.6</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>369.7</td>
<td>374.1</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>144.2</td>
<td>263.6</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>146.5</td>
<td>141.2</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>87.4</td>
<td>55.6</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>169.5</td>
<td>110.7</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>437.5</td>
<td>480.3</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>261.9</td>
<td>91.8</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>226.9</td>
<td>96.1</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>154.6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE III-1. Preliminary preseason and postseason coho stock abundance estimates for Oregon production index area stocks in thousands of fish. (Page 2 of 3)

<table>
<thead>
<tr>
<th>Stock</th>
<th>Year</th>
<th>Preseason</th>
<th>Postseason</th>
<th>Preseason/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon Coast North of Cape Blanco</td>
<td>2000</td>
<td>48.5</td>
<td>23.4</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>127.3</td>
<td>46.9</td>
<td>2.71</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>36.6</td>
<td>41.6</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>29.3</td>
<td>34.5</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>16.6</td>
<td>21.7</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>11.5</td>
<td>10.7</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>8.6</td>
<td>7.9</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>7.0</td>
<td>1.3</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>1.7</td>
<td>7.1</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>7.3</td>
<td>7.5</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>4.4</td>
<td>8.6</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>3.6</td>
<td>3.6</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>6.4</td>
<td>3.1</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>5.6</td>
<td>5.7</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>4.8</td>
<td>19.3</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>6.9</td>
<td>5.6</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>5.5</td>
<td>9.3</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>California and Oregon Coast South of Cape Blanco</td>
<td>2000</td>
<td>18.6</td>
<td>15.6</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>52.0</td>
<td>46.0</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>20.0</td>
<td>22.0</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>15.9</td>
<td>24.3</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>19.0</td>
<td>29.9</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>15.8</td>
<td>38.1</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>30.6</td>
<td>25.0</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>22.2</td>
<td>13.2</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>17.7</td>
<td>16.8</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>23.4</td>
<td>3.1</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>14.1</td>
<td>4.8</td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9.0</td>
<td>9.0</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>18.1</td>
<td>8.6</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>18.7</td>
<td>7.6</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>14.2</td>
<td>3.4</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>24.4</td>
<td>3.8</td>
<td>6.42</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>10.4</td>
<td>1.5</td>
<td>6.93</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lower Columbia River Natural</td>
<td>2007</td>
<td>21.5</td>
<td>20.5</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>13.4</td>
<td>28.7</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>32.7</td>
<td>37.6</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>15.1</td>
<td>53.2</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>22.7</td>
<td>29.5</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>30.1</td>
<td>12.9</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>46.5</td>
<td>36.8</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>33.4</td>
<td>108.7</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>35.9</td>
<td>20.9</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>40.0</td>
<td>16.0</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>30.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE III-1. Preliminary preseason and postseason coho stock abundance estimates for Oregon production index area stocks in thousands of fish. (Page 3 of 3)

<table>
<thead>
<tr>
<th>Stock</th>
<th>Year</th>
<th>Preseason</th>
<th>Postseason</th>
<th>Preseason/Postseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon Coast Natural (Rivers and Lakes)</td>
<td>2000</td>
<td>55.9</td>
<td>69.0</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>50.1</td>
<td>163.2</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>71.8</td>
<td>304.5</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>117.9</td>
<td>278.8</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>150.9</td>
<td>197.0</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>152.0</td>
<td>150.1</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>60.8</td>
<td>116.4</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>255.4</td>
<td>60.0</td>
<td>4.26</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>60.0</td>
<td>170.9</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>211.6</td>
<td>257.0</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>148.0</td>
<td>266.8</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>249.4</td>
<td>311.6</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>291.0</td>
<td>123.8</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>191.0</td>
<td>128.4</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>230.6</td>
<td>403.3</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>206.6</td>
<td>70.4</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>152.7</td>
<td>83.2</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>101.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salmon Trout Enhancement Program</td>
<td>2000</td>
<td>0.6</td>
<td>0.5</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>1.0</td>
<td>1.4</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0.6</td>
<td>3.0</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>3.6</td>
<td>3.6</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>3.1</td>
<td>1.0</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>1.0</td>
<td>0.4</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0.6</td>
<td>0.1</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>0.2</td>
<td>0.0</td>
<td>-</td>
</tr>
</tbody>
</table>

a/ Postseason estimates are based on preliminary data, and not all stocks have been updated with final estimates.
b/ LCN abundance is included as a subset of early/late hatchery abundance beginning in 2007. STEP estimates not included.
c/ Program was discontinued in 2005.
TABLE III-2 Oregon production index (OPI) area coho harvest impacts, spawning, abundance, and exploitation rate estimates in thousands of fish. a/

<table>
<thead>
<tr>
<th>Year or Avg.</th>
<th>Ocean Fisheries b/</th>
<th>Hatcheries and Freshwater Harvest c/</th>
<th>OCN Spawners d/</th>
<th>Private Hatcheries</th>
<th>Columbia River Returns</th>
<th>Abundance e/</th>
<th>Ocean Exploitation Rate Based on OPI Abundance f/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970-1975</td>
<td>1,629.6</td>
<td>558.4</td>
<td>45.8</td>
<td>55.2</td>
<td>-</td>
<td>460.4</td>
<td>2,749.3</td>
</tr>
<tr>
<td>1976-1980</td>
<td>1,253.6</td>
<td>555.0</td>
<td>31.2</td>
<td>31.1</td>
<td>26.1</td>
<td>263.3</td>
<td>2,154.2</td>
</tr>
<tr>
<td>1981-1985</td>
<td>451.2</td>
<td>274.0</td>
<td>37.2</td>
<td>56.0</td>
<td>176.8</td>
<td>305.3</td>
<td>1,328.6</td>
</tr>
<tr>
<td>1986-1990</td>
<td>574.6</td>
<td>339.3</td>
<td>55.1</td>
<td>45.5</td>
<td>154.3</td>
<td>705.0</td>
<td>1,910.1</td>
</tr>
<tr>
<td>1991</td>
<td>448.4</td>
<td>469.9</td>
<td>77.8</td>
<td>41.3</td>
<td>35.1</td>
<td>981.5</td>
<td>1,925.2</td>
</tr>
<tr>
<td>1992</td>
<td>67.4</td>
<td>256.5</td>
<td>51.0</td>
<td>48.9</td>
<td>-</td>
<td>225.4</td>
<td>629.6</td>
</tr>
<tr>
<td>1993</td>
<td>13.1</td>
<td>140.8</td>
<td>38.6</td>
<td>59.6</td>
<td>-</td>
<td>117.9</td>
<td>315.9</td>
</tr>
<tr>
<td>1994</td>
<td>2.7</td>
<td>3.0</td>
<td>28.2</td>
<td>51.8</td>
<td>-</td>
<td>173.4</td>
<td>267.5</td>
</tr>
<tr>
<td>1995</td>
<td>5.4</td>
<td>43.5</td>
<td>37.5</td>
<td>64.6</td>
<td>-</td>
<td>77.4</td>
<td>204.1</td>
</tr>
<tr>
<td>1996</td>
<td>7.0</td>
<td>31.8</td>
<td>45.7</td>
<td>87.5</td>
<td>-</td>
<td>117.1</td>
<td>260.3</td>
</tr>
<tr>
<td>1997</td>
<td>5.5</td>
<td>22.4</td>
<td>26.9</td>
<td>31.6</td>
<td>-</td>
<td>156.4</td>
<td>230.5</td>
</tr>
<tr>
<td>1998</td>
<td>3.5</td>
<td>12.8</td>
<td>29.4</td>
<td>34.9</td>
<td>-</td>
<td>175.9</td>
<td>270.8</td>
</tr>
<tr>
<td>1999</td>
<td>3.6</td>
<td>36.5</td>
<td>22.6</td>
<td>48.6</td>
<td>-</td>
<td>289.1</td>
<td>432.0</td>
</tr>
<tr>
<td>2000</td>
<td>25.2</td>
<td>74.6</td>
<td>33.2</td>
<td>84.8</td>
<td>-</td>
<td>558.3</td>
<td>762.4</td>
</tr>
<tr>
<td>2001</td>
<td>38.1</td>
<td>216.8</td>
<td>75.8</td>
<td>174.7</td>
<td>-</td>
<td>1128.3</td>
<td>1,673.2</td>
</tr>
<tr>
<td>2002</td>
<td>15.0</td>
<td>118.7</td>
<td>54.0</td>
<td>266.9</td>
<td>-</td>
<td>535.8</td>
<td>972.2</td>
</tr>
<tr>
<td>2003</td>
<td>28.8</td>
<td>252.4</td>
<td>45.1</td>
<td>236.2</td>
<td>-</td>
<td>713.2</td>
<td>1,266.9</td>
</tr>
<tr>
<td>2004</td>
<td>26.2</td>
<td>159.3</td>
<td>38.1</td>
<td>197.3</td>
<td>-</td>
<td>463.5</td>
<td>904.5</td>
</tr>
<tr>
<td>2005</td>
<td>10.5</td>
<td>58.2</td>
<td>42.8</td>
<td>164.6</td>
<td>-</td>
<td>354.7</td>
<td>629.9</td>
</tr>
<tr>
<td>2006</td>
<td>4.5</td>
<td>47.5</td>
<td>29.6</td>
<td>132.7</td>
<td>-</td>
<td>409.7</td>
<td>674.1</td>
</tr>
<tr>
<td>2007</td>
<td>26.2</td>
<td>128.5</td>
<td>10.9</td>
<td>71.4</td>
<td>-</td>
<td>349.0</td>
<td>631.3</td>
</tr>
<tr>
<td>2008</td>
<td>0.6</td>
<td>26.4</td>
<td>15.9</td>
<td>180.1</td>
<td>-</td>
<td>520.8</td>
<td>769.8</td>
</tr>
<tr>
<td>2009</td>
<td>27.7</td>
<td>201.2</td>
<td>16.6</td>
<td>265.3</td>
<td>-</td>
<td>760.2</td>
<td>1,341.3</td>
</tr>
<tr>
<td>2010</td>
<td>5.8</td>
<td>48.8</td>
<td>19.5</td>
<td>287.1</td>
<td>-</td>
<td>471.3</td>
<td>848.4</td>
</tr>
<tr>
<td>2011</td>
<td>4.2</td>
<td>54.7</td>
<td>20.0</td>
<td>360.8</td>
<td>-</td>
<td>376.5</td>
<td>836.4</td>
</tr>
<tr>
<td>2012</td>
<td>4.7</td>
<td>45.5</td>
<td>18.5</td>
<td>104.6</td>
<td>-</td>
<td>143.9</td>
<td>311.3</td>
</tr>
<tr>
<td>2013</td>
<td>8.4</td>
<td>48.3</td>
<td>26.5</td>
<td>135.6</td>
<td>-</td>
<td>258.3</td>
<td>494.1</td>
</tr>
<tr>
<td>2014</td>
<td>35.6</td>
<td>197.4</td>
<td>42.2</td>
<td>362.0</td>
<td>-</td>
<td>1029.0</td>
<td>1,724.8</td>
</tr>
<tr>
<td>2015</td>
<td>11.7</td>
<td>84.4</td>
<td>11.9</td>
<td>61.2</td>
<td>-</td>
<td>174.7</td>
<td>336.3</td>
</tr>
<tr>
<td>2016 g/</td>
<td>0.0</td>
<td>31.7</td>
<td>11.4</td>
<td>82.2</td>
<td>-</td>
<td>196.3</td>
<td>326.7</td>
</tr>
</tbody>
</table>

Notes:
- a/ The OPI area includes ocean and inside harvest impacts and escapement to streams and lakes south of Leadbetter Pt., Washington.
- b/ Includes estimated non-retention mortalities; troll: release mort.(1982-present) and drop-off mort.(all yrs.); sport: release mort.(1994-present) and drop-off mort.(all yrs.).
- c/ Includes STEP smolt releases through the 2007 return year, after which the program was terminated.
- d/ Includes Rogue River.
- e/ FRAM post-season runs used after 1985 and includes OPI origin stock catches in all fisheries.
- f/ Private hatchery stocks are excluded in calculating the OPI area stock aggregate ocean exploitation rate index.
- g/ Preliminary.
TABLE III-3. Preseason forecasts and postseason estimates of ocean escapements for selected Washington coastal adult natural coho stocks in thousands of fish.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quillayute River Fall</th>
<th>Hoh River</th>
<th>Queets River</th>
<th>Grays Harbor<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>45.5</td>
<td>11.7</td>
<td>3.91</td>
<td>81.2</td>
</tr>
<tr>
<td>1991</td>
<td>16.3</td>
<td>26.4</td>
<td>0.62</td>
<td>244.6</td>
</tr>
<tr>
<td>1992</td>
<td>22.8</td>
<td>15.8</td>
<td>1.44</td>
<td>60.4</td>
</tr>
<tr>
<td>1993</td>
<td>13.2</td>
<td>10.5</td>
<td>1.26</td>
<td>144-153</td>
</tr>
<tr>
<td>1994</td>
<td>11.6</td>
<td>8.4</td>
<td>1.38</td>
<td>53.8-60.2</td>
</tr>
<tr>
<td>1995</td>
<td>13.1</td>
<td>19.8</td>
<td>0.66</td>
<td>103.4</td>
</tr>
<tr>
<td>1996</td>
<td>13.0</td>
<td>20.3</td>
<td>0.64</td>
<td>121.4</td>
</tr>
<tr>
<td>1997</td>
<td>8.9</td>
<td>5.8</td>
<td>1.53</td>
<td>26.1</td>
</tr>
<tr>
<td>1998</td>
<td>8.0</td>
<td>17.4</td>
<td>0.46</td>
<td>30.1</td>
</tr>
<tr>
<td>1999</td>
<td>14.5</td>
<td>16.1</td>
<td>0.90</td>
<td>57.7</td>
</tr>
<tr>
<td>2000</td>
<td>8.7</td>
<td>16.5</td>
<td>0.53</td>
<td>47.8</td>
</tr>
<tr>
<td>2001</td>
<td>23.0</td>
<td>28.4</td>
<td>0.81</td>
<td>51.3</td>
</tr>
<tr>
<td>2002</td>
<td>22.3</td>
<td>33.2</td>
<td>0.67</td>
<td>151.3</td>
</tr>
<tr>
<td>2003</td>
<td>24.9</td>
<td>22.5</td>
<td>1.11</td>
<td>143.3</td>
</tr>
<tr>
<td>2004</td>
<td>21.2</td>
<td>20.7</td>
<td>1.02</td>
<td>117.9</td>
</tr>
<tr>
<td>2005</td>
<td>18.6</td>
<td>20.9</td>
<td>0.89</td>
<td>91.1</td>
</tr>
<tr>
<td>2006</td>
<td>14.6</td>
<td>9.9</td>
<td>1.48</td>
<td>67.3</td>
</tr>
<tr>
<td>2007</td>
<td>10.8</td>
<td>10.7</td>
<td>1.01</td>
<td>59.4</td>
</tr>
<tr>
<td>2008</td>
<td>10.5</td>
<td>11.1</td>
<td>0.95</td>
<td>42.7</td>
</tr>
<tr>
<td>2009</td>
<td>19.3</td>
<td>15.5</td>
<td>1.24</td>
<td>49.0</td>
</tr>
<tr>
<td>2010</td>
<td>22.0</td>
<td>16.4</td>
<td>1.34</td>
<td>49.0</td>
</tr>
<tr>
<td>2011</td>
<td>28.2</td>
<td>12.8</td>
<td>2.20</td>
<td>160.7</td>
</tr>
<tr>
<td>2012</td>
<td>33.5</td>
<td>12.4</td>
<td>2.70</td>
<td>133.3</td>
</tr>
<tr>
<td>2013</td>
<td>17.2</td>
<td>15.7</td>
<td>1.10</td>
<td>89.1</td>
</tr>
<tr>
<td>2014</td>
<td>18.4</td>
<td>20.5</td>
<td>0.90</td>
<td>150.2</td>
</tr>
<tr>
<td>2015</td>
<td>10.5</td>
<td>5.5</td>
<td>1.91</td>
<td>196.8</td>
</tr>
<tr>
<td>2016</td>
<td>4.5</td>
<td>NA</td>
<td>NA</td>
<td>78.8</td>
</tr>
<tr>
<td>2017</td>
<td>15.8</td>
<td>-</td>
<td>-</td>
<td>2.50</td>
</tr>
</tbody>
</table>

- Coho FRAM was used to estimate post-season ocean abundance.
TABLE III-4. Preseason forecasts and postseason estimates of ocean escapements for selected Puget Sound adult natural coho stocks in thousands of fish. (Page 1 of 2)

<table>
<thead>
<tr>
<th>Year</th>
<th>Skagit River Preseason Forecast</th>
<th>Skagit River Postseason Forecast</th>
<th>Skagit River Pre/Postseason Return</th>
<th>Stillaguamish River Preseason Forecast</th>
<th>Stillaguamish River Postseason Forecast</th>
<th>Stillaguamish River Pre/Postseason Return</th>
<th>Hood Canal Preseason Forecast</th>
<th>Hood Canal Postseason Forecast</th>
<th>Hood Canal Pre/Postseason Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>NA</td>
<td>87.2</td>
<td>-</td>
<td>75.8</td>
<td>34.1</td>
<td>2.22</td>
<td>94.2</td>
<td>14.2</td>
<td>6.63</td>
</tr>
<tr>
<td>1991</td>
<td>NA</td>
<td>81.4</td>
<td>-</td>
<td>71.5</td>
<td>11.3</td>
<td>6.33</td>
<td>38.1</td>
<td>15.3</td>
<td>2.49</td>
</tr>
<tr>
<td>1992</td>
<td>NA</td>
<td>64.6</td>
<td>-</td>
<td>42.4</td>
<td>18.0</td>
<td>2.36</td>
<td>23.2</td>
<td>19.9</td>
<td>1.17</td>
</tr>
<tr>
<td>1993</td>
<td>NA</td>
<td>69.6</td>
<td>-</td>
<td>61.8</td>
<td>10.6</td>
<td>5.83</td>
<td>89.6</td>
<td>16.7</td>
<td>5.37</td>
</tr>
<tr>
<td>1994</td>
<td>NA</td>
<td>108.2</td>
<td>-</td>
<td>21.9</td>
<td>30.3</td>
<td>0.72</td>
<td>25.4</td>
<td>57.0</td>
<td>0.45</td>
</tr>
<tr>
<td>1995</td>
<td>NA</td>
<td>86.4</td>
<td>-</td>
<td>70.3</td>
<td>20.4</td>
<td>3.45</td>
<td>36.4</td>
<td>41.1</td>
<td>0.89</td>
</tr>
<tr>
<td>1996</td>
<td>NA</td>
<td>48.3</td>
<td>-</td>
<td>51.6</td>
<td>12.5</td>
<td>4.13</td>
<td>25.1</td>
<td>37.2</td>
<td>0.67</td>
</tr>
<tr>
<td>1997</td>
<td>70.9</td>
<td>63.1</td>
<td>1.12</td>
<td>36.0</td>
<td>14.1</td>
<td>2.56</td>
<td>78.4</td>
<td>101.8</td>
<td>0.77</td>
</tr>
<tr>
<td>1998</td>
<td>55.0</td>
<td>95.1</td>
<td>0.58</td>
<td>47.8</td>
<td>31.1</td>
<td>1.54</td>
<td>108.0</td>
<td>118.5</td>
<td>0.91</td>
</tr>
<tr>
<td>1999</td>
<td>75.7</td>
<td>40.9</td>
<td>1.85</td>
<td>35.7</td>
<td>7.5</td>
<td>4.77</td>
<td>65.1</td>
<td>17.6</td>
<td>3.70</td>
</tr>
<tr>
<td>2000</td>
<td>30.2</td>
<td>95.1</td>
<td>0.32</td>
<td>17.7</td>
<td>31.2</td>
<td>0.57</td>
<td>61.0</td>
<td>39.7</td>
<td>1.54</td>
</tr>
<tr>
<td>2001</td>
<td>87.2</td>
<td>132.5</td>
<td>0.66</td>
<td>24.4</td>
<td>81.8</td>
<td>0.30</td>
<td>62.0</td>
<td>110.0</td>
<td>0.56</td>
</tr>
<tr>
<td>2002</td>
<td>98.5</td>
<td>71.8</td>
<td>1.37</td>
<td>19.7</td>
<td>30.4</td>
<td>0.65</td>
<td>34.9</td>
<td>81.0</td>
<td>0.43</td>
</tr>
<tr>
<td>2003</td>
<td>116.6</td>
<td>114.1</td>
<td>1.02</td>
<td>37.8</td>
<td>49.8</td>
<td>0.76</td>
<td>33.4</td>
<td>199.9</td>
<td>0.17</td>
</tr>
<tr>
<td>2004</td>
<td>155.8</td>
<td>145.3</td>
<td>1.07</td>
<td>38.0</td>
<td>73.9</td>
<td>0.51</td>
<td>98.7</td>
<td>219.7</td>
<td>0.45</td>
</tr>
<tr>
<td>2005</td>
<td>61.8</td>
<td>52.4</td>
<td>1.18</td>
<td>56.7</td>
<td>29.1</td>
<td>1.95</td>
<td>98.4</td>
<td>68.3</td>
<td>1.44</td>
</tr>
<tr>
<td>2006</td>
<td>106.6</td>
<td>11.5</td>
<td>9.25</td>
<td>45.0</td>
<td>11.8</td>
<td>3.81</td>
<td>59.4</td>
<td>49.7</td>
<td>1.20</td>
</tr>
<tr>
<td>2007</td>
<td>26.8</td>
<td>83.0</td>
<td>0.32</td>
<td>69.2</td>
<td>45.2</td>
<td>1.53</td>
<td>42.4</td>
<td>78.6</td>
<td>0.54</td>
</tr>
<tr>
<td>2008</td>
<td>61.4</td>
<td>35.5</td>
<td>1.73</td>
<td>31.0</td>
<td>15.3</td>
<td>2.03</td>
<td>30.4</td>
<td>25.8</td>
<td>1.18</td>
</tr>
<tr>
<td>2009</td>
<td>33.4</td>
<td>87.5</td>
<td>0.38</td>
<td>13.4</td>
<td>27.4</td>
<td>0.49</td>
<td>48.6</td>
<td>45.7</td>
<td>1.06</td>
</tr>
<tr>
<td>2010</td>
<td>95.9</td>
<td>62.0</td>
<td>1.55</td>
<td>25.9</td>
<td>16.6</td>
<td>1.56</td>
<td>33.2</td>
<td>13.3</td>
<td>2.50</td>
</tr>
<tr>
<td>2011</td>
<td>138.1</td>
<td>68.6</td>
<td>2.01</td>
<td>66.6</td>
<td>63.2</td>
<td>1.05</td>
<td>74.7</td>
<td>58.2</td>
<td>1.28</td>
</tr>
<tr>
<td>2012</td>
<td>48.3</td>
<td>142.6</td>
<td>0.34</td>
<td>47.5</td>
<td>63.7</td>
<td>0.75</td>
<td>73.4</td>
<td>84.5</td>
<td>0.87</td>
</tr>
<tr>
<td>2013</td>
<td>137.2</td>
<td>150.8</td>
<td>0.91</td>
<td>33.1</td>
<td>89.9</td>
<td>0.37</td>
<td>36.8</td>
<td>37.8</td>
<td>0.97</td>
</tr>
<tr>
<td>2014</td>
<td>112.4</td>
<td>54.1</td>
<td>2.08</td>
<td>32.5</td>
<td>59.7</td>
<td>0.54</td>
<td>82.8</td>
<td>77.4</td>
<td>1.07</td>
</tr>
<tr>
<td>2015</td>
<td>121.4</td>
<td>15.3</td>
<td>7.94</td>
<td>31.3</td>
<td>6.1</td>
<td>5.13</td>
<td>61.5</td>
<td>64.2</td>
<td>0.96</td>
</tr>
<tr>
<td>2016</td>
<td>8.9</td>
<td>NA</td>
<td>NA</td>
<td>2.8</td>
<td>NA</td>
<td>NA</td>
<td>35.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2017</td>
<td>11.2</td>
<td>-</td>
<td>-</td>
<td>7.6</td>
<td>-</td>
<td>-</td>
<td>115.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Year</td>
<td>Preseason Forecast</td>
<td>Preseason Return</td>
<td>Pre/Postseason</td>
<td>Postseason Forecast</td>
<td>Postseason Return</td>
<td>Pre/Postseason</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>308.8</td>
<td>276.5</td>
<td>1.12</td>
<td>25.8</td>
<td>29.4</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>308.8</td>
<td>163.4</td>
<td>1.89</td>
<td>24.1</td>
<td>22.0</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>389.7</td>
<td>192.5</td>
<td>2.02</td>
<td>25.7</td>
<td>28.6</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>394.4</td>
<td>142.3</td>
<td>2.77</td>
<td>20.8</td>
<td>11.6</td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>256.7</td>
<td>293.6</td>
<td>0.87</td>
<td>20.8</td>
<td>11.5</td>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>358.3</td>
<td>211.3</td>
<td>1.70</td>
<td>11.4</td>
<td>23.0</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>338.1</td>
<td>132.3</td>
<td>2.55</td>
<td>10.7</td>
<td>19.4</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>186.6</td>
<td>106.4</td>
<td>1.75</td>
<td>6.5</td>
<td>20.3</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>165.3</td>
<td>193.9</td>
<td>0.85</td>
<td>16.8</td>
<td>21.0</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>141.6</td>
<td>82.2</td>
<td>1.72</td>
<td>14.7</td>
<td>9.9</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>53.0</td>
<td>154.6</td>
<td>0.34</td>
<td>13.5</td>
<td>28.6</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>129.6</td>
<td>360.1</td>
<td>0.36</td>
<td>21.4</td>
<td>43.9</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>123.1</td>
<td>185.5</td>
<td>0.66</td>
<td>21.3</td>
<td>26.3</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>203.0</td>
<td>198.0</td>
<td>1.03</td>
<td>25.6</td>
<td>22.9</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>192.1</td>
<td>287.9</td>
<td>0.67</td>
<td>35.7</td>
<td>23.8</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>241.6</td>
<td>133.4</td>
<td>1.81</td>
<td>20.7</td>
<td>12.5</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>139.5</td>
<td>94.2</td>
<td>1.48</td>
<td>26.1</td>
<td>4.6</td>
<td>6.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>98.9</td>
<td>156.4</td>
<td>0.63</td>
<td>29.9</td>
<td>10.2</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>92.0</td>
<td>49.5</td>
<td>1.86</td>
<td>24.1</td>
<td>3.9</td>
<td>6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>67.0</td>
<td>133.4</td>
<td>0.50</td>
<td>20.5</td>
<td>24.7</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>99.4</td>
<td>53.9</td>
<td>1.84</td>
<td>8.5</td>
<td>19.9</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>180.0</td>
<td>141.8</td>
<td>1.27</td>
<td>12.3</td>
<td>18.9</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>109.0</td>
<td>190.0</td>
<td>0.57</td>
<td>12.6</td>
<td>13.5</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>163.8</td>
<td>188.6</td>
<td>0.87</td>
<td>12.6</td>
<td>9.8</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>150.0</td>
<td>81.4</td>
<td>1.84</td>
<td>12.5</td>
<td>15.5</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>151.5</td>
<td>30.5</td>
<td>4.97</td>
<td>11.1</td>
<td>4.5</td>
<td>2.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>20.6</td>
<td>NA</td>
<td>NA</td>
<td>4.4</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>107.3</td>
<td>-</td>
<td>-</td>
<td>13.1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a/ Coho FRAM was used to estimate post season ocean abundance.
b/ Preseason forecasts in 1986-1996 were based on accounting system that significantly underestimated escapement and are not comparable to post season.
TABLE III-5. Status categories and constraints for Puget Sound and Washington Coast coho under the FMP and PST Southern Coho Management Plan.

<table>
<thead>
<tr>
<th></th>
<th>PST Southern Coho Management Plan</th>
<th>FMP Stock</th>
<th>Total Exploitation Rate Constraint(^a)</th>
<th>Categorical Status(^a)</th>
<th>Total Exploitation Rate Constraint(^b)</th>
<th>Categorical Status(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Management Unit</td>
<td>FMP Stock</td>
<td>Total Exploitation Rate Constraint(^c)</td>
<td>Categorical Status(^c)</td>
<td>U.S. Management Unit</td>
<td>FMP Stock</td>
</tr>
<tr>
<td>Skagit</td>
<td></td>
<td></td>
<td>20%</td>
<td>Critical</td>
<td></td>
<td>Stillaguamish</td>
</tr>
<tr>
<td>Stillaguamish</td>
<td></td>
<td></td>
<td>20%</td>
<td>Critical</td>
<td></td>
<td>Snohomish</td>
</tr>
<tr>
<td>Snohomish</td>
<td></td>
<td></td>
<td>40%</td>
<td>Low</td>
<td></td>
<td>Hood Canal</td>
</tr>
<tr>
<td>Hood Canal</td>
<td></td>
<td></td>
<td>65%</td>
<td>Normal</td>
<td></td>
<td>Strait of Juan de Fuca</td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td></td>
<td></td>
<td>40%</td>
<td>Low</td>
<td></td>
<td>Quillayute Fall</td>
</tr>
<tr>
<td>Hoh</td>
<td></td>
<td></td>
<td>65%</td>
<td>Moderate</td>
<td></td>
<td>Hoh</td>
</tr>
<tr>
<td>Queets</td>
<td></td>
<td></td>
<td>65%</td>
<td>Abundant</td>
<td></td>
<td>Queets</td>
</tr>
<tr>
<td>Grays Harbor</td>
<td></td>
<td></td>
<td>65%</td>
<td>NA</td>
<td></td>
<td>Grays Harbor</td>
</tr>
</tbody>
</table>

\(^a\) Preliminary. For Puget Sound stocks, the exploitation rate constraints and categorical status (Normal, Low, Critical) reflect application of Comprehensive Coho Agreement rules, as adopted in the FMP. For Washington Coast stocks, exploitation rate constraints represent MFMT. Note that under U.S. v. Washington and Hoh v. Baldridge case law, the management objectives can differ from FMP objectives provided there is an annual agreement among the state and tribal co-managers; therefore, the exploitation rates used to report categorical status do not necessarily represent maximum allowable rates for these stocks.

\(^b\) Preliminary. For Puget Sound and Washington Coast management units, the exploitation rate constraints reflect application of the 2002 PST Southern Coho Management Plan.

\(^c\) Categories (Abundant, Moderate, Low) correspond to the general exploitation rate ranges depicted in paragraph 3(a) of the 2002 PST Southern Coho Management Plan. For Washington Coast stocks, categorical status is determined by the exploitation rate associated with meeting the escapement goal (or the lower end of the escapement goal range). This also becomes the maximum allowable rate unless the stock is in the "Low" status. In that case an ER of up to 20% is allowed.
<table>
<thead>
<tr>
<th>Area</th>
<th>Fishery</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnstone Strait</td>
<td>Recreational</td>
<td>-</td>
<td>51%</td>
<td>56%</td>
<td>-</td>
</tr>
<tr>
<td>West Coast Vancouver Island</td>
<td>Recreational</td>
<td>42%</td>
<td>57%</td>
<td>60%</td>
<td>66%</td>
</tr>
<tr>
<td>North Georgia Strait</td>
<td>Recreational</td>
<td>59%</td>
<td>60%</td>
<td>60%</td>
<td>57%</td>
</tr>
<tr>
<td>South Georgia Strait</td>
<td>Recreational</td>
<td>34%</td>
<td>57%</td>
<td>45%</td>
<td>52%</td>
</tr>
<tr>
<td>Juan de Fuca Strait</td>
<td>Recreational</td>
<td>50%</td>
<td>49%</td>
<td>49%</td>
<td>52%</td>
</tr>
<tr>
<td>Johnstone Strait</td>
<td>Troll</td>
<td>69%</td>
<td>60%</td>
<td>54%</td>
<td>63%</td>
</tr>
<tr>
<td>NW Vancouver Island</td>
<td>Troll</td>
<td>51%</td>
<td>49%</td>
<td>50%</td>
<td>35%</td>
</tr>
<tr>
<td>SW Vancouver Island</td>
<td>Troll</td>
<td>54%</td>
<td>51%</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>Georgia Strait</td>
<td>Troll</td>
<td>65%</td>
<td>62%</td>
<td>62%</td>
<td>54%</td>
</tr>
<tr>
<td>Puget Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca (Area 5)</td>
<td>Recreational</td>
<td>55%</td>
<td>49%</td>
<td>48%</td>
<td>47%</td>
</tr>
<tr>
<td>Strait of Juan de Fuca (Area 6)</td>
<td>Recreational</td>
<td>54%</td>
<td>46%</td>
<td>45%</td>
<td>46%</td>
</tr>
<tr>
<td>San Juan Island (Area 7)</td>
<td>Recreational</td>
<td>59%</td>
<td>54%</td>
<td>60%</td>
<td>47%</td>
</tr>
<tr>
<td>North Puget Sound (Areas 6 & 7A)</td>
<td>Net</td>
<td>-</td>
<td>39%</td>
<td>56%</td>
<td>53%</td>
</tr>
<tr>
<td>Council Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neah Bay (Area 4/4B)</td>
<td>Recreational</td>
<td>49%</td>
<td>55%</td>
<td>51%</td>
<td>58%</td>
</tr>
<tr>
<td>LaPush (Area 3)</td>
<td>Recreational</td>
<td>67%</td>
<td>57%</td>
<td>62%</td>
<td>45%</td>
</tr>
<tr>
<td>Westport (Area 2)</td>
<td>Recreational</td>
<td>67%</td>
<td>65%</td>
<td>64%</td>
<td>62%</td>
</tr>
<tr>
<td>Columbia River (Area 1)</td>
<td>Recreational</td>
<td>75%</td>
<td>74%</td>
<td>70%</td>
<td>72%</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Recreational</td>
<td>67%</td>
<td>62%</td>
<td>57%</td>
<td>46%</td>
</tr>
<tr>
<td>New port</td>
<td>Recreational</td>
<td>62%</td>
<td>58%</td>
<td>55%</td>
<td>42%</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Recreational</td>
<td>54%</td>
<td>50%</td>
<td>40%</td>
<td>25%</td>
</tr>
<tr>
<td>Brookings</td>
<td>Recreational</td>
<td>48%</td>
<td>36%</td>
<td>33%</td>
<td>13%</td>
</tr>
<tr>
<td>Neah Bay (Area 4/4B)</td>
<td>Troll</td>
<td>53%</td>
<td>52%</td>
<td>53%</td>
<td>56%</td>
</tr>
<tr>
<td>LaPush (Area 3)</td>
<td>Troll</td>
<td>51%</td>
<td>56%</td>
<td>53%</td>
<td>56%</td>
</tr>
<tr>
<td>Westport (Area 2)</td>
<td>Troll</td>
<td>53%</td>
<td>59%</td>
<td>63%</td>
<td>59%</td>
</tr>
<tr>
<td>Columbia River (Area 1)</td>
<td>Troll</td>
<td>69%</td>
<td>68%</td>
<td>66%</td>
<td>65%</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Troll</td>
<td>61%</td>
<td>60%</td>
<td>61%</td>
<td>57%</td>
</tr>
<tr>
<td>New port</td>
<td>Troll</td>
<td>60%</td>
<td>58%</td>
<td>55%</td>
<td>54%</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Troll</td>
<td>53%</td>
<td>51%</td>
<td>45%</td>
<td>31%</td>
</tr>
<tr>
<td>Brookings</td>
<td>Troll</td>
<td>41%</td>
<td>43%</td>
<td>46%</td>
<td>60%</td>
</tr>
<tr>
<td>Columbia River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buoy 10</td>
<td>Recreational</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70%</td>
</tr>
</tbody>
</table>
FIGURE III-1a. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries.
FIGURE III-1b. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries.
CHAPTER IV: AFFECTED ENVIRONMENT - PINK SALMON ASSESSMENT

Two major runs comprise the pink salmon population available to Council fisheries during odd-numbered years: the Fraser River (British Columbia) run, which is more abundant, and the Puget Sound run. The 2015 run size forecast for Fraser pinks was 14.50 million fish and the 2015 Puget Sound pink salmon run size forecast was 6.76 million. The actual run sizes for 2015 were 5.8 million for Fraser and 3.7 million for Puget Sound. The 2017 Fraser run size forecast is 8.69 million, and the Puget Sound run size forecast is 1.15 million. This is the lowest Puget Sound forecast on record, though there have been smaller actual runs.

Table IV-1 provides a summary of recent run sizes and forecasts.

<table>
<thead>
<tr>
<th>Year</th>
<th>Puget Sound Forecast</th>
<th>Actual</th>
<th>Fraser River Forecast</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>NA</td>
<td>0.88</td>
<td>NA</td>
<td>8.21</td>
</tr>
<tr>
<td>1979</td>
<td>NA</td>
<td>1.32</td>
<td>NA</td>
<td>14.40</td>
</tr>
<tr>
<td>1981</td>
<td>NA</td>
<td>0.50</td>
<td>NA</td>
<td>18.69</td>
</tr>
<tr>
<td>1983</td>
<td>NA</td>
<td>1.01</td>
<td>NA</td>
<td>15.35</td>
</tr>
<tr>
<td>1985</td>
<td>NA</td>
<td>1.76</td>
<td>NA</td>
<td>19.10</td>
</tr>
<tr>
<td>1987</td>
<td>NA</td>
<td>1.57</td>
<td>NA</td>
<td>7.17</td>
</tr>
<tr>
<td>1989</td>
<td>NA</td>
<td>1.93</td>
<td>NA</td>
<td>16.63</td>
</tr>
<tr>
<td>1991</td>
<td>NA</td>
<td>1.09</td>
<td>NA</td>
<td>22.18</td>
</tr>
<tr>
<td>1993</td>
<td>NA</td>
<td>1.06</td>
<td>NA</td>
<td>16.98</td>
</tr>
<tr>
<td>1995</td>
<td>3.4</td>
<td>2.08</td>
<td>NA</td>
<td>12.90</td>
</tr>
<tr>
<td>1997</td>
<td>NA</td>
<td>0.44</td>
<td>11.40</td>
<td>8.18</td>
</tr>
<tr>
<td>1999</td>
<td>NA</td>
<td>0.96</td>
<td>NA</td>
<td>3.59</td>
</tr>
<tr>
<td>2001</td>
<td>2.92</td>
<td>3.56</td>
<td>5.47</td>
<td>21.17</td>
</tr>
<tr>
<td>2003</td>
<td>2.32</td>
<td>2.90</td>
<td>17.30</td>
<td>26.00</td>
</tr>
<tr>
<td>2005</td>
<td>1.98</td>
<td>1.23</td>
<td>16.30</td>
<td>10.00</td>
</tr>
<tr>
<td>2007</td>
<td>3.34</td>
<td>2.45</td>
<td>19.60</td>
<td>11.00</td>
</tr>
<tr>
<td>2009</td>
<td>5.16</td>
<td>9.84</td>
<td>17.54</td>
<td>19.50</td>
</tr>
<tr>
<td>2011</td>
<td>5.98</td>
<td>5.27</td>
<td>17.50</td>
<td>20.65</td>
</tr>
<tr>
<td>2013</td>
<td>6.27</td>
<td>8.75</td>
<td>8.93</td>
<td>15.90</td>
</tr>
<tr>
<td>2015</td>
<td>6.76</td>
<td>3.70</td>
<td>14.50</td>
<td>5.78</td>
</tr>
<tr>
<td>2017a</td>
<td>1.15</td>
<td>NA</td>
<td>8.69</td>
<td>NA</td>
</tr>
</tbody>
</table>

a/ Total run size.
b/ Preliminary forecast.
CHAPTER V: DESCRIPTION AND ANALYSIS OF THE NO-ACTION ALTERNATIVE

The No-Action Alternative consists of the preseason management measures adopted by the Council and approved by the Secretary of Commerce for the 2016 ocean salmon management season between the U.S./Canada border and the U.S./Mexico border. The management measures relate to three fishery sectors: non-Indian commercial (Table V-1), recreational (Table V-2), and treaty Indian (Table V-3). A description of the 2016 preseason management measures and analyses of their projected effects on the biological and socioeconomic environment are presented in Preseason Report III (PFMC 2016c). A description of the 2016 management measures as implemented, including inseason modifications, and an analysis of their effects on the environment, including a historical perspective, is presented in the SAFE document - Review of 2016 Ocean Salmon Fisheries (PFMC 2017).

ANALYSIS OF EFFECTS ON THE ENVIRONMENT OF THE NO-ACTION ALTERNATIVE

Overview

Table V-4 provides a summary of Salmon FMP stock spawning escapement and exploitation rate projections for 2017 under the No-Action Alternative (2016 regulations), as well as postseason estimates of these quantities for earlier years, which are compared to FMP conservation objectives. For some stocks, postseason estimates of these metrics were either incomplete or unavailable when the Review of 2016 Ocean Salmon Fisheries was published. A preliminary determination of stock status under the FMP SDC was available for some of these stocks in time for this report; however, some estimates remain unavailable. The STT will report to the Council on the status of stocks at the March 2017 Council meeting, and may further update the status of stocks present in Table V-4 at that time.

Chinook escapements and fishery impacts were forecast using the Sacramento Harvest Model, the Winter Run Harvest Model, and the Klamath Ocean Harvest Model for SRFC, SRWC, and KRFC, respectively. Assessment of effects under the No-Action Alternative for Oregon Coast Chinook are not available; Columbia River Chinook stock assessments were based on qualitative assessment of the magnitude of forecasts, if available, in relation to escapement goals.

Coho escapements and fishery impacts were estimated using Coho FRAM. Abundance forecasts for 2017 were updated for Washington and Oregon stocks, but forecasts for Canadian stocks are unchanged from those employed for 2016 planning. Updated forecasts for Canadian stocks are expected to become available in March 2017. To provide information on the effect of changes in abundance forecasts, the final 2016 preseason regulatory package for ocean and inside fisheries was applied to 2017 projections of abundance.

Sacramento River Fall Chinook

A repeat of 2016 regulations would be expected to result in an escapement of 116,439 hatchery and natural area SRFC adults. This projection is lower than the minimum escapement level specified by the control rule for 2017 (122,000) and SMSY (122,000), but exceeds the 2017 preseason SACL (69,210; Tables V-4 and V-5). The geometric mean of the 2015 and 2016 spawning escapement estimates, and the 2017 forecast spawning escapement under the No-Action Alternative, is greater than the MSST, therefore the stock is not approaching an overfished condition. The predicted SRFC exploitation rate under the No-Action Alternative is 49.5 percent, which is below the MFMT (78.0 percent; Table V-4) but greater than the maximum allowable rate specified by the control rule for 2017 (47.1 percent). If the ocean fisheries were closed from January through August 2017 between Cape Falcon and the U.S./Mexico border, and Sacramento Basin fisheries were closed in 2017, the expected number of hatchery and natural area adult spawners would be 216,949.
The 2016 estimate of SRFC adult escapement was 89,173, which exceeds the 2016 postseason S_{ACL} of 61,507 (Table V-5).

Sacramento River Winter Chinook
A repeat of 2016 regulations would be expected to result in an age-3 impact rate of 11.6 percent for the area south of Point Arena. The 2017 forecast age-3 impact rate under the No-Action Alternative is lower than the 2017 maximum allowable rate of 15.8 percent.

Klamath River Fall Chinook
A repeat of 2016 regulations, which included a river recreational harvest allocation of 15.0 percent of the non-tribal harvest and a tribal allocation of 50 percent of the overall adult harvest, would be expected to result in 9,397 natural area adult spawners. This projection is lower than the minimum escapement level specified by the control rule for 2017 (11,379) and S_{MSY} (40,700), but exceeds the 2017 preseason S_{ACL} (3,963; Tables V-4 and V-5). The geometric mean of the 2015 and 2016 natural area adult spawner escapement estimates, and the 2017 forecast spawning escapement under the No-Action Alternative, is lower than the MSST; therefore the stock is approaching an overfished condition. The predicted KRFC exploitation rate under the No-Action Alternative is 24.1 percent, which is lower than the MFMT (71.0 percent; Table V-4) but exceeds the maximum allowable rate specified by the control rule for 2017 (8.1 percent). If the ocean fisheries were closed from January through August 2017 between Cape Falcon and Point Sur, and the Klamath River fisheries (tribal and recreational) were closed in 2017, the expected number of natural area adult spawners would be 12,309.

The 2016 estimate of KRFC escapement was 13,924 natural area adults, which exceeds the 2016 postseason S_{ACL} of 7,042 (Table V-5).

California Coastal Chinook Stocks
The NMFS ESA consultation standard restricts the KRFC age-4 ocean harvest rate to no more than 16.0 percent to limit impacts on these stocks. As indicated in Chapter II, the postseason estimate of this rate for 2016 is 9.1 percent. Applying 2016 regulations to the 2017 KRFC abundance results in an age-4 ocean harvest rate forecast of 9.0 percent. If the ocean fisheries were closed from January through August 2017 between Cape Falcon and Point Sur, the expected age-4 ocean harvest rate would be 1.0 percent (105 age-4 KRFC were harvested during the September through November 2016 period).

Oregon Coast Chinook Stocks
The FMP conservation objective for the northern and central Oregon coast Chinook stock complexes is based on a total goal of 150,000 to 200,000 natural adult spawners. For these two stock complexes attainment of goals are assessed using peak spawner counts observed in standard index reaches for the respective complexes. For the southern Oregon coast Chinook stock complex, the FMP conservation objective is assessed using the escapement estimate at Huntley Park on the Rogue River. Forecasts are not available for all of these stocks, but given recent trends, the escapement goals would likely be met again in 2017 under 2016 fishing seasons.

Columbia River Chinook Stocks
The 2017 forecasts for Columbia River spring and summer stocks are lower than the 2016 forecasts. The 2017 forecasts for tule fall Chinook are strong; but forecasts for bright Chinook stocks are reduced from the forecasts in 2016. Despite these reduced forecasts in 2017 from 2016, applying 2016 regulations to the forecasted 2017 abundance of Columbia River Chinook would result in ocean escapers meeting spawning escapement goals for all summer and fall Chinook stocks (Table V-4).
Washington Coast and Puget Sound Chinook Stocks

Council fisheries north of Cape Falcon have a negligible impact on Washington coast Chinook stocks and a minor impact on stocks that originate in Puget Sound. These stocks have northerly marine distribution patterns, and are therefore impacted primarily by Canadian and Alaskan fisheries. An evaluation of 2016 Council area management measures on projected 2017 abundance would not provide a useful comparison of fishery impacts in relation to conservation objectives.

Oregon Production Index Area Coho Stocks

Ocean fisheries were modeled with 2016 Council regulations and 2016 expectations for non-Council area fisheries. Because of the slight increase in forecasts for most hatchery coho stocks in 2017 relative to the forecasts in 2016, this model run shows slightly lower fishery impact rates. Due to the changes in the OCN and LCN forecasts the model run shows a small fishery impact rate increase for OCN coho and a slight decrease for LCN coho. This provides some indication of the fishery impacts and fisheries planning relative to the conservation objectives in 2017. Under this scenario, expected exploitation rates are 15.0 percent on OCN coho and 9.1 percent on Rogue/Klamath hatchery coho. Expected ocean escapement is 87,100 for OCN coho (Table V-6). For Columbia River hatchery coho stocks, the predicted ocean exploitation rate (excluding Buoy 10) is 47.9 percent on the Columbia River early stock and 24.3 percent on the Columbia River late stock. Predicted ocean escapements (after Buoy 10) into the Columbia River in 2017 under this exercise show that under 2016 ocean regulations, Columbia River early and late coho would be expected to meet egg take goals.

Washington Coast, Puget Sound, and Canadian Coho Stocks

Exploitation rate and ocean escapement expectations in relation to management goals for selected naturally-spawning coho stocks, given 2017 preseason abundance forecasts and 2016 preseason projections for fishing patterns, are presented in Table V-6. The 2017 forecasts for Canadian coho stocks are not available, but are assumed to be at 2016 levels for this analysis. More detailed fishery management goals for Council area coho stocks are listed in Appendix A.

Under 2016 regulations, 2017 exploitation rates are expected to meet FMP conservation objectives applicable for 2017 for all Puget Sound coho stocks. Ocean abundance forecasts for all Washington Coast natural coho stocks are above FMP spawning escapement conservation objectives. Management objectives for most U.S. stocks subject to the PSC agreement would be met under 2016 regulations. The exploitation rate by U.S. fisheries south of the Canadian border on Interior Fraser (B.C.) coho is projected to be 3.2 percent, which is well below the anticipated 10.0 percent allowable exploitation rate under the 2002 PST Coho Agreement. The Council area fisheries portion would be 0.6 percent.
Coho bycatch during Puget Sound fisheries directed at chum and sockeye salmon will also be a consideration for preseason planning.

Summary

The effects of projected impacts (where available) under 2016 fishery regulations and 2017 abundance forecasts are as follows:

- For SRFC, the predicted exploitation rate is greater than the maximum allowable rate specified by the control rule and thus hatchery and natural area adult escapement is less than the 2017 objective.
- For SRWC, the predicted age-3 impact rate is less than the maximum allowable rate specified by the control rule and thus meets the 2017 objective.
- For KRFC, the predicted exploitation rate exceeds the maximum allowable rate specified by the control rule and thus natural area adult escapement is lower than the 2017 objective.
- KRFC are approaching an overfished condition.
- The KRFC age-4 ocean harvest rate would not exceed the California Coastal Chinook ESA consultation standard.
- Of the coho stocks with available information, Willapa Bay, Hoh, Quillayute fall, Strait of Juan de Fuca, Hood Canal, and Snohomish coho would achieve S_{MSY} spawning escapement objectives; Queets, Skagit, and Stillaguamish coho would not achieve S_{MSY} spawning escapement objectives.
- Queets and Skagit coho are approaching an overfished condition.
- Of the coho stocks with available information, all would have exploitation rates below the MFMT.
- OCN coho and LCN coho stocks would have projected exploitation rates that comply with ESA consultation standards.
- All Puget Sound coho stocks would have exploitation rates that comply with the annual rates allowed under the FMP harvest rate matrix and the PST 2002 Southern Coho Management Plan.

Conclusion

The No-Action Alternative would not meet the Purpose and Need for the proposed action because:

- SRFC and KRFC would not meet control rule-defined exploitation rate and escapement objectives.
- KRFC, Queets coho, and Skagit coho would be approaching an overfished condition.
- Projected escapement of Queets natural coho would be below FMP conservation objectives.

The No-Action Alternative does not reflect consideration of changes in the status of salmon stocks from the previous year; therefore, over- or under- harvest of some salmon stocks would occur if this alternative were implemented. The analysis of the No-Action Alternative does, however, provide perspective that is useful in the planning process for 2017 ocean salmon fishery management measures. An understanding of stock shortfalls and surpluses under the No-Action Alternative helps managers, advisors, and constituents construct viable alternatives to the status-quo management measures.
TABLE V-1. Commercial troll management measures adopted by the Council for non-Indian ocean salmon fisheries, 2016.

North of Cape Falcon

<table>
<thead>
<tr>
<th>Supplemental Management Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overall non-Indian TAC: 70,000 Chinook and 18,900 coho marked with a healed adipose fin clip (marked).</td>
</tr>
<tr>
<td>2. Non-Indian commercial troll TAC: 35,000 Chinook and the equivalent coho mortality of the commercial portion of the overall non-Indian TAC consisting of non-retention coho mortality in the commercial troll fishery North of Cape Falcon.</td>
</tr>
</tbody>
</table>

U.S./Canada Border to Cape Falcon
- May 1-3, May 8-31, June 3-5, June 10-16, and June 24-30 or 14,000 Chinook, no more than 4,600 of which may be caught in the area between the U.S./Canada border and the Queets River and no more than 4,600 of which may be caught in the area between Leadbetter Pt. and Cape Falcon (C.8).

May 1 through May 3 with a landing and possession limit of 40 Chinook per vessel for the open period. Then May 6 through May 31, five days per week, Friday through Tuesday with a landing and possession limit of 40 Chinook per vessel per open period. Then June 3-5, June 10-16, and June 24-30, with a landing and possession limit of 40 Chinook per vessel per open period (C.1, C.6). All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border and the Queets River, or approximately 75% of the Chinook subarea guideline has been landed in the area between Leadbetter Pt. and Cape Falcon, inseason action will be considered to ensure the guideline is not exceeded. See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Cape Flattery, Mandatory Yelloweye Rockfish Conservation Area, and Columbia Control Zones closed (C.5). Vessels must land and deliver their fish within 24 hours of any closure of this fishery. Under state law, vessels must report their catch on a state fish receiving ticket. Vessels fishing or in possession of salmon while fishing north of Leadbetter Point must land and deliver their fish within the area and north of Leadbetter Point. Vessels fishing or in possession of salmon while fishing south of Leadbetter Point must land and deliver their fish within the area and south of Leadbetter Point. Vessels fishing or in possession of salmon while fishing north of Leadbetter Point must land and deliver their fish within the area and north of Leadbetter Point. Vessels fishing or in possession of salmon while fishing south of Leadbetter Point must land and deliver their fish within the area and south of Leadbetter Point, except that Oregon permitted vessels may also land their fish in Garibaldi, Oregon. Oregon State regulations require all fishers landing salmon into Oregon from any fishery between Leadbetter Point, Washington and Cape Falcon, Oregon must notify ODFW within one hour of delivery or prior to transport away from the port of landing by either calling 541-867-0300 ext. 271 or sending notification via e-mail to nfalcon.trollreport@state.or.us. Notification shall include vessel name and number, number of salmon by species, port of landing and location of delivery, and estimated time of delivery. Inseason actions may modify harvest guidelines in later fisheries to achieve or prevent exceeding the overall allowable troll harvest impacts (C.8).

<table>
<thead>
<tr>
<th>U.S./Canada Border to Cape Falcon</th>
</tr>
</thead>
<tbody>
<tr>
<td>- July 8-14, July 22-28, August 1-7, and August 15-23 or 21,000 Chinook, no more than 8,300 of which may be caught in the area between the U.S./Canada border and the Queets River (C.8).</td>
</tr>
</tbody>
</table>

Landing and possession limit of 50 Chinook per vessel per open period (C.1). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border to the Queets River, inseason action will be considered to ensure the guideline is not exceeded. All salmon except coho; no chum retention north of Cape Alava, Washington in August and September (C.4, C.7). Chinook minimum size limit of 28 inches total length (B, C.1). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Mandatory Yelloweye Rockfish Conservation Area, Cape Flattery and Columbia Control Zones, and beginning August 8, Grays Harbor Control Zone closed (C.5, C.6). Vessels must land and deliver their fish within 24 hours of any closure of this fishery. Vessels fishing or in possession of salmon while fishing north of Leadbetter Point must land and deliver their fish within the area and north of Leadbetter Point. Vessels fishing or in possession of salmon while fishing south of Leadbetter Point must land and deliver their fish within the area and south of Leadbetter Point, except that Oregon permitted vessels may also land their fish in Garibaldi, Oregon. Under state law, vessels must report their catch on a state fish receiving ticket. Oregon State regulations require all fishers landing salmon into Oregon from any fishery between Leadbetter Point, Washington and Cape Falcon, Oregon must notify ODFW within one hour of delivery or prior to transport away from the port of landing by either calling 541-867-0300 ext. 271 or sending notification via e-mail to nfalcon.trollreport@state.or.us. Notification shall include vessel name and number, number of salmon by species, port of landing and location of delivery, and estimated time of delivery. Inseason actions may modify harvest guidelines in later fisheries to achieve or prevent exceeding the overall allowable troll harvest impacts (C.8).

A. SEASON DESCRIPTIONS

South of Cape Falcon

Supplemental Management Information

1. Sacramento River fall Chinook spawning escapement of 151,128 hatchery and natural area adults.
2. Klamath River fall Chinook spawning escapement of 30,909 natural area adults.
3. Klamath River recreational fishery allocation: 1,111 adult Klamath River fall Chinook.
5. CA/OR share of Klamath River fall Chinook commercial ocean harvest: 60%/40%.
6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the California Fish and Game Commission.

Cape Falcon to Humbug Mt.

- April 8-30;
- May 1-31;
- June 5-10, 15-30;
- July 8-31;
- August 8-12, 18-24;
- September 1-7, 15-30;
- October 1-31 (C.9.a).

Seven days per week. All salmon except coho (C.4, C.6, C.7). Chinook minimum size limit of 28 inches total length (B, C.1). All vessels fishing in this area must land their fish in the State of Oregon. See gear restrictions and definitions (C.2, C.3) and Oregon State regulations for a description of special regulations at the mouth of Tillamook Bay. Beginning September 1, no more than 40 Chinook per vessel per landing week (Thurs. through Wed.). Beginning October 1, open shoreward of the 40 fathom regulatory line (C.5.f).

In 2017, the season will open March 15 for all salmon except coho. Chinook minimum size limit of 28 inches total length. Gear restrictions same as in 2016. This opening could be modified following Council review at its March 2017 meeting.

Humbug Mt. to OR/CA Border (Oregon KMZ)

- April 8-30;
- May 1-31;
- June 5-10 and 15-30 or a 720 Chinook quota;
- July 8 through the earlier of July 31 or a 200 Chinook quota (C.9.a).

Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B, C.1). Prior to June 1, all fish caught in this area must be landed and delivered in the State of Oregon. See compliance requirements (C.1, C.6) and gear restrictions and definitions (C.2, C.3).

June 5 through July 31 single daily landing and possession limit of 15 Chinook per vessel per day (C.8.f). Any remaining portion of the June Chinook quota may be transferred inseason on an impact neutral basis to the July quota period (C.8.b). All vessels fishing in this area must land and deliver all fish within the area and within 24 hours of any closure of this fishery, and prior to fishing outside of this area (C.6). State regulations require fishers landing from any quota managed season in this area to notify ODFW within one hour of delivery or prior to transporting their catch to other locations by calling 541-867-0300 ext. 252 or sending notification via e-mail to KMZOR.trollreport@state.or.us, notification shall include vessel name and number, number of salmon by species, location of delivery, and estimated time of delivery.

In 2017, the season will open March 15 for all salmon except coho, with a 28 inch Chinook minimum size limit. This opening could be modified following Council review at its March 2017 meeting.

OR/CA Border to Humboldt South Jetty (California KMZ)

- September 9 through the earlier of September 27 or a 1,000 Chinook quota (C.9.b).

Five days per week, Friday through Tuesday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B, C.1). Landing and possession limit of 20 Chinook per vessel per day (C.8.f). All fish caught in this area must be landed within the area and within 24 hours of any closure of the fishery and prior to fishing outside the area (C.10). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Klamath Control Zone closed (C.5.e). See California State regulations for additional closures adjacent to the Smith and Klamath rivers. When the fishery is closed between the OR/CA border and Humbug Mountain and open to the south, vessels with fish on board caught in the open area off California may seek temporary mooring in Brookings, Oregon prior to landing in California only if such vessels first notify the Chetco River Coast Guard Station via VHF channel 22A between the hours of 0500 and 2200 and provide the vessel name, number of fish on board, and estimated time of arrival (C.6).

Humboldt South Jetty to Horse Mt.

Closed.

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Length</td>
<td>Head-off</td>
</tr>
<tr>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• June 13-30;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• August 3-27;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• September 1-30 (C.9.b).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). When the CA KMZ fishery is open, all fish caught in the area must be landed south of Horse Mountain (C.6). During September, all fish must be landed north of Point Arena (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). In 2017, the season will open April 16-30 for all salmon except coho, with a 27 inch Chinook minimum size limit and the same gear restrictions as in 2016. All fish caught in the area must be landed in the area. This opening could be modified following Council review at its March 2017 meeting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Arena to Pigeon Point (San Francisco)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• May 6-31;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• June 13-30;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• August 3-28;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• September 1-30 (C.9.b).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length prior to September 1, 26 inches thereafter (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). During September, all fish must be landed south of Point Arena (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Reyes to Point San Pedro (Fall Area Target Zone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• October 3-7 and 10-14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five days per week, Monday through Friday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 26 inches total length (B, C.1). All fish caught in this area must be landed between Point Arena and Pigeon Point (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigeon Point to Point Sur (Monterey North)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• May 1-31;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• June 1-30 (C.9.b).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). During September, all fish must be landed south of Point Arena (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Sur to U.S./Mexico Border (Monterey South)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• May 1-31;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• June 1-30 (C.9.b).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). During September, all fish must be landed south of Point Arena (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state. (California Fish and Game Code §8226)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. MINIMUM SIZE (Inches)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Length</td>
<td>Head-off</td>
</tr>
<tr>
<td>North of Cape Falcon</td>
<td>28.0</td>
<td>21.5</td>
</tr>
<tr>
<td>Cape Falcon to OR/CA Border</td>
<td>28.0</td>
<td>21.5</td>
</tr>
<tr>
<td>OR/CA Border to Humboldt South Jetty</td>
<td>28.0</td>
<td>21.5</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>27.0</td>
<td>20.5</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< Sept. 1</td>
<td>27.0</td>
<td>20.5</td>
</tr>
<tr>
<td>≥ Sept. 1</td>
<td>26.0</td>
<td>19.5</td>
</tr>
<tr>
<td>Pigeon Pt. to U.S./Mexico Border</td>
<td>27.0</td>
<td>20.5</td>
</tr>
</tbody>
</table>
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size or Other Special Restrictions: All salmon on board a vessel must meet the minimum size, landing/possession limit, or other special requirements for the area being fished and the area in which they are landed if the area is open or has been closed less than 48 hours for that species of salmon. Salmon may be landed in an area that has been closed for a species of salmon more than 48 hours only if they meet the minimum size, landing/possession limit, or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Any person who is required to report a salmon landing by applicable state law must include on the state landing receipt for that landing both the number and weight of salmon landed by species. States may require fish landing/receiving tickets be kept on board the vessel for 90 days or more after landing to account for all previous salmon landings.

C.2. Gear Restrictions:
 a. Salmon may be taken only by hook and line using single point, single shank, barbless hooks.
 b. Cape Falcon, Oregon, to the OR/CA border: No more than 4 spreads are allowed per line.
 c. OR/CA border to U.S./Mexico border: No more than 6 lines are allowed per vessel, and barbless circle hooks are required when fishing with bait by any means other than trolling.

C.3. Gear Definitions:
 a. Troll fishing gear defined: One or more lines that drag hooks behind a moving fishing vessel. In that portion of the fishery management area off Oregon and Washington, the line or lines must be affixed to the vessel and must not be intentionally disengaged from the vessel at any time during the fishing operation.
 b. Spread defined: A single leader connected to an individual lure and/or bait.
 c. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90° angle.

C.4. Vessel Operation in Closed Areas with Salmon on Board:
 a. Except as provided under C.4.b below, it is unlawful for a vessel to have troll or recreational gear in the water while in any area closed to fishing for a certain species of salmon, while possessing that species of salmon; however, fishing for species other than salmon is not prohibited if the area is open for such species, and no salmon are in possession.
 b. When Genetic Stock Identification (GSI) samples will be collected in an area closed to commercial salmon fishing, the scientific research permit holder shall notify NOAA OLE, USCG, CDFW, WDFW, and OSP at least 24 hours prior to sampling and provide the following information: the vessel name, date, location and time collection activities will be done. Any vessel collecting GSI samples in a closed area shall not possess any salmon other than those from which GSI samples are being collected. Salmon caught for collection of GSI samples must be immediately released in good condition after collection of samples.

C.5. Control Zone Definitions:
 a. Cape Flattery Control Zone - The area from Cape Flattery (48°23'00" N. lat.) to the northern boundary of the U.S. EEZ; and the area from Cape Flattery south to Cape Alava (48°10'00" N. lat.) and east of 125°05'00" W. long.
 b. Mandatory Yelloweye Rockfish Conservation Area – The area in Washington Marine Catch Area 3 from 48°00.00" N. lat.; 125°14.00" W. long. to 48°02.00" N. lat.; 125°16.50" W. long. to 48°00.00" N. lat.; 125°14.00" W. long.; and connecting back to 48°00.00" N. lat.; 125°14.00" W. long.
 c. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse (46°53'18" N. lat., 124°07'01" W. long.) to Buoy #2 (46°52'42" N. lat., 124°12'44" W. long.) to Buoy #3 (46°55'00" N. lat., 124°14'48" W. long.) to the Grays Harbor north jetty (46°55'36" N. lat., 124°10'51" W. long.).
 d. Columbia Control Zone - An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy #4 (46°13'35" N. lat., 124°06'50" W. long.) and the green lighted Buoy #7 (46°15'09" N. lat., 124°06'16" W. long.); on the east, by the Buoy #10 line which bears north/south at 357° true from the south jetty at 46°14'00" N. lat., 124°03'07" W. long. to its intersection with the north jetty; on the north, by a line running northeast/southwest between the red lighted Buoy #7 to the tip of the north jetty (46°15'48" N. lat., 124°05'20" W. long.), and then along the north jetty to the point of intersection with the Buoy #10 line; and, on the south, by a line running northeast/southwest between the red lighted Buoy #4 and tip of the south jetty (46°14'03" N. lat., 124°04'05" W. long.), then along the south jetty to the point of intersection with the Buoy #10 line.
 e. Klamath Control Zone - The ocean area at the Klamath River mouth bounded on the north by 41°38'48" N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124°23'00" W. long. (approximately 12 nautical miles off shore); and on the south by 41°26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

C.5. Control Zone Definitions (continued):

f. Waypoints for the 40 fathom regulatory line from Cape Falcon to Humbug Mt. (50 CFR 660.71 (k) (12)-(70).
 45°46.00′ N. lat., 124°04.49′ W. long.; 44°41.68′ N. lat., 124°15.38′ W. long.; 43°17.96′ N. lat., 124°28.81′ W. long.;
 45°44.34′ N. lat., 124°05.09′ W. long.; 44°34.87′ N. lat., 124°16.80′ W. long.; 43°16.75′ N. lat., 124°28.42′ W. long.;
 45°40.64′ N. lat., 124°04.90′ W. long.; 44°33.74′ N. lat., 124°14.44′ W. long.; 43°13.97′ N. lat., 124°31.99′ W. long.;
 45°33.00′ N. lat., 124°04.46′ W. long.; 44°27.66′ N. lat., 124°16.99′ W. long.; 43°13.72′ N. lat., 124°33.25′ W. long.;
 45°32.27′ N. lat., 124°04.74′ W. long.; 44°19.13′ N. lat., 124°19.22′ W. long.; 43°12.26′ N. lat., 124°34.16′ W. long.;
 45°29.26′ N. lat., 124°04.22′ W. long.; 44°15.35′ N. lat., 124°17.38′ W. long.; 43°10.96′ N. lat., 124°32.33′ W. long.;
 45°20.25′ N. lat., 124°04.67′ W. long.; 44°14.38′ N. lat., 124°17.78′ W. long.; 43°05.65′ N. lat., 124°31.52′ W. long.;
 45°19.99′ N. lat., 124°04.62′ W. long.; 44°12.80′ N. lat., 124°17.18′ W. long.; 42°59.66′ N. lat., 124°32.58′ W. long.;
 45°17.50′ N. lat., 124°04.91′ W. long.; 44°09.23′ N. lat., 124°15.96′ W. long.; 42°54.97′ N. lat., 124°36.99′ W. long.;
 45°11.29′ N. lat., 124°05.20′ W. long.; 44°08.38′ N. lat., 124°16.79′ W. long.; 42°53.81′ N. lat., 124°38.57′ W. long.;
 45°08.80′ N. lat., 124°05.40′ W. long.; 44°08.30′ N. lat., 124°16.75′ W. long.; 42°50.00′ N. lat., 124°39.68′ W. long.;
 45°05.08′ N. lat., 124°05.93′ W. long.; 44°05.18′ N. lat., 124°15.42′ W. long.; 42°49.13′ N. lat., 124°39.70′ W. long.;
 45°03.83′ N. lat., 124°06.47′ W. long.; 43°51.61′ N. lat., 124°14.68′ W. long.; 42°46.47′ N. lat., 124°38.89′ W. long.;
 45°01.70′ N. lat., 124°06.53′ W. long.; 43°42.66′ N. lat., 124°15.46′ W. long.; 42°45.74′ N. lat., 124°38.86′ W. long.;
 44°58.75′ N. lat., 124°07.14′ W. long.; 43°40.49′ N. lat., 124°15.74′ W. long.; 42°44.79′ N. lat., 124°37.96′ W. long.;
 44°51.28′ N. lat., 124°10.21′ W. long.; 43°38.77′ N. lat., 124°15.64′ W. long.; 42°45.01′ N. lat., 124°36.39′ W. long.;
 44°49.49′ N. lat., 124°10.90′ W. long.; 43°34.52′ N. lat., 124°16.73′ W. long.; 42°44.14′ N. lat., 124°35.17′ W. long.;
 44°44.96′ N. lat., 124°14.39′ W. long.; 43°28.82′ N. lat., 124°19.52′ W. long.; 42°42.14′ N. lat., 124°32.82′ W. long.;
 44°43.44′ N. lat., 124°14.78′ W. long.; 43°23.91′ N. lat., 124°24.28′ W. long.; 42°40.50′ N. lat., 124°31.98′ W. long.;
 44°42.26′ N. lat., 124°13.81′ W. long.; 43°20.83′ N. lat., 124°26.63′ W. long.;

C.6. Notification When Unsafe Conditions Prevent Compliance with Regulations: If prevented by unsafe weather conditions or mechanical problems from meeting special management area landing restrictions, vessels must notify the U.S. Coast Guard and receive acknowledgment of such notification prior to leaving the area. This notification shall include the name of the vessel, port where delivery will be made, approximate amount of salmon (by species) on board, the estimated time of arrival, and the specific reason the vessel is not able to meet special management area landing restrictions.

In addition to contacting the U.S. Coast Guard, vessels fishing south of the Oregon/California border must notify CDFW within one hour of leaving the management area by calling 800-889-8346 and providing the same information as reported to the U.S. Coast Guard. All salmon must be offloaded within 24 hours of reaching port.

C.7. Incidental Halibut Harvest: During authorized periods, the operator of a vessel that has been issued an incidental halibut harvest license may retain Pacific halibut caught incidentally in Area 2A while trolling for salmon. Halibut retained must be no less than 32 inches in total length, measured from the tip of the lower jaw with the mouth closed to the extreme end of the tail, and must be landed with the head on. When halibut are caught and landed incidental to commercial salmon fishing by an IPHC license holder, any person who is required to report the salmon landing by applicable state law must include on the state salmon landing receipt for that landing both the number of halibut landed, and the total dressed, head-on weight of halibut landed, in pounds, as well as the number and species of salmon landed.

License applications for incidental harvest must be obtained from the International Pacific Halibut Commission (phone: 206-634-1838). Applicants must apply prior to mid-March 2017 for 2017 permits (exact date to be set by the IPHC in early 2017). Incidental harvest is authorized only during April, May, and June of the 2016 troll seasons and after June 30 in 2016 if quota remains and if announced on the NMFS hotline (phone: 800-662-9825 or 206-526-6667). WDFW, ODFW, and CDFW will monitor landings. If the landings are projected to exceed the IPHC’s 34,123 pound preseason allocation or the total Area 2A non-Indian commercial halibut allocation, NMFS will take inseason action to prohibit retention of halibut in the non-Indian salmon troll fishery.

May 1, 2016 through December 31, 2016, and April 1-30, 2017, license holders may land or possess no more than one Pacific halibut per each three Chinook, except one Pacific halibut may be possessed or landed without meeting the ratio requirement, and no more than 20 halibut may be possessed or landed per trip. Pacific halibut retained must be no less than 32 inches in total length (with head on). IPHC license holders must comply with all applicable IPHC regulations.

Incidental Pacific halibut catch regulations in the commercial salmon troll fishery adopted for 2016, prior to any 2016 inseason action, will be in effect when incidental Pacific halibut retention opens on April 1, 2017 unless otherwise modified by inseason action at the March 2017 Council meeting.

a. "C-shaped" yelloweye rockfish conservation area is an area to be voluntarily avoided for salmon trolling. NMFS and the Council request salmon trollers voluntarily avoid this area in order to protect yelloweye rockfish. The area is defined in the Pacific Council Halibut Catch Sharing Plan in the North Coast subarea (Washington marine area 3), with the following coordinates in the order listed: 48°18′ N. lat.; 125°18′ W. long.; 48°18′ N. lat.; 124°59′ W. long.; 48°11′ N. lat.; 124°59′ W. long.; 48°11′ N. lat.; 125°11′ W. long.; 48°04′ N. lat.; 125°11′ W. long.; 48°04′ N. lat.; 124°59′ W. long.; 48°00′ N. lat.; 124°59′ W. long.; 48°00′ N. lat.; 125°18′ W. long.; and connecting back to 48°18′ N. lat.; 125°18′ W. long.
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

C.8. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:
 a. Chinook remaining from the May through June non-Indian commercial troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline if the transfer would not result in exceeding preseason impact expectations on any stocks.
 b. Chinook remaining from the June non-Indian commercial troll quotas in the Oregon KMZ may be transferred to the Chinook quota for the July open period if the transfer would not result in exceeding preseason impact expectations on any stocks.
 c. NMFS may transfer fish between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the areas’ representatives on the Salmon Advisory Subpanel (SAS), and if the transfer would not result in exceeding preseason impact expectations on any stocks.
 d. At the March 2017 meeting, the Council will consider inseason recommendations for special regulations for any experimental fisheries (proposals must meet Council protocol and be received in November 2016).
 e. If retention of unmarked coho is permitted by inseason action, the allowable coho quota will be adjusted to ensure preseason projected impacts on all stocks is not exceeded.
 f. Landing limits may be modified inseason to sustain season length and keep harvest within overall quotas.

C.9. State Waters Fisheries: Consistent with Council management objectives:
 a. The State of Oregon may establish additional late-season fisheries in state waters.
 b. The State of California may establish limited fisheries in selected state waters.
 Check state regulations for details.

C.10. For the purposes of California Fish and Game Code, Section 8232.5, the definition of the Klamath Management Zone (KMZ) for the ocean salmon season shall be that area from Humbug Mountain, Oregon, to Horse Mountain, California.
A. SEASON DESCRIPTIONS

North of Cape Falcon

Supplemental Management Information

1. Overall non-Indian TAC: 70,000 Chinook and 18,900 coho marked with a healed adipose fin clip (marked).
2. Recreational TAC: 35,000 Chinook and the equivalent coho mortality of the recreational portion of the overall non-Indian coho TAC consisting of 18,900 marked coho retained in the recreational fishery in the Columbia River Subarea and non-retention coho mortality in the recreational fisheries in the Neah Bay, La Push, and Westport Subareas.
3. No Area 4B add-on fishery.
4. Buoy 10 fishery opens August 1 with an expected landed catch of 20,000 marked coho in August and September.

U.S./Canada Border to Cape Alava (Neah Bay Subarea)

• July 1 through earlier of August 21 or a Subarea guideline of 6,200 Chinook (C.6).

Seven days per week. All salmon except coho; no chum beginning August 1; two fish per day (C.1). Beginning August 1, Chinook non-retention east of the Bonilla-Tatoosh line (C.4.a) during Council managed ocean fishery. Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Cape Alava to Queets River (La Push Subarea)

• July 1 through earlier of August 21 or a subarea guideline of 2,000 Chinook (C.6).

Seven days per week. All salmon except coho; two fish per day. Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Queets River to Leadbetter Point (Westport Subarea)

• July 1 through earlier of August 21 or a subarea guideline of 16,600 Chinook (C.6).

Seven days per week. All salmon except coho; one fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3). Grays Harbor Control Zone closed beginning August 8 (C.4.b). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Leadbetter Point to Cape Falcon (Columbia River Subarea)

• July 1 through earlier of August 31 or 18,900 marked coho subarea quota with a subarea guideline of 10,200 Chinook (C.6).

Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3). Columbia Control Zone closed (C.4.c). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).
A. SEASON DESCRIPTIONS

South of Cape Falcon

Supplemental Management Information

1. Sacramento River fall Chinook spawning escapement of 151,128 hatchery and natural area adults.
2. Klamath River fall Chinook spawning escapement of 30,909 natural area adults.
3. Klamath River recreational fishery allocation: 1,111 adult Klamath River fall Chinook.
5. Overall recreational coho TAC: 26,000 coho marked with a healed adipose fin clip (marked), and 7,500 coho in the non-mark-selective coho fishery.

Cape Falcon to Humbug Mt.

- March 15 through October 31 (C.6), except as provided below during the all-salmon mark-selective and September non-mark-selective coho fisheries.

 Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

- Non-mark-selective coho fishery: September 3 through the earlier of September 30 or a landed catch of 7,500 coho (C.5). Seven days per week. All salmon, two fish per day (C.1). See minimum size limits (B) and gear restrictions and definitions (C.2, C.3).

 The all salmon except coho season reopens the earlier of October 1 or attainment of the coho quota (C.5).

In 2017, the season between Cape Falcon and Humbug Mountain will open March 15 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2016 (C.2, C.3).

Fishing in the Stonewall Bank yelloweye rockfish conservation area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

Cape Falcon to OR/CA Border

- All-salmon mark-selective coho fishery: June 25 through the earlier of August 7 or a landed catch of 26,000 marked coho (C.5). Seven days per week. All salmon, two fish per day. All retained coho must be marked with a healed adipose fin clip (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3). The all salmon except coho season reopens the earlier of August 8 or attainment of the coho quota.

Fishing in the Stonewall Bank Yelloweye Rockfish Conservation Area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

Humbug Mt. to OR/CA Border (Oregon KMZ)

- May 28 through August 7 and September 3 through September 5; except as provided above during the all-salmon mark-selective coho fishery (C.6).

 Seven days per week. All salmon except coho, except as noted above in the all-salmon mark-selective coho fishery; two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

OR/CA Border to Horse Mt. (California KMZ)

- May 16 through May 31, June 16 through June 30, July 16 through August 16, and September 1 through September 5 (C.6).

 Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B). See gear restrictions and definitions (C.2, C.3). Klamath Control Zone closed in August (C.4.e). See California State regulations for additional closures adjacent to the Smith, Eel, and Klamath Rivers.

Horse Mt. to Point Arena (Fort Bragg)

- April 2 through November 13 (C.6).

 Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2017, season opens April 1 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B); and the same gear restrictions as in 2016 (C.2, C.3).
A. SEASON DESCRIPTIONS

Point Arena to Pigeon Point (San Francisco)
• April 2 through October 31 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length through April 30, 20 inches thereafter (B). See gear restrictions and definitions (C.2, C.3).

In 2017, season opens April 1 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2016 (C.2, C.3).

Pigeon Point to Point Sur (Monterey North)
• April 2 through July 15 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2017, season opens April 1 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2016 (C.2, C.3).

Point Sur to U.S./Mexico Border (Monterey South)
• April 2 through May 31 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2017, season opens April 1 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2016 (C.2, C.3).

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at point of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state. (California Code of Regulations Title 14 Section 1.73)

B. MINIMUM SIZE (Inches)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>24.0</td>
<td>16.0</td>
<td>None</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>24.0</td>
<td>16.0</td>
<td>None</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border</td>
<td>24.0</td>
<td>16.0</td>
<td>None</td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt.</td>
<td>20.0</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>20.0</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Through April 30</td>
<td>24.0</td>
<td>-</td>
<td>24.0</td>
</tr>
<tr>
<td>After April 30</td>
<td>20.0</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>Pigeon Pt. to U.S./Mexico Border</td>
<td>24.0</td>
<td>-</td>
<td>24.0</td>
</tr>
</tbody>
</table>

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size and Other Special Restrictions: All salmon on board a vessel must meet the minimum size or other special requirements for the area being fished and the area in which they are landed if that area is open. Salmon may be landed in an area that is closed only if they meet the minimum size or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Ocean Boat Limits: Off the coast of Washington, Oregon, and California, each fisher aboard a vessel may continue to use angling gear until the combined daily limits of Chinook and coho salmon for all licensed and juvenile anglers aboard have been attained (additional state restrictions may apply).

C.2. Gear Restrictions: Salmon may be taken only by hook and line using barbless hooks. All persons fishing for salmon, and all persons fishing from a boat with salmon on board, must meet the gear restrictions listed below for specific areas or seasons.

a. U.S./Canada Border to Pt. Conception, California: No more than one rod may be used per angler; and no more than two single point, single shank barbless hooks are required for all fishing gear. [Note: ODFW regulations in the state-water fishery off Tillamook Bay may allow the use of barbed hooks to be consistent with inside regulations.]

b. Horse Mt., California, to Pt. Conception, California: Single point, single shank, barbless circle hooks (see gear definitions below) are required when fishing with bait by any means other than trolling, and no more than two such hooks shall be used. When angling with two hooks, the distance between the hooks must not exceed five inches when measured from the top of the eye of the top hook to the inner base of the curve of the lower hook, and both hooks must be permanently tied in place (hard tied). Circle hooks are not required when artificial lures are used without bait.
C.3. Gear Definitions:
 a. Recreational fishing gear defined: Off Oregon and Washington, angling tackle consists of a single line that must be attached to
 a rod and reel held by hand or closely attended; the rod and reel must be held by hand while playing a hooked fish. No person
 may use more than one rod and line while fishing off Oregon or Washington. Off California, the line must be attached to
 a rod and reel held by hand or closely attended; weights directly attached to a line may not exceed four pounds (1.8 kg).
 While fishing off California north of Pt. Conception, no person fishing for salmon, and no person fishing from a boat with
 salmon on board, may use more than one rod and line. Fishing includes any activity which can reasonably be expected to
 result in the catching, taking, or harvesting of fish.
 b. Trolling defined: Angling from a boat or floating device that is making way by means of a source of power, other than drifting
 by means of the prevailing water current or weather conditions.
 c. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at
 a 90° angle.

C.4. Control Zone Definitions:
 a. The Bonilla-Tatoosh Line: A line running from the western end of Cape Flattery to Tatoosh Island Lighthouse (48°23'30" N.
 lat., 124°44'12" W. long.) to the buoy adjacent to Duntze Rock (48°24'37" N. lat., 124°44'37" W. long.), then in a straight
 line to Bonilla Pt. (48°35'39" N. lat., 124°42'58" W. long.) on Vancouver Island, British Columbia.
 b. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse (46° 53'18" N. lat., 124° 07'01" W.
 long.) to Buoy #2 (46° 52'42" N. lat., 124°12'42" W. long.) to Buoy #3 (46° 55'00" N. lat., 124°14'48" W. long.) to the
 Grays Harbor north jetty (46° 55'36" N. lat., 124°10'51" W. long.).
 c. Columbia Control Zone: An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest
 between the red lighted Buoy #4 (46°13'35" N. lat., 124°06'50" W. long.) and the green lighted Buoy #7 (46°15'09" N. lat.,
 124°06'16" W. long.); on the east, by the Buoy #10 line which bears north/south at 357° true from the south jetty at 46°14'00"
 N. lat., 124°03'07" W. long. to Buoy #4 and to the tip of the north jetty; on the north, by a line running northeast/southwest between
 the green lighted Buoy #7 to the tip of the north jetty (46°15'48" N. lat., 124°05'20" W. long.); and the north jetty to the point of
 intersection with the Buoy #10 line; and on the south, by a line running northeast/southwest between the red lighted Buoy #4 and
 tip of the south jetty (46°14'03" N. lat., 124°04'05" W. long.), and then along the south jetty to the point of intersection with the
 Buoy #10 line.
 d. Stonewall Bank Yelloweye Rockfish Conservation Area: The area defined by the following coordinates in the order listed:
 44°37.46’ N. lat.; 124°24.92’ W. long.
 44°37.46’ N. lat.; 124°23.83’ W. long.
 44°28.71’ N. lat.; 124°24.10’ W. long.
 44°31.42’ N. lat.; 124°25.47’ W. long.
 and connecting back to 44°37.46’ N. lat.; 124°24.92’ W. long.
 e. Klamath Control Zone: The ocean area at the Klamath River mouth bounded on the north by 41°38'48" N. lat. (approximately
 6 nautical miles north of the Klamath River mouth); on the west by 124°23’00" W. long. (approximately 12 nautical miles off
 shore); and, on the south by 41°26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).

C.5. Inseason Management: Regulatory modifications may become necessary inseason to meet preseason management objectives
such as quotas, harvest guidelines, and season duration. In addition to standard inseason actions or modifications already noted
under the season description, the following inseason guidance is provided to NMFS:
 a. Actions could include modifications to bag limits, or days open to fishing, and extensions or reductions in areas open to
 fishing.
 b. Coho may be transferred inseason among recreational subareas north of Cape Falcon to help meet the recreational season
 management objectives (for each subarea) after conferring with representatives of the affected ports and the Council’s SAS
 recreational representatives north of Cape Falcon, and if the transfer would not result in exceeding preseason impact
 expectations on any stocks.
 c. Chinook and coho may be transferred between the recreational and commercial fisheries north of Ca pe Falcon if there is
 agreement among the representatives of the SAS, and if the transfer would not result in exceeding preseason impact
 expectations on any stocks.
 d. Fishery managers may consider inseason action modifying regulations restricting retention of unmarked coho. To remain
 consistent with preseason expectations, any inseason action shall consider, if significant, the difference between observed
 and preseason forecasted mark rates. Such a consideration may also include a change in bag limit of two salmon, no more
 than one of which may be a coho.

C.6. Additional Seasons in State Territorial Waters: Consistent with Council management objectives, the States of Washington,
Oregon, and California may establish limited seasons in state waters. Check state regulations for details.
A. SEASON DESCRIPTIONS

Supplemental Management Information

1. Overall Treaty-Indian TAC: 40,000 Chinook and 0 coho.

- May 1 through the earlier of June 30 or 20,000 Chinook quota. All salmon except coho. If the Chinook quota is exceeded, the excess will be deducted from the later all-salmon season (C.5). See size limit (B) and other restrictions (C).
- July 1 through the earlier of August 31, or 20,000 preseason Chinook quota (C.5). All salmon except coho. See size limit (B) and other restrictions (C).

B. MINIMUM SIZE (Inches)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook Total Length</th>
<th>Chinook Head-off</th>
<th>Coho Total Length</th>
<th>Coho Head-off</th>
<th>Pink None</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>24.0 (61.0 cm)</td>
<td>18.0 (45.7 cm)</td>
<td>-</td>
<td>-</td>
<td>None</td>
</tr>
</tbody>
</table>

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Tribe and Area Boundaries. All boundaries may be changed to include such other areas as may hereafter be authorized by a Federal court for that tribe’s treaty fishery.

MAKAH - Washington State Statistical Area 4B and that portion of the FMA north of 48°02’15” N. lat. (Norwegian Memorial) and east of 125°44’00” W. long.

QUILEUTE - That portion of the FMA between 48°07’36” N. lat. (Sand Pt.) and 47°31’42” N. lat. (Queets River) and east of 125°44’00” W. long.

HOH - That portion of the FMA between 47°54’18” N. lat. (Quillayute River) and 47°21’00” N. lat. (Quinault River) and east of 125°44’00” W. long.

QUINAULT - That portion of the FMA between 47°40’06” N. lat. (Destruction Island) and 46°53’18” N. lat. (Point Chehalis) and east of 125°44’00” W. long.

C.2. Gear restrictions

a. Single point, single shank, barbless hooks are required in all fisheries.
b. No more than eight fixed lines per boat.
c. No more than four hand held lines per person in the Makah area fishery (Washington State Statistical Area 4B and that portion of the FMA north of 48°02’15” N. lat. (Norwegian Memorial) and east of 125°44’00” W. long.)

C.3. Quotas

a. The quotas include troll catches by the S’Klallam and Makah tribes in Washington State Statistical Area 4B from May 1 through August 31.
b. The Quileute Tribe will continue a ceremonial and subsistence fishery during the time frame of October 1 through October 15 in the same manner as in 2004-2015. Fish taken during this fishery are to be counted against treaty troll quotas established for the 2016 season (estimated harvest during the October ceremonial and subsistence fishery: 20 Chinook; 0 coho).

C.4. Area Closures

a. The area within a six nautical mile radius of the mouths of the Queets River (47°31’42” N. lat.) and the Hoh River (47°45’12” N. lat.) will be closed to commercial fishing.
b. A closure within two nautical miles of the mouth of the Quinault River (47°21’00” N. lat.) may be enacted by the Quinault Nation and/or the State of Washington and will not adversely affect the Secretary of Commerce’s management regime.

C.5. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:

a. Chinook remaining from the May through June treaty-indian ocean troll harvest guideline north of Cape Falcon may be transferred to the July through August harvest guideline on a fishery impact equivalent basis.
TABLE V-4: Stock status relative to overfished and overfishing criteria

A stock is approaching an overfished condition if the 3-year geometric mean of the most recent two years and the forecast spawning escapement is less than the minimum stock size threshold (MSST); a stock would experience overfishing if the total annual exploitation rate exceeds the maximum fishing mortality threshold (MFMT). Occurrences of stocks approaching an overfished condition or experiencing overfishing are indicated in **bold**. 2017 spawning escapement and exploitation rate estimates are based on preliminary 2017 preseason abundance forecasts and 2016 Council regulations.

<table>
<thead>
<tr>
<th>Stock</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016<sup>a/</sup></th>
<th>Forecast<sup>2017b/</sup></th>
<th>3-yr Geo Mean</th>
<th>MSST</th>
<th>S<sub>rev</sub></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016<sup>a/</sup></th>
<th>2017<sup>b/</sup></th>
<th>MFMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook</td>
<td></td>
</tr>
<tr>
<td>Sacramento Fall</td>
<td>406,200</td>
<td>212,468</td>
<td>112,947</td>
<td>89,173</td>
<td>116,439</td>
<td>105,455</td>
<td>91,500</td>
<td>122,000</td>
<td>0.53</td>
<td>0.62</td>
<td>0.56</td>
<td>0.57</td>
<td>0.50</td>
<td>0.78</td>
</tr>
<tr>
<td>Klamath River Fall<sup>c/</sup></td>
<td>59,156</td>
<td>95,104</td>
<td>28,112</td>
<td>13,924</td>
<td>9,397</td>
<td>15,436</td>
<td>30,525</td>
<td>40,700</td>
<td>0.64</td>
<td>0.36</td>
<td>0.59</td>
<td>0.37</td>
<td>0.24</td>
<td>0.71</td>
</tr>
<tr>
<td>Southern Oregon<sup>d/</sup></td>
<td>81,655</td>
<td>53,546</td>
<td>30,462</td>
<td>27,278</td>
<td>NA</td>
<td>35,435</td>
<td>20,500</td>
<td>34,992</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.54</td>
</tr>
<tr>
<td>Central and Northern OR</td>
<td>189</td>
<td>157</td>
<td>247</td>
<td>118</td>
<td>NA</td>
<td>166</td>
<td>30 fish/mi</td>
<td>60 fish/mi</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.78</td>
</tr>
<tr>
<td>Upper River Bright - Fall<sup>e/</sup></td>
<td>305,445</td>
<td>233,934</td>
<td>323,276</td>
<td>151,373</td>
<td>96,802</td>
<td>167,946</td>
<td>19,182</td>
<td>39,625</td>
<td>0.52</td>
<td>0.53</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.86</td>
</tr>
<tr>
<td>Upper River - Summer<sup>d/</sup></td>
<td>68,380</td>
<td>77,982</td>
<td>79,253</td>
<td>54,926</td>
<td>72,816</td>
<td>6,072</td>
<td>12,143</td>
<td>0.75</td>
<td>0.62</td>
<td>0.74</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.75</td>
</tr>
<tr>
<td>Willapa Bay - Fall<sup>e/</sup></td>
<td>1,904</td>
<td>2,075</td>
<td>2,824</td>
<td>NA</td>
<td>NA</td>
<td>2,235</td>
<td>1,696</td>
<td>3,393</td>
<td>0.76</td>
<td>0.47</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.78</td>
</tr>
<tr>
<td>Grays Harbor Fall<sup>f/</sup></td>
<td>12,582</td>
<td>11,400</td>
<td>22,200</td>
<td>NA</td>
<td>NA</td>
<td>14,712</td>
<td>5,694</td>
<td>11,388</td>
<td>0.76</td>
<td>0.47</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.78</td>
</tr>
<tr>
<td>Willapa Bay - Fall<sup>e/</sup></td>
<td>4,017</td>
<td>2,782</td>
<td>3,098</td>
<td>3,508</td>
<td>3,115</td>
<td>1,500</td>
<td>3,000</td>
<td>0.87</td>
<td>0.76</td>
<td>0.47</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.87</td>
</tr>
<tr>
<td>Queets - Fall<sup>e/</sup></td>
<td>1,269</td>
<td>1,933</td>
<td>1,592</td>
<td>2,333</td>
<td>1,929</td>
<td>600</td>
<td>1,200</td>
<td>0.87</td>
<td>0.76</td>
<td>0.47</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.87</td>
</tr>
<tr>
<td>Hoh Sp/Su</td>
<td>750</td>
<td>744</td>
<td>1,070</td>
<td>1,144</td>
<td>NA</td>
<td>969</td>
<td>450</td>
<td>900</td>
<td>0.76</td>
<td>0.47</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.78</td>
</tr>
<tr>
<td>Quillayute - Fall<sup>e/</sup></td>
<td>4,017</td>
<td>2,782</td>
<td>3,098</td>
<td>3,508</td>
<td>3,115</td>
<td>1,500</td>
<td>3,000</td>
<td>0.87</td>
<td>0.76</td>
<td>0.47</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.87</td>
</tr>
<tr>
<td>Hoko -Su/Fad<sup>f/</sup></td>
<td>1,406</td>
<td>1,760</td>
<td>2,998</td>
<td>2,998</td>
<td>2,510</td>
<td>425</td>
<td>850</td>
<td>0.78</td>
<td>0.25</td>
<td>0.42</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.78</td>
</tr>
<tr>
<td>Coho</td>
<td></td>
</tr>
<tr>
<td>Willapa Bay</td>
<td>26,303</td>
<td>59,569</td>
<td>17,086</td>
<td>NA</td>
<td>22,851</td>
<td>28,544</td>
<td>8,600</td>
<td>17,200</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.38</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor</td>
<td>56,785</td>
<td>104,836</td>
<td>21,278</td>
<td>NA</td>
<td>50,222</td>
<td>18,320</td>
<td>24,426</td>
<td>0.44</td>
<td>0.46</td>
<td>0.50</td>
<td>NA</td>
<td>0.65</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Queets</td>
<td>5,684</td>
<td>7,174</td>
<td>2,028</td>
<td>NA</td>
<td>5,496</td>
<td>4,308</td>
<td>4,350</td>
<td>5,800</td>
<td>0.39</td>
<td>0.44</td>
<td>0.33</td>
<td>0.17</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Hoh</td>
<td>2,899</td>
<td>4,565</td>
<td>4,110</td>
<td>5,931</td>
<td>2,335</td>
<td>4,375</td>
<td>4,545</td>
<td>5,800</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.17</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Juan de Fuca</td>
<td>8,461</td>
<td>11,002</td>
<td>3,698</td>
<td>NA</td>
<td>12,539</td>
<td>7,399</td>
<td>7,000</td>
<td>11,000</td>
<td>0.43</td>
<td>0.17</td>
<td>0.18</td>
<td>0.04</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>16,064</td>
<td>26,787</td>
<td>NA</td>
<td>NA</td>
<td>76,093</td>
<td>31,992</td>
<td>10,750</td>
<td>14,350</td>
<td>0.55</td>
<td>0.66</td>
<td>0.59</td>
<td>0.34</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Skagit</td>
<td>88,246</td>
<td>27,170</td>
<td>6,483</td>
<td>NA</td>
<td>10,534</td>
<td>12,288</td>
<td>14,875</td>
<td>25,000</td>
<td>0.44</td>
<td>0.50</td>
<td>0.58</td>
<td>0.06</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>60,387</td>
<td>35,763</td>
<td>2,572</td>
<td>NA</td>
<td>7,046</td>
<td>8,654</td>
<td>6,100</td>
<td>10,000</td>
<td>0.33</td>
<td>0.40</td>
<td>0.52</td>
<td>0.08</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Snohomish</td>
<td>125,870</td>
<td>46,244</td>
<td>12,804</td>
<td>NA</td>
<td>99,840</td>
<td>38,955</td>
<td>31,000</td>
<td>50,000</td>
<td>0.39</td>
<td>0.43</td>
<td>0.58</td>
<td>0.07</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

- a/ Preliminary.
- b/ Preliminary approximations based on preseason forecasts and the previous year fishing regulations.
- c/ MSST 18,440 (20,500 as measured at Huntley Park).
- d/ CWT based exploitation rates from annual catch and escapement distribution from PSC-CTC 2013 Exploitation Rate Analysis.
- e/ Queets River fall Chinook CWT exploitation rates used as a proxy. Exploitation rates in the terminal fisheries will differ from those calculated for Queets fall CWTs.
TABLE V-5. Postseason SACL, SOFL, and spawner escapement estimates for Sacramento River fall Chinook (SRFC) and Klamath River fall Chinook (KRFC) and Willapa Bay coho. For the current year, data are preseason values based on current abundance forecasts and the previous year fishing regulations.

<table>
<thead>
<tr>
<th>Year</th>
<th>SACL 1/</th>
<th>SOFL 1/</th>
<th>Escapement 1/</th>
<th>SACL 1/</th>
<th>SOFL 1/</th>
<th>Escapement 1/</th>
<th>SACL 1/</th>
<th>SOFL 1/</th>
<th>Escapement 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>187,595</td>
<td>137,570</td>
<td>285,429</td>
<td>70,943</td>
<td>64,292</td>
<td>121,543</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2013</td>
<td>260,492</td>
<td>191,028</td>
<td>406,200</td>
<td>52,016</td>
<td>47,140</td>
<td>95,156</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2014</td>
<td>166,084</td>
<td>121,795</td>
<td>212,468</td>
<td>47,651</td>
<td>43,184</td>
<td>95,104</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2015</td>
<td>76,664</td>
<td>56,220</td>
<td>112,948</td>
<td>22,199</td>
<td>20,118</td>
<td>42,317</td>
<td>9,873</td>
<td>8,643</td>
<td>17,086</td>
</tr>
<tr>
<td>2016</td>
<td>61,507</td>
<td>45,105</td>
<td>89,173</td>
<td>7,042</td>
<td>6,382</td>
<td>13,924</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2017</td>
<td>69,210</td>
<td>50,754</td>
<td>116,439</td>
<td>3,963</td>
<td>3,591</td>
<td>9,397</td>
<td>10,906</td>
<td>9,547</td>
<td>24,754</td>
</tr>
</tbody>
</table>

1/ SACL = SABC.

b/ Hatchery and natural area adult spawners.

c/ Natural area adult spawners.

TABLE V-6. Estimated ocean escapements and exploitation rates for critical natural and Columbia River hatchery coho stocks (thousands of fish) based on preliminary 2017 preseason abundance forecasts and 2016 Council management measures.a/

<table>
<thead>
<tr>
<th>Stock</th>
<th>Ocean Escapement</th>
<th>Abundance</th>
<th>Exploitation Rate</th>
<th>Exploitation Rate</th>
<th>FMP Conservation Objective</th>
<th>Preseason</th>
<th>Final Preseason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Coho Stocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2017</td>
<td>2016</td>
</tr>
<tr>
<td>Skagit</td>
<td>10.9</td>
<td>8.7</td>
<td>5.8%</td>
<td>NA</td>
<td>Exploitation Rate ≤20.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>7.0</td>
<td>2.3</td>
<td>7.7%</td>
<td>NA</td>
<td>Exploitation Rate ≤20.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snohomish</td>
<td>107.2</td>
<td>16.5</td>
<td>7.1%</td>
<td>NA</td>
<td>Exploitation Rate ≤40.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>115.0</td>
<td>34.7</td>
<td>34.4%</td>
<td>NA</td>
<td>Exploitation Rate ≤65.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>13.0</td>
<td>4.4</td>
<td>4.1%</td>
<td>NA</td>
<td>Exploitation Rate ≤40.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quillayute Fall</td>
<td>15.4</td>
<td>4.3</td>
<td>8.9%</td>
<td>9.5%</td>
<td>63 - 15.8 Spawners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoh</td>
<td>5.5</td>
<td>1.9</td>
<td>13.5%</td>
<td>14.4%</td>
<td>2.0 - 5.0 Spawners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queets</td>
<td>6.0</td>
<td>3.2</td>
<td>16.6%</td>
<td>17.6%</td>
<td>5.8 - 14.5 Spawners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grays Harbor e/</td>
<td>NA</td>
<td>34.5</td>
<td>NA</td>
<td>14.0%</td>
<td>35.4 Spawners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCN</td>
<td>27.8</td>
<td>40.7</td>
<td>12.4%</td>
<td>13.0%</td>
<td>Exploitation Rate ≤18.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCN</td>
<td>87.1</td>
<td>137.5</td>
<td>15.0%</td>
<td>13.1%</td>
<td>Exploitation Rate ≤30.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/K</td>
<td>2.3</td>
<td>6.3</td>
<td>9.9%</td>
<td>7.0%</td>
<td>Exploitation Rate ≤13.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hatchery Coho Stocks</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia Early</td>
<td>181.5</td>
<td>118.2</td>
<td>47.9%</td>
<td>45.7%</td>
<td>6.2 Hatchery Escapement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Late</td>
<td>126.7</td>
<td>181.7</td>
<td>24.3%</td>
<td>26.1%</td>
<td>14.2 Hatchery Escapement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a/ Quota levels include harvest and hooking mortality estimates used in planning the Council’s 2016 ocean fisheries and a coho catch for the Canadian troll fishery off the West Coast of Vancouver Island (WCVI).

b/ 2016 preseason regulations with the following coho quotas: U.S. Canada Border to Cape Falcon: Treaty Indian troll-coho non-retention; non-Indian troll-coho non-retention; recreational-18,900 selective limited to the area south of Leadbetter Point; Cape Falcon to OR/CA border: recreational-26,000 selective and 7,500 non-selective; troll-none. Ocean escapement is generally the estimated number of coho escaping ocean fisheries and entering fresh water. For Puget Sound stocks, ocean escapement is the total abundance minus ocean fisheries (i.e., outside Puget Sound). For the OCN coho stock, this value represents the estimated spawner escapement in SRS accounting. For Columbia R. hatchery and LCN stocks, ocean escapement represents the number of coho after the Buoy 10 fishery; the LCN exploitation rates shown are total marine and mainstem Columbia R. fishery ERs. The Council fisheries exploitation rates are forecast at 6.7% using 2017 abundances with 2016 fishery regulations and 7.2% in 2016 with the 2016 ESA limit of 18.0% including mainstem Columbia R. fisheries.

c/ Goals represent FMP conservation objectives, ESA consultation standards, or hatchery escapement needs. Spawning escapement goals are not directly comparable to ocean escapement because the latter occur before inside fisheries.

d/ Assumed exploitation rate based on preliminary abundance forecasts.

e/ The Grays Harbor natural coho forecast was not agreed to by co-managers at the time of print.

f/ Pending confirmation of 2017 ESA consultation standard.
TABLE V-7. Comparison of Lower Columbia natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho projected harvest mortality and exploitation rates by fishery under Council-adopted 2016 management measures and preliminary 2017 preseason abundance estimates.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>LCN Number</th>
<th>LCN Percent</th>
<th>OCN Number</th>
<th>OCN Percent</th>
<th>RK Number</th>
<th>RK Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUTHEAST ALASKA</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>BRITISH COLUMBIA</td>
<td>49</td>
<td>0.2%</td>
<td>222</td>
<td>0.2%</td>
<td>3</td>
<td>0.1%</td>
</tr>
<tr>
<td>PUGET SOUND/STRAITS</td>
<td>24</td>
<td>0.1%</td>
<td>9</td>
<td>0.0%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>861</td>
<td>2.8%</td>
<td>460</td>
<td>0.4%</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>Treaty Indian Troll</td>
<td>7</td>
<td>0.0%</td>
<td>4</td>
<td>0.0%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Non-Indian Troll</td>
<td>197</td>
<td>0.7%</td>
<td>120</td>
<td>0.1%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>SOUTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>711</td>
<td>2.4%</td>
<td>6,485</td>
<td>6.3%</td>
<td>12</td>
<td>0.5%</td>
</tr>
<tr>
<td>Humbug Mt. to Horse Mt. (KMZ)</td>
<td>43</td>
<td>0.1%</td>
<td>1,005</td>
<td>1.0%</td>
<td>85</td>
<td>3.4%</td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>18</td>
<td>0.1%</td>
<td>727</td>
<td>0.7%</td>
<td>64</td>
<td>2.5%</td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>12</td>
<td>0.0%</td>
<td>467</td>
<td>0.5%</td>
<td>29</td>
<td>1.1%</td>
</tr>
<tr>
<td>Troll:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>146</td>
<td>0.5%</td>
<td>652</td>
<td>0.6%</td>
<td>3</td>
<td>0.1%</td>
</tr>
<tr>
<td>Humbug Mt. to Horse Mt. (KMZ)</td>
<td>2</td>
<td>0.0%</td>
<td>43</td>
<td>0.0%</td>
<td>3</td>
<td>0.1%</td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>8</td>
<td>0.0%</td>
<td>450</td>
<td>0.4%</td>
<td>25</td>
<td>1.0%</td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>18</td>
<td>0.1%</td>
<td>551</td>
<td>0.5%</td>
<td>7</td>
<td>0.3%</td>
</tr>
<tr>
<td>BUOY 10</td>
<td>348</td>
<td>1.2%</td>
<td>95</td>
<td>0.1%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>ESTUARY/FRESHWATER</td>
<td>NA</td>
<td>NA</td>
<td>4,100</td>
<td>4.0%</td>
<td>18</td>
<td>0.7%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,444</td>
<td>8.1%</td>
<td>15,390</td>
<td>15.0%</td>
<td>250</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

a/ Unmarked hatchery production used as a surrogate for Rogue/Klamath natural stock coho.
TABLE V-8: Maximum allowable fishery impact rate for OCN coho under Amendment 13 matrix and the revised OCN work group matrix based on parent escapement levels by stock component and marine survival category.

<table>
<thead>
<tr>
<th>Fishery Year (t)</th>
<th>Parent Year (t-3)</th>
<th>Northern</th>
<th>North-Central</th>
<th>South-Central</th>
<th>Hatchery Jack Survival</th>
<th>Predicted OCN Adult Survival</th>
<th>Marine Survival Indicator</th>
<th>Amendment 13 Matrix</th>
<th>OCN Work Group Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>1995</td>
<td>3,900</td>
<td>13,600</td>
<td>36,500</td>
<td>0.04%</td>
<td>-</td>
<td>Low</td>
<td>Very Low</td>
<td>≤10-13%</td>
</tr>
<tr>
<td>1999</td>
<td>1996</td>
<td>3,300</td>
<td>18,100</td>
<td>52,600</td>
<td>0.10%</td>
<td>-</td>
<td>Med</td>
<td>Very Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2000</td>
<td>1997</td>
<td>2,100</td>
<td>2,800</td>
<td>18,400</td>
<td>0.12%</td>
<td>-</td>
<td>Med</td>
<td>Very Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2001</td>
<td>1998</td>
<td>2,600</td>
<td>3,300</td>
<td>25,900</td>
<td>0.27%</td>
<td>-</td>
<td>Med</td>
<td>Very Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2002</td>
<td>1999</td>
<td>8,900</td>
<td>11,800</td>
<td>29,200</td>
<td>0.09%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2003</td>
<td>2000</td>
<td>17,900</td>
<td>14,300</td>
<td>36,500</td>
<td>0.20%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2004</td>
<td>2001</td>
<td>33,500</td>
<td>25,200</td>
<td>112,000</td>
<td>0.14%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2005</td>
<td>2002</td>
<td>52,500</td>
<td>104,000</td>
<td>104,100</td>
<td>0.11%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2006</td>
<td>2003</td>
<td>59,600</td>
<td>68,900</td>
<td>99,800</td>
<td>0.12%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2007</td>
<td>2004</td>
<td>28,800</td>
<td>42,100</td>
<td>101,900</td>
<td>0.17%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2008</td>
<td>2005</td>
<td>16,500</td>
<td>51,400</td>
<td>86,700</td>
<td>0.07%</td>
<td>-</td>
<td>Low</td>
<td>Very Low</td>
<td>≤8%</td>
</tr>
<tr>
<td>2009</td>
<td>2006</td>
<td>24,100</td>
<td>21,200</td>
<td>83,500</td>
<td>0.27%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2010</td>
<td>2007</td>
<td>17,500</td>
<td>12,300</td>
<td>36,500</td>
<td>0.12%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2011</td>
<td>2008</td>
<td>25,600</td>
<td>68,100</td>
<td>86,000</td>
<td>0.12%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2012</td>
<td>2009</td>
<td>48,100</td>
<td>86,400</td>
<td>128,200</td>
<td>0.09%</td>
<td>-</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2013</td>
<td>2010</td>
<td>55,000</td>
<td>56,500</td>
<td>171,900</td>
<td>0.14%</td>
<td>6.8%</td>
<td>Med</td>
<td>Low</td>
<td>≤15%</td>
</tr>
<tr>
<td>2014</td>
<td>2011</td>
<td>45,900</td>
<td>119,100</td>
<td>191,300</td>
<td>0.28%</td>
<td>7.1%</td>
<td>Med</td>
<td>Med</td>
<td>≤15%</td>
</tr>
<tr>
<td>2015</td>
<td>2012</td>
<td>7,500</td>
<td>33,800</td>
<td>57,800</td>
<td>0.20%</td>
<td>7.5%</td>
<td>Med</td>
<td>Med</td>
<td>≤15%</td>
</tr>
<tr>
<td>2016</td>
<td>2013</td>
<td>11,000</td>
<td>39,700</td>
<td>73,700</td>
<td>0.10%</td>
<td>6.2%</td>
<td>Med</td>
<td>Med</td>
<td>≤15%</td>
</tr>
<tr>
<td>2017</td>
<td>2014</td>
<td>67,400</td>
<td>121,900</td>
<td>170,400</td>
<td>0.13%</td>
<td>5.6%</td>
<td>Med</td>
<td>Med</td>
<td>≤15%</td>
</tr>
<tr>
<td>2018</td>
<td>2015</td>
<td>6,700</td>
<td>22,700</td>
<td>27,700</td>
<td>-</td>
<td>-</td>
<td>Low</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2019</td>
<td>2016</td>
<td>18,400</td>
<td>26,400</td>
<td>31,200</td>
<td>-</td>
<td>-</td>
<td>Low</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*a/ Developed by the OCN Coho Work Group as a result of the 2000 Review of Amendment 13. See Appendix A, tables A-2 and A-4 for details

*b/ OCN workgroup matrix was modified during the 2012 methodology review. For 2013, the marine survival category is determined by a predicted OCN adult survival rate that is based on the natural smolt to jack relationship at Mill Creek in the Yaquina River basin.

*c/ OCN workgroup matrix was modified during the 2013 methodology review. Beginning in 2014, the marine survival category is determined by a predicted OCN adult survival rate that is based on biologic and oceanographic indicators.
CHAPTER VI: REFERENCES

APPENDIX A
SUMMARY OF COUNCIL STOCK MANAGEMENT GOALS

LIST OF TABLES

TABLE A-2.	Allowable fishery impact rate criteria for OCN coho stock components under the Salmon Fishery Management Plan Amendment 13.	106
TABLE A-3.	Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13.	107
TABLE A-4.	Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13 including modifications to the marine survival index adopted during the 2012 and 2013 methodology reviews.	108
TABLE A-5.	Council adopted management objectives for Puget Sound natural coho management units, expressed as exploitation rate ceilings for critical, low and normal abundance based status categories, with runsize breakpoints.	109
TABLE A-6.	Council recommended management objectives for Lower Columbia River natural tule Chinook, expressed as exploitation rate ceilings for abundance based status categories, with runsize forecast bins expressed as adult river mouth return forecasts of Lower Columbia River hatchery tule Chinook.	103

LIST OF FIGURES

FIGURE A-1.	Sacramento River fall Chinook control rule.	110
FIGURE A-2.	Klamath River fall Chinook control rule.	110
FIGURE A-3.	Sacramento River winter Chinook impact rate control rule.	111
TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes

<table>
<thead>
<tr>
<th>Stocks In The Fishery</th>
<th>Conservation Objective</th>
<th>S_{MSY}</th>
<th>MSST</th>
<th>MFMT (F_{MSY})</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHINOOK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento River Fall Indicator stock for the Central Valley fall (CVF) Chinook stock complex.</td>
<td>122,000-180,000 natural and hatchery adult spawners (MSY proxy adopted 1984). This objective is intended to provide adequate escapement of natural and hatchery production for Sacramento and San Joaquin fall and late-fall stocks based on habitat conditions and average run-sizes as follows: Sacramento River 1953-1960; San Joaquin River 1972-1977 (ASETF 1979; PFMC 1984; SRFCRT 1994). The objective is less than the estimated basin capacity of 240,000 spawners (Hallock 1977), but greater than the 118,000 spawners for maximum production estimated on a basin by basin basis before Oroville and Nimbus Dams (Reisenbichler 1986).</td>
<td>122,000</td>
<td>91,500</td>
<td>78% Proxy (SAC 2011a)</td>
<td>Based on (F_{ABC}) and annual ocean abundance. (F_{ABC}) is (F_{MSY}) reduced by Tier 2 (10%) uncertainty</td>
</tr>
<tr>
<td>Sacramento River Spring ESA Threatened</td>
<td>NMFS ESA consultation standard/recovery plan: Conform to Sacramento River Winter Chinook ESA consultation standard (no defined objective for ocean management prior to listing).</td>
<td>Undefined</td>
<td>Undefined</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Sacramento River Winter ESA Endangered</td>
<td>NMFS ESA consultation standard/recovery plan: Recreational seasons: Point Arena to Pigeon Point between the first Saturday in April and the second Sunday in November; Pigeon Point to the U.S./Mexico Border between the first Saturday in April and the first Sunday in October. Minimum size limit ≥ 20 inches total length. Commercial seasons: Point Arena to the U.S./Mexico border between May 1 and September 30, except Point Reyes to Point San Pedro between October 1 and 15 (Monday through Friday). Minimum size limit ≥ 26 inches total length. In addition to these season and minimum size limit restrictions, annual limits to the preseason-predicted age-3 impact rate south of Point Arena, defined by a control rule, were implemented beginning in 2012 (See Figure A-3).</td>
<td>Undefined</td>
<td>Undefined</td>
<td>Undefined</td>
<td>ESA consultation standard applies.</td>
</tr>
<tr>
<td>California Coastal Chinook ESA Threatened</td>
<td>NMFS ESA consultation standard/recovery plan: Limit ocean fisheries to no more than a 16.0% age-4 ocean harvest rate on Klamath River fall Chinook.</td>
<td>Undefined</td>
<td>Undefined</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Klamath River Fall Indicator stock for the Southern Oregon Northern California (SONC) Chinook stock complex.</td>
<td>At least 32% of potential adult natural spawners, but no fewer than 40,700 naturally spawning adults in any one year. Brood escapement rate must average at least 32% over the long-term, but an individual brood may vary from this range to achieve the required tribal/nontribal annual allocation. Natural area spawners to maximize catch estimated at 40,700 adults (STT 2005).</td>
<td>40,700</td>
<td>30,525</td>
<td>71% (STT 2005)</td>
<td>Based on (F_{ABC}) and annual ocean abundance. (F_{ABC}) is (F_{MSY}) reduced by Tier 1 (5%) uncertainty</td>
</tr>
<tr>
<td>Klamath River - Spring</td>
<td>Undefined</td>
<td>Undefined</td>
<td>Undefined</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>Smith River</td>
<td>Undefined</td>
<td>Undefined</td>
<td>Undefined</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>Southern Oregon</td>
<td>At least 41,000 naturally-produced adults passing Huntley Park in the Rogue River to provide MSY spawning escapement. (PFMC 2015)</td>
<td>34,992</td>
<td>20,500</td>
<td>54% (PFMC 2015)</td>
<td>Component stock of SONC complex; ACL indicator stock is KRFC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stocks In The Fishery</th>
<th>Conservation Objective</th>
<th>S_{REF}</th>
<th>MSST</th>
<th>$MFMT_{(F_{REF})}$</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central and Northern Oregon</td>
<td>Unspecified portion of an aggregate 150,000 to 200,000 natural adult spawners for Oregon coast (Thompson 1977 and McGie 1982) measured by 60-90 fish per mile in index streams. ODFW developing specific conservation objectives for spring and fall stocks that may be implemented without plan amendment upon approval by the Council.</td>
<td></td>
<td>60 Fish per mile in index streams</td>
<td>30 Fish per mile in index streams</td>
<td>78% Proxy (SAC 2011a) Component stock(s) of FNMC complex; international exception applies, ACLs are not applicable.</td>
</tr>
<tr>
<td>Willapa Bay Fall</td>
<td>Undetermined in FMP. WDFW spawning escapement objective of 4,350.</td>
<td></td>
<td>3,393</td>
<td>1,697</td>
<td>78% Proxy (SAC 2011a)</td>
</tr>
<tr>
<td>Grays Harbor Fall Indicator stock for the Far North Migrating Coastal (FNMC) Chinook stock complex</td>
<td>13,326 natural adult spawners in the Chehalis and Humpitllips Rivers combined. (PFMC 2015)</td>
<td>13,326</td>
<td>6,663</td>
<td>63% (PFMC 2015)</td>
<td>FNMC complex; international exception applies, ACLs are not applicable.</td>
</tr>
<tr>
<td>Queets Fall Indicator stock for the FNMC Chinook stock complex</td>
<td>Manage terminal fisheries for 40% harvest rate, but no less than 2,500 natural adult spawners, the MSY level estimated by Cooney (1984). Annual natural spawning escapement targets may vary from FMP conservation objectives if agreed to by WDFW and treaty tribes under the provisions of Hoh v. Baldridge and subsequent U.S. District Court orders.</td>
<td>2,500</td>
<td>1,250</td>
<td>87% (Cooney 1984)</td>
<td></td>
</tr>
<tr>
<td>Hoh Fall Indicator stock for the FNMC Chinook stock complex</td>
<td>Manage terminal fisheries for 40% harvest rate, but no less than 1,200 natural adult spawners, the MSY level estimated by Cooney (1984).</td>
<td>1,200</td>
<td>600</td>
<td>90% (Cooney 1984)</td>
<td></td>
</tr>
<tr>
<td>Quillayute Fall Indicator stock for the FNMC Chinook stock complex</td>
<td>Manage terminal fisheries for 40% harvest rate, but no less than 3,000 natural adult spawners, the MSY level estimated by Cooney (1984).</td>
<td>3,000</td>
<td>1,500</td>
<td>87% (Cooney 1984)</td>
<td></td>
</tr>
<tr>
<td>Hoko Summer/Fall Indicator stock for the FNMC Chinook stock complex</td>
<td>850 natural adult spawners, the MSP level estimated by Ames and Phinney (1977). May include adults used for supplementation program.</td>
<td>850</td>
<td>425</td>
<td>78% Proxy (SAC 2011a)</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor Spring</td>
<td>1,400 natural adult spawners.</td>
<td>1,092</td>
<td>546</td>
<td>78% Proxy (SAC 2011a)</td>
<td>FNMC complex; international exception applies, ACLs are not applicable.</td>
</tr>
<tr>
<td>Queets Sp/Su</td>
<td>Manage terminal fisheries for 30% harvest rate, but no less than 700 natural adult spawners.</td>
<td>700</td>
<td>350</td>
<td>78% Proxy (SAC 2011a)</td>
<td></td>
</tr>
<tr>
<td>Hoh Spring/Summer</td>
<td>Manage terminal fisheries for 31% harvest rate, but no less than 900 natural adult spawners.</td>
<td>900</td>
<td>450</td>
<td>78% Proxy (SAC 2011a)</td>
<td></td>
</tr>
<tr>
<td>Quillayute Spring/Summer</td>
<td>1,200 natural adult spawners for summer component (MSY).</td>
<td>1,200</td>
<td>600</td>
<td>78% Proxy (SAC 2011a)</td>
<td></td>
</tr>
<tr>
<td>Willapa Bay Fall (hatchery)</td>
<td>8,200 adult return to hatchery. WDFW spawning escapement objective of 9,925 hatchery spawners.</td>
<td></td>
<td></td>
<td></td>
<td>Not applicable to hatchery stocks</td>
</tr>
<tr>
<td>Quinault Fall (hatchery)</td>
<td>Hatchery production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes.\(^\text{a}\) (Page 3 of 7)

CHINOOK

<table>
<thead>
<tr>
<th>Stocks In The Fishery</th>
<th>Conservation Objective</th>
<th>(S_{\text{MSY}})</th>
<th>MSST</th>
<th>MFMT ((F_{\text{MSY}}))</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Lewis River Fall</td>
<td>NMFS consultation standard/recovery plan. McIsaac (1990) stock-recruit analysis supports MSY objective of 5,700 natural adult spawners.</td>
<td>5,700</td>
<td></td>
<td></td>
<td>76%</td>
</tr>
<tr>
<td>Snake River Fall</td>
<td>NMFS consultation standard/recovery plan. No more than 70.0% of 1988-1993 base period AEQ exploitation rate for all ocean fisheries.</td>
<td>Undefined</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
<tr>
<td>Upper Willamette Spring</td>
<td>NMFS consultation standard/recovery plan. Not applicable for ocean fisheries.</td>
<td>Undefined</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
<tr>
<td>Columbia Upper River Spring</td>
<td>NMFS consultation standard/recovery plan. Not applicable for ocean fisheries.</td>
<td>Undefined</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
<tr>
<td>Snake River - Spring/Summer</td>
<td>NMFS consultation standard/recovery plan. Not applicable for ocean fisheries.</td>
<td>Undefined</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
<tr>
<td>Columbia Lower River Hatchery - Fall</td>
<td>14,800 adults for hatchery egg-take. River mouth goal of 25,000.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Lower River Hatchery Spring</td>
<td>3,500 adults to meet Cowlitz, Kalama, and Lewis Rivers broodstock needs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Mid-River Bright Hatchery Fall</td>
<td>7,900 for Little White Salmon Hatchery egg-take.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Spring Creek Hatchery Fall</td>
<td>6,000 adults to meet hatchery egg-take goal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Upper River Bright Fall</td>
<td>40,000 natural bright adults above McNary Dam (MSY proxy adopted in 1984 based on CRFMP). The management goal has been increased to 60,000 by Columbia River managers in recent years.</td>
<td>39,625 (Langness and Reidinger 2003)</td>
<td>19,812</td>
<td>85.91% (Langness and Reidinger 2003)</td>
<td>International exception applies. ACLs are not applicable.</td>
</tr>
<tr>
<td>Columbia Upper River Summer</td>
<td>Hold ocean fishery impacts at or below base period; recognize CRFMP objective - MSY proxy of 80,000 to 90,000 adults above Bonneville Dam, including both Columbia and Snake River stocks (state and tribal management entities considering separate objectives for these stocks).</td>
<td>12,143 (CTC 1999)</td>
<td>6,071</td>
<td>75% (CTC 1999)</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a}\) ESA consultation standard applies.

Not applicable to hatchery stocks
CHINOOK

<table>
<thead>
<tr>
<th>Stocks In The Fishery</th>
<th>Conservation Objective</th>
<th>S_{MSY}</th>
<th>MSST</th>
<th>$MFMT_{(F_{MSY})}$</th>
<th>ACL</th>
<th>ESA Consultation standard applies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Strait of Juan de Fuca Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 10% Southern U.S. (SUS) for the Elwha and Dungeness Rivers, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Skokomish Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 50% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Mid Hood Canal Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 15% pre-terminal SUS, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Nooksack Spring early</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 7% SUS, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Skagit Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 50% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Skagit Spring</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 38% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Stillaguamish Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 25% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Snohomish Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 21% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Cedar River Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 20% SUS, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>White River Spring</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 20% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Green River Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 12% pre-terminal SUS, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Nisqually River Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 50% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
<tr>
<td>Puyallup Summer/Fall</td>
<td>NMFS consultation standard/recovery plan: AEQ exploitation rate limit of 50% total, subject to change per co-manager/NMFS discussions.</td>
<td>Undefined</td>
<td></td>
<td>Undefined</td>
<td></td>
<td>ESA Consultation standard applies.</td>
</tr>
</tbody>
</table>
TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes.^a (Page 5 of 7)

<table>
<thead>
<tr>
<th>Stocks in The Fishery</th>
<th>Conservation Objective</th>
<th>S_{MSY}</th>
<th>MSST</th>
<th>$MFMT$ (F_{MSY})</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central California Coast ESA Threatened</td>
<td>NMFS ESA consultation standard/recovery plan: No retention of coho south of the OR/CA border.</td>
<td></td>
<td></td>
<td>ESA consultation standard applies</td>
<td>Undefined</td>
</tr>
<tr>
<td>Southern Oregon/Northern California Coast ESA Threatened</td>
<td>NMFS ESA consultation standard/recovery plan: No more than a 13.0% AEQ exploitation rate in ocean fisheries on Rogue/Klamath hatchery coho.</td>
<td></td>
<td></td>
<td>ESA consultation standard applies</td>
<td>Undefined</td>
</tr>
<tr>
<td>Oregon Coastal Natural ESA Threatened</td>
<td>NMFS ESA consultation standard/recovery plan: Total AEQ exploitation rate limit based on parental seeding level and marine survival matrix in FMP Table 3-2.</td>
<td></td>
<td></td>
<td>ESA consultation standard applies</td>
<td>Undefined</td>
</tr>
<tr>
<td>Lower Columbia Natural ESA Threatened</td>
<td>NMFS ESA consultation standard/recovery plan: AEQ exploitation rate limit on ocean and mainstem Columbia fisheries identified in annual NMFS guidance.</td>
<td></td>
<td></td>
<td>ESA consultation standard applies</td>
<td>Undefined</td>
</tr>
<tr>
<td>Oregon Coast Hatchery</td>
<td>Hatchery production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River Late Hatchery</td>
<td>Hatchery rack return goal of 6,400 adults. River mouth goal of 9,700.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River Early Hatchery</td>
<td>Hatchery rack return goal of 21,700 adults. River mouth goal of 77,200.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willapa Bay - Hatchery</td>
<td>Hatchery rack return goal of 6,100 adults.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinault - Hatchery</td>
<td>Hatchery production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quillayute - Summer Hatchery</td>
<td>Hatchery production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Puget Sound Hatchery</td>
<td>Hatchery rack return goal of 52,000 adults.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willapa Bay Natural</td>
<td>17,200 natural area spawners.</td>
<td>17,200</td>
<td>8,600</td>
<td>74%</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with additional rows for other stocks and hatcheries with similar conservation objectives.

Environmental Assessment Part 1 (Preseason Report I)

April 2017

2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
<table>
<thead>
<tr>
<th>Stocks in The Fishery</th>
<th>Conservation Objective</th>
<th>S_{MSY}</th>
<th>$MSST$</th>
<th>$MFMT$ (F$_{MSY}$)</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grays Harbor</td>
<td>35,400 natural adult spawners (MSP based on WDF [1979])</td>
<td>24,426 (S_{MSY} (FMP)) *F$_{MSY}$ (SAC 2010b)</td>
<td>18,320 (Johnstone et al. 2011)</td>
<td>MFMT=65% (Johnstone et al. 2011) F$_{MSY}$=69% (SAC 2011b)</td>
<td></td>
</tr>
<tr>
<td>Queets</td>
<td>MSY range of 5,800 to 14,500 natural adult spawners (Lestelle et al. 1984)</td>
<td>5,800 (Johnston et al. 2011)</td>
<td>4,350 (Johnstone et al. 2011)</td>
<td>MFMT=65% (Johnstone et al. 2011) F$_{MSY}$=68% (SAC 2011b)</td>
<td></td>
</tr>
<tr>
<td>Hoh</td>
<td>MSY range of 2,000 to 5,000 natural adult spawners (Lestelle et al. 1984)</td>
<td>2,520 (SAC 2010b)</td>
<td>1,890 S_{MSY}*0.75</td>
<td>MFMT=65% (Johnstone et al. 2011) F$_{MSY}$=69% (SAC 2011b)</td>
<td></td>
</tr>
<tr>
<td>Quillayute - Fall</td>
<td>MSY range of 6,300 to 15,800 natural adult spawners (Lestelle et al. 1984)</td>
<td>6,300 (Johnston et al. 2011)</td>
<td>4,725 (Johnstone et al. 2011)</td>
<td>MFMT=65%; F$_{MSY}$=59% (SAC 2011b)</td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>Total allowable MSY exploitation rate of: 0.60 for ocean age-3 abundance > 27,445; 0.40 for ocean age-3 abundance >11,679 and ≤27,445; 0.20 for ocean age-3 abundance ≤11,679</td>
<td>11,000 (Bowhay et al. 2009)</td>
<td>7,000 (Bowhay et al. 2009)</td>
<td>60% (Bowhay et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>Total allowable MSY exploitation rate of: 0.65 for ocean age-3 abundance > 41,000; 0.45 for ocean age-3 abundance >19,545 and ≤41,000; 0.20 for ocean age-3 abundance ≤19,545</td>
<td>14,350 (Bowhay et al. 2009)</td>
<td>10,750 (Bowhay et al. 2009)</td>
<td>65% (Bowhay et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Skagit</td>
<td>Total allowable MSY exploitation rate of: 0.60 for ocean age-3 abundance > 62,500; 0.35 for ocean age-3 abundance >22,857 and ≤62,500; 0.20 for ocean age-3 abundance ≤22,857</td>
<td>25,000 (Bowhay et al. 2009)</td>
<td>14,857 (Bowhay et al. 2009)</td>
<td>60% (Bowhay et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>Total allowable MSY exploitation rate of: 0.50 for ocean age-3 abundance > 20,000; 0.35 for ocean age-3 abundance >9,385 and ≤20,000; 0.20 for ocean age-3 abundance ≤9,385</td>
<td>10,000 (Bowhay et al. 2009)</td>
<td>6,100 (Bowhay et al. 2009)</td>
<td>50% (Bowhay et al. 2009)</td>
<td></td>
</tr>
<tr>
<td>Snohomish</td>
<td>Total allowable MSY exploitation rate of: 0.60 for ocean age-3 abundance > 125,000; 0.40 for ocean age-3 abundance >51,667 and ≤125,000; 0.20 for ocean age-3 abundance ≤51,667</td>
<td>50,000 (Bowhay et al. 2009)</td>
<td>31,000 (Bowhay et al. 2009)</td>
<td>60% (Bowhay et al. 2009)</td>
<td></td>
</tr>
</tbody>
</table>

Annual natural spawning escapement targets may vary from FMP conservation objectives if agreed to by WDFW and treaty tribes under the provisions of Hoh v. Baldrige, U.S. v. Washington, or subsequent U.S. District Court orders. International exception applies, ACLs are not applicable.
<table>
<thead>
<tr>
<th>Stocks In The Fishery</th>
<th>Conservation Objective</th>
<th>S_{MSY}</th>
<th>MSST</th>
<th>MFMT (F_{MSY})</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puget Sound</td>
<td>900,000 natural spawners or consistent with provisions of the Pacific Salmon Treaty (Fraser River Panel).</td>
<td>900,000</td>
<td>450,000</td>
<td>Undefined</td>
<td>International exception applies, ACLs are not applicable.</td>
</tr>
</tbody>
</table>

a/ Some hatchery goals and ESA consultation standards have been updated relative to the version of this table in the FMP.
b/ Conservation objectives for Puget Sound Chinook stocks represent those used in management for the 2016 salmon seasons and are subject to change for the 2017 pre-season planning process.

<table>
<thead>
<tr>
<th>MARINE SURVIVAL INDEX (based on return of jacks per hatchery smolt)</th>
<th>Low (<0.0009)</th>
<th>Medium (0.0009 to 0.0034)</th>
<th>High (>0.0034)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARENT SPAWNER STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High: Parent spawners achieved Level #2 rebuilding criteria, grandparent spawners achieved Level #1</td>
<td>≤15%</td>
<td>≤30%</td>
<td>≤35%a/</td>
</tr>
<tr>
<td>Medium: Parent spawners achieved Level #1 or greater rebuilding criteria</td>
<td>≤15%</td>
<td>≤20%a/</td>
<td>≤25%a/</td>
</tr>
<tr>
<td>Low: Parent spawners less than Level #1 rebuilding criteria</td>
<td>≤15%</td>
<td>≤15%</td>
<td>≤15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCN Coho Spawners by Stock Component</th>
<th>Full Seeding at Low Marine Survival:</th>
<th>Northern</th>
<th>North-Central</th>
<th>South-Central</th>
<th>Southern</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebuilding Criteria</td>
<td></td>
<td>21,700</td>
<td>55,000</td>
<td>50,000</td>
<td>5,400</td>
<td>132,100</td>
</tr>
<tr>
<td>Full Seeding at Medium Marine Survival:</td>
<td></td>
<td>16,400</td>
<td>41,300</td>
<td>37,500</td>
<td>4,100</td>
<td>99,300</td>
</tr>
<tr>
<td>Level #2 (50% of full seeding)</td>
<td></td>
<td>10,900</td>
<td>27,500</td>
<td>25,000</td>
<td>2,700</td>
<td>66,100</td>
</tr>
<tr>
<td>38% of Level #1 (19% of full seeding)</td>
<td></td>
<td>4,100</td>
<td>10,500</td>
<td>9,500</td>
<td>1,000</td>
<td>25,100</td>
</tr>
</tbody>
</table>

Stock Component (Boundaries) Full Seeding of Major Basins at Low Marine Survival (Number of Adult Spawners)

<table>
<thead>
<tr>
<th>Northern: (Necanicum River to Neskowin Creek)</th>
<th>Nehalem</th>
<th>Tillamook</th>
<th>Nestucca</th>
<th>Ocean Tribs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>North-Central: (Salmon River to Siuslaw River)</td>
<td>Siletz</td>
<td>Yaquina</td>
<td>Alsea</td>
<td>Siuslaw</td>
</tr>
<tr>
<td>South-Central: (Siltcoos River to Sixes River)</td>
<td>Umpqua</td>
<td>Coos</td>
<td>Coquille</td>
<td>Coastal Lakes</td>
</tr>
<tr>
<td>Southern: (Elk River to Winchuck River)</td>
<td>Rogue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Full Seeding of Major Basins at Low Marine Survival (Number of Adult Spawners) |
|--------------------------------|---------|-----------|----------|--------------|
| 17,500 | 2,000 | 1,800 | 400 | |
| 4,300 | 7,100 | 15,100 | 22,800 | 5,700 |
| 29,400 | 7,200 | 5,400 | 8,000 | 5,400 |
| 5,400 | | | | |

a/ When a stock component achieves a medium or high parent spawner status under a medium or high marine survival index, but a major basin within the stock component is less than 10% of full seeding, (1) the parent spawner status will be downgraded one level to establish the allowable fishery impact rate for that component, and (2) no coho-directed harvest impacts will be allowed within that particular basin.

b/ This exploitation rate criteria applies when (1) parent spawners are less than 38% of the Level #1 rebuilding criteria, or (2) marine survival conditions are projected to be at an extreme low as in 1994-1996 (<0.0006 jack per hatchery smolt). If parent spawners decline to lower levels than observed through 1998, rates of less than 10% would be considered, recognizing that there is a limit to further bycatch reduction opportunities.
TABLE A-3. Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13.

<table>
<thead>
<tr>
<th>Parent Spawner Status [a]</th>
<th>Extremely Low [<0.0008]</th>
<th>Low [0.0008 to 0.0014]</th>
<th>Medium [0.0014 to 0.0040]</th>
<th>High [>0.0040]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>E</td>
<td>J</td>
<td>O</td>
<td>T</td>
</tr>
<tr>
<td>Parent Spawners > 75% of full seeding</td>
<td>≤ 8%</td>
<td>≤ 15%</td>
<td>≤ 30%</td>
<td>≤ 45%</td>
</tr>
<tr>
<td>Medium</td>
<td>D</td>
<td>I</td>
<td>N</td>
<td>S</td>
</tr>
<tr>
<td>Parent Spawners > 50% & ≤ 75% of full seeding</td>
<td>≤ 8%</td>
<td>≤ 15%</td>
<td>≤ 20%</td>
<td>≤ 38%</td>
</tr>
<tr>
<td>Low</td>
<td>C</td>
<td>H</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>Parent Spawners > 19% & ≤ 50% of full seeding</td>
<td>≤ 8%</td>
<td>≤ 15%</td>
<td>≤ 15%</td>
<td>≤ 25%</td>
</tr>
<tr>
<td>Very Low</td>
<td>B</td>
<td>G</td>
<td>L</td>
<td>Q</td>
</tr>
<tr>
<td>Parent Spawners > 4 fish per mile & ≤ 19% of full seeding</td>
<td>≤ 8%</td>
<td>≤ 11%</td>
<td>≤ 11%</td>
<td>≤ 11%</td>
</tr>
<tr>
<td>Critical [b]</td>
<td>A</td>
<td>F</td>
<td>K</td>
<td>P</td>
</tr>
<tr>
<td>Parental Spawners ≤ 4 fish per mile</td>
<td>0 - 8%</td>
<td>0 - 8%</td>
<td>0 - 8%</td>
<td>0 - 8%</td>
</tr>
</tbody>
</table>

Sub-aggregate and Basin Specific Spawner Criteria Data

<table>
<thead>
<tr>
<th>Sub-aggregate</th>
<th>Miles of Available Spawning Habitat</th>
<th>100% of Full Seeding</th>
<th>"Critical"</th>
<th>Very Low, Low, Medium & High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Fish per Mile</td>
<td>12% of Full Seeding</td>
</tr>
<tr>
<td>Northern</td>
<td>899</td>
<td>21,700</td>
<td>3,596</td>
<td>NA</td>
</tr>
<tr>
<td>North - Central</td>
<td>1,163</td>
<td>55,000</td>
<td>4,852</td>
<td>NA</td>
</tr>
<tr>
<td>South - Central</td>
<td>1,685</td>
<td>50,000</td>
<td>6,740</td>
<td>NA</td>
</tr>
<tr>
<td>Southern</td>
<td>450</td>
<td>5,400</td>
<td>NA</td>
<td>648</td>
</tr>
<tr>
<td>Coastwide Total</td>
<td>4,197</td>
<td>132,100</td>
<td>15,836</td>
<td>25,099</td>
</tr>
</tbody>
</table>

\[a\] Parental spawner abundance status for the OCN aggregate assumes the status of the weakest sub-aggregate.

\[b\] "Critical" parental spawner status is defined as 4 fish per mile for the Northern, North Central, and South Central subaggregates. Because the ratio of high quality spawning habitat to total spawning habitat in the Rogue River Basin differs significantly from the rest of the basins on the coast, the spawner density of 4 fish per mile does not represent "Critical" status for that basin. Instead, "Critical" status for the Rogue Basin (Southern Sub-aggregate) is estimated as 12% of full seeding of high quality.
TABLE A-4. Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13 including modifications to the marine survival index adopted during the 2012 and 2013 methodology reviews.

<table>
<thead>
<tr>
<th>Parent Spawner Status<sup>a/</sup></th>
<th>Marine Survival Index (Wild adult coho salmon survival as predicted by the two-variable GAM ensemble forecast)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extremely Low <2%</td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Parent Spawners > 75% of full seeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>≤ 8%</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Parent Spawners > 50% & ≤ 75% of full seeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>≤ 8%</td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Parent Spawners > 19% & ≤ 50% of full seeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>≤ 8%</td>
</tr>
<tr>
<td>Very Low</td>
<td></td>
</tr>
<tr>
<td>Parent Spawners > 4 fish per mile & ≤ 19% of full seeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>≤ 8%</td>
</tr>
<tr>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>Parent Spawners ≤ 4 fish per mile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>0 – 8%</td>
</tr>
</tbody>
</table>

Sub-aggregate and Basin Specific Spawner Criteria Data

<table>
<thead>
<tr>
<th>Sub-aggregate</th>
<th>Miles of Available Spawning Habitat</th>
<th>100% of Full Seeding</th>
<th>"Critical"</th>
<th>Very Low, Low, Medium & High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Fish per Mile</td>
<td>12% of Full Seeding</td>
</tr>
<tr>
<td>Northern</td>
<td>899</td>
<td>21,700</td>
<td>3,596 NA</td>
<td>4,123</td>
</tr>
<tr>
<td>North-Central</td>
<td>1,163</td>
<td>55,000</td>
<td>4,652 NA</td>
<td>10,450</td>
</tr>
<tr>
<td>South-Central</td>
<td>1,685</td>
<td>50,000</td>
<td>6,740 NA</td>
<td>9,500</td>
</tr>
<tr>
<td>Southern (Removed per adoption of Amendment 16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastwide Total</td>
<td>3,747</td>
<td>126,700</td>
<td>14,988 NA</td>
<td>24,073</td>
</tr>
</tbody>
</table>

^{a/} Parental spawner abundance status for the OCN aggregate assumes the status of the weakest sub-aggregate.
TABLE A-5. Council adopted management objectives for Puget Sound natural coho management units, expressed as exploitation rate ceilings for critical, low and normal abundance based status categories, with runsize breakpoints (abundances expressed as ocean age-3).

<table>
<thead>
<tr>
<th>Status</th>
<th>Management Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strait of Juan de Fuca</td>
</tr>
<tr>
<td>Critical/Low runsize breakpoint</td>
<td>11,679</td>
</tr>
<tr>
<td>Critical exploitation rate</td>
<td>0.20</td>
</tr>
<tr>
<td>Low/normal runsize breakpoint</td>
<td>27,445</td>
</tr>
<tr>
<td>Low exploitation rate</td>
<td>0.40</td>
</tr>
<tr>
<td>Normal exploitation rate</td>
<td>0.60</td>
</tr>
</tbody>
</table>

TABLE A-6. Council recommended management objectives for Lower Columbia River natural tule Chinook, expressed as exploitation rate ceilings for abundance based status categories, with runsize forecast bins expressed as adult river mouth return forecasts of Lower Columbia River hatchery tule Chinook.

<table>
<thead>
<tr>
<th>Runsize Forecast Bins</th>
<th><30,000</th>
<th>30,000 to 40,000</th>
<th>40,000 to 85,000</th>
<th>>85,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Exploitation Rate</td>
<td>0.30</td>
<td>0.35</td>
<td>0.38</td>
<td>0.41</td>
</tr>
</tbody>
</table>
FIGURE A-1. Sacramento River fall Chinook control rule. Potential spawner abundance is the predicted hatchery and natural area adult spawners in the absence of fisheries, which is equivalent to the Sacramento Index. See the salmon FMP, Section 3.3.6, for control rule details.

FIGURE A-2. Klamath River fall Chinook control rule. Potential spawner abundance is the predicted natural area adult spawners in the absence of fisheries. See the salmon FMP, Section 3.3.6, for control rule details.
SACRAMENTO RIVER WINTER CHINOOK CONTROL RULE

The first component of the SRWC consultation standard consists of time/area/fishery closure and size limit provisions described in Chapter II and Table A-1.

The second component of the SRWC consultation standard is a control rule that specifies the maximum forecast age-3 impact rate for the area south of Point Arena, California, as a function of the geometric mean of escapement from the most recent three years. This control rule is depicted in Figure A-3, and a description follows.

When the three-year geometric mean of spawner escapement is in excess of 5,000, a maximum forecast age-3 impact rate is not specified and the consultation standard reduces to only the first component. When the three-year geometric mean is between 4,000 and 5,000, the maximum forecast age-3 impact rate is 0.20. Between 3-year geometric mean values of 4,000 and 500, the maximum forecast age-3 impact rate decreases linearly from 0.20 to 0.10. Finally, at 3-year geometric mean spawner levels less than 500, the maximum forecast age-3 impact rate is zero.

FIGURE A-3. Sacramento River winter Chinook impact rate control rule; maximum forecast age-3 impact rate for the area south of Point Arena, California, as a function of the geometric mean of escapement from the most recent three years.
APPENDIX B

SALMON HARVEST ALLOCATION SCHEDULES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARVEST ALLOCATION - SECTION 5.3 OF THE PACIFIC COAST SALMON FISHERY MANAGEMENT PLAN</td>
<td>115</td>
</tr>
<tr>
<td>5.3 ALLOCATION</td>
<td>115</td>
</tr>
<tr>
<td>5.3.1 Commercial (Non-Tribal) and Recreational Fisheries North of Cape Falcon</td>
<td>115</td>
</tr>
<tr>
<td>5.3.1.1 Goal, Objectives, and Priorities</td>
<td>115</td>
</tr>
<tr>
<td>5.3.1.2 Allocation Schedule Between Gear Types</td>
<td>116</td>
</tr>
<tr>
<td>5.3.1.3 Recreational Subarea Allocations</td>
<td>117</td>
</tr>
<tr>
<td>5.3.2 Commercial and Recreational Fisheries South of Cape Falcon</td>
<td>118</td>
</tr>
<tr>
<td>5.3.3 Tribal Indian Fisheries</td>
<td>121</td>
</tr>
<tr>
<td>5.3.3.1 California</td>
<td>121</td>
</tr>
<tr>
<td>5.3.3.2 Columbia River</td>
<td>121</td>
</tr>
<tr>
<td>5.3.3.3 U.S. v. Washington Area</td>
<td>121</td>
</tr>
<tr>
<td>MEASURES TO MANAGE THE HARVEST - SECTION 6.5 OF THE PACIFIC COAST SALMON FISHERY MANAGEMENT PLAN</td>
<td>122</td>
</tr>
<tr>
<td>6.5 SEASONS AND QUOTAS</td>
<td>122</td>
</tr>
<tr>
<td>6.5.2 Procedures for Calculating Seasons</td>
<td>122</td>
</tr>
<tr>
<td>6.5.3 Species-Specific and Other Selective Fisheries</td>
<td>122</td>
</tr>
<tr>
<td>6.5.3.1 Guidelines</td>
<td>122</td>
</tr>
<tr>
<td>6.5.3.2 Selective Fisheries Which May Change Allocation Percentages North of Cape Falcon</td>
<td>123</td>
</tr>
<tr>
<td>6.5.4 Procedures for Calculating Quotas</td>
<td>124</td>
</tr>
<tr>
<td>6.5.5 Procedures for Regulating Ocean Harvests of Pink and Sockeye</td>
<td>124</td>
</tr>
</tbody>
</table>
5.3 ALLOCATION

“Conservation and management measures shall not discriminate between residents of different states. If it becomes necessary to allocate or assign fishing privileges among various United States fishermen, such allocation shall be (A) fair and equitable to all such fishermen; (B) reasonably calculated to promote conservation; and (C) carried out in such manner that no particular individual, corporation, or other entity acquires an excessive share of such privileges.”

Magnuson-Stevens Act, National Standard 4

Harvest allocation is required when the number of fish is not adequate to satisfy the perceived needs of the various fishing industry groups and communities, to divide the catch between non-Indian ocean and inside fisheries and among ocean fisheries, and to provide Federally recognized treaty Indian fishing opportunity. In allocating the resource between ocean and inside fisheries, the Council considers both in-river harvest and spawner escapement needs. The magnitude of in-river harvest is determined by the states in a variety of ways, depending upon the management area. Some levels of in-river harvests are designed to accommodate federally recognized in-river Indian fishing rights, while others are established to allow for non-Indian harvests of historical magnitudes. Several fora exist to assist this process on an annual basis. The North of Cape Falcon Forum, a state and tribal sponsored forum, convenes the pertinent parties during the Council’s preseason process to determine allocation and conservation recommendations for fisheries north of Cape Falcon. The individual states also convene fishery industry meetings to coordinate their input to the Council.

5.3.1 Commercial (Non-Tribal) and Recreational Fisheries North of Cape Falcon

5.3.1.1 Goal, Objectives, and Priorities

Harvest allocations will be made from a total allowable ocean harvest, which is maximized to the largest extent possible but still consistent with PST and treaty-Indian obligations, state fishery needs, and spawning escapement requirements, including consultation standards for stocks listed under the ESA. The Council shall make every effort to establish seasons and gear requirements that provide troll and recreational fleets a reasonable opportunity to catch the available harvest. These may include single-species directed fisheries with landing restrictions for other species.

The goal of allocating ocean harvest north of Cape Falcon is to achieve, to the greatest degree possible, the objectives for the commercial and recreational fisheries as follows:

- Provide recreational opportunity by maximizing the duration of the fishing season while minimizing daily and area closures and restrictions on gear and daily limits.
- Maximize the value of the commercial harvest while providing fisheries of reasonable duration.

The priorities listed below will be used to help guide establishment of the final harvest allocation while meeting the overall commercial and recreational fishery objectives.

At total allowable harvest levels up to 300,000 coho and 100,000 Chinook:

- Provide coho to the recreational fishery for a late June through early September all-species season. Provide Chinook to allow (1) access to coho and, if possible, (2) a minimal Chinook-only fishery prior to the all-species season. Adjust days per week and/or institute area restrictions to stabilize season duration.
• Provide Chinook to the troll fishery for a May and early June Chinook season and provide coho to (1) meet coho hooking mortality in June where needed and (2) access a pink salmon fishery in odd years. Attempt to ensure that part of the Chinook season will occur after June 1.

At total allowable harvest levels above 300,000 coho and above 100,000 Chinook:

• Relax any restrictions in the recreational all-species fishery and/or extend the all-species season beyond Labor Day as coho quota allows. Provide Chinook to the recreational fishery for a Memorial Day through late June Chinook-only fishery. Adjust days per week to ensure continuity with the all-species season.

• Provide coho for an all-salmon troll season in late summer and/or access to a pink fishery. Leave adequate Chinook from the May through June season to allow access to coho.

5.3.1.2 Allocation Schedule Between Gear Types

Initial commercial and recreational allocation will be determined by the schedule of percentages of total allowable harvest as follows:

<table>
<thead>
<tr>
<th>Harvest (thousands of fish)</th>
<th>Coho</th>
<th>Percentage<sup>a/</sup></th>
<th>Chinook</th>
<th>Percentage<sup>a/</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Troll</td>
<td>Recreational</td>
<td>Troll</td>
<td>Recreational</td>
</tr>
<tr>
<td>0-300</td>
<td>25</td>
<td>75</td>
<td>0-100</td>
<td>50</td>
</tr>
<tr>
<td>>300</td>
<td>60</td>
<td>40</td>
<td>>100-150</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>150</td>
<td>70</td>
</tr>
</tbody>
</table>

^{a/} The allocation must be calculated in additive steps when the harvest level exceeds the initial tier.

This allocation schedule should, on average, allow for meeting the specific fishery allocation priorities described above. The initial allocation may be modified annually by preseason and inseason trades to better achieve (1) the commercial and recreational fishery objectives and (2) the specific fishery allocation priorities. The final preseason allocation adopted by the Council will be expressed in terms of quotas, which are neither guaranteed catches nor inflexible ceilings. Only the total ocean harvest quota is a maximum allowable catch.

To provide flexibility to meet the dynamic nature of the fisheries and to assure achievement of the allocation objectives and fishery priorities, deviations from the allocation schedule will be allowed as provided below and as described in Section 6.5.3.2 for certain selective fisheries.

1. Preseason species trades (Chinook and coho) that vary from the allocation schedule may be made by the Council based upon the recommendation of the pertinent recreational and commercial SAS representatives north of Cape Falcon. The Council will compare the socioeconomic impacts of any such recommendation to those of the standard allocation schedule before adopting the allocation that best meets FMP management objectives.

2. Inseason transfers, including species trades of Chinook and coho, may be permitted in either direction between recreational and commercial fishery allocations to allow for uncatchable fish in one fishery to be reallocated to the other. Fish will be deemed "uncatchable" by a respective commercial or recreational fishery only after considering all possible annual management actions to allow for their harvest which meet framework harvest management objectives, including single species or exclusive
registration fisheries. Implementation of inseason transfers will require (1) consultation with the pertinent recreational and commercial SAS members and the STT, and (2) a clear establishment of available fish and impacts from the transfer.

3. An exchange ratio of four coho to one Chinook shall be considered a desirable guideline for preseason trades. Deviations from this guideline should be clearly justified. Inseason trades and transfers may vary to meet overall fishery objectives. (The exchange ratio of four coho to one Chinook approximately equalizes the species trade in terms of average ex-vessel values of the two salmon species in the commercial fishery. It also represents an average species catch ratio in the recreational fishery.)

4. Any increase or decrease in the recreational or commercial total allowable catch (TAC), resulting from an inseason restructuring of a fishery or other inseason management action, does not require reallocation of the overall north of Cape Falcon non-Indian TAC.

5. The commercial TACs of Chinook and coho derived during the preseason allocation process may be varied by major subareas (i.e., north of Leadbetter Point and south of Leadbetter Point) if there is a need to do so to decrease impacts on weak stocks. Deviations in each major subarea will generally not exceed 50 percent of the TAC of each species that would have been established without a geographic deviation in the distribution of the TAC. Deviation of more than 50 percent will be based on a conservation need to protect weak stocks and will provide larger overall harvest for the entire fishery north of Cape Falcon than would have been possible without the deviation. In addition, the actual harvest of coho may deviate from the initial allocation as provided in Section 6.5.3.2 for certain selective fisheries.

6. The recreational TACs of Chinook and coho derived during the preseason allocation process will be distributed among four major recreational port areas as described for coho and Chinook distribution in Section 5.3.1.3. The Council may deviate from subarea quotas (1) to meet recreational season objectives based on agreement of representatives of the affected ports and/or (2) in accordance with Section 6.5.3.2 with regard to certain selective fisheries. Additionally, based on the recommendations of the SAS members representing the ocean sport fishery north of Cape Falcon, the Council will include criteria in its preseason salmon management recommendations to guide any inseason transfer of coho among the recreational subareas to meet recreational season duration objectives. Inseason redistributions of quotas within the recreational fishery or the distribution of allowable coho catch transfers from the commercial fishery may deviate from the preseason distribution.

5.3.1.3 Recreational Subarea Allocations

Coho

The north of Cape Falcon preseason recreational TAC of coho will be distributed to provide 50 percent to the area north of Leadbetter Point and 50 percent to the area south of Leadbetter Point. The distribution of the allocation north of Leadbetter point will vary, depending on the existence and magnitude of an inside fishery in Area 4B, which is served by Neah Bay.

In years with no Area 4B fishery, the distribution of coho north of Leadbetter Point (50 percent of the total recreational TAC) will be divided to provide 74 percent to the area between Leadbetter Point and the Queets River (Westport), 5.2 percent to the area between Queets River and Cape Flattery (La Push), and 20.8 percent to the area north of the Queets River (Neah Bay). In years when there is an Area 4B (Neah Bay) fishery under state management, the allocation percentages north of Leadbetter Point will be modified to maintain more equitable fishing opportunity among the ports by decreasing the ocean harvest share for Neah Bay. This will be accomplished by adding 25 percent of the numerical value of the Area 4B fishery to the recreational TAC north of Leadbetter Point prior to calculating the shares for Westport and La Push.
The increase to Westport and La Push will be subtracted from the Neah Bay ocean share to maintain the same total harvest allocation north of Leadbetter Point. Table 5-2 displays the resulting percentage allocation of the total recreational coho catch north of Cape Falcon among the four recreational port areas (each port area allocation will be rounded to the nearest hundred fish, with the largest quotas rounded downward if necessary to sum to the TAC).

<table>
<thead>
<tr>
<th>Port Area</th>
<th>Without Area 4B Add-on</th>
<th>With Area 4B Add-on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia River</td>
<td>50.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Westport</td>
<td>37.0%</td>
<td>37.0% plus 17.3% of the Area 4B add-on</td>
</tr>
<tr>
<td>La Push</td>
<td>2.6%</td>
<td>2.6% plus 1.2% of the Area 4B add-on</td>
</tr>
<tr>
<td>Neah Bay</td>
<td>10.4%</td>
<td>10.4% minus 18.5% of the Area 4B add-on</td>
</tr>
</tbody>
</table>

Table 5-2. Percentage allocation of total allowable coho harvest among the four recreational port areas north of Cape Falcon.

TABLE 5-3. Example distributions of the recreational coho TAC north of Leadbetter Point.

<table>
<thead>
<tr>
<th>Sport TAC North of Cape Falcon</th>
<th>Without Area 4B Add-On</th>
<th>With Area 4B Add-On a/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia River</td>
<td>50,000</td>
<td>25,000</td>
</tr>
<tr>
<td>Westport</td>
<td>18,500</td>
<td>13,000</td>
</tr>
<tr>
<td>La Push</td>
<td>3,200</td>
<td>2,400</td>
</tr>
<tr>
<td>Neah Bay</td>
<td>5,200</td>
<td>4,000</td>
</tr>
</tbody>
</table>

Table 5-3. Example distributions of the recreational coho TAC north of Leadbetter Point.

Chinook

Subarea distributions of Chinook will be managed as guidelines and shall be calculated by the STT with the primary objective of achieving all-species fisheries without imposing Chinook restrictions (i.e., area closures or bag limit reductions). Chinook in excess of all-species fisheries needs may be utilized by directed Chinook fisheries north of Cape Falcon or by negotiating a Chinook/coho trade with another fishery sector.

Inseason management actions may be taken by the NMFS NW Regional Administrator to assure that the primary objective of the Chinook harvest guidelines for each of the four recreational subareas north of Cape Falcon are met. Such actions might include: closure from 0 to 3, or 0 to 6, or 3 to 200, or 5 to 200 nautical miles from shore; closure from a point extending due west from Tatoosh Island for 5 miles, then south to a point due west of Umatilla Reef Buoy, then due east to shore; closure from North Head at the Columbia River mouth north to Leadbetter Point; change species that may be landed; or other actions as prescribed in the annual regulations.

5.3.2 Commercial and Recreational Fisheries South of Cape Falcon

The allocation of allowable ocean harvest of coho salmon south of Cape Falcon has been developed to provide a more stable recreational season and increased economic benefits of the ocean salmon fisheries at varying stock abundance levels. When coupled with various recreational harvest reduction measures or the timely transfer of unused recreational allocation to the commercial fishery, the allocation schedule is designed to help secure recreational seasons extending at least from Memorial Day through Labor Day when possible, assist in maintaining commercial markets even at relatively low stock sizes, and fully utilize
available harvest. Total ocean catch of coho south of Cape Falcon will be treated as a quota to be allocated between troll and recreational fisheries as provided in Table 5-4.

(Note: The allocation schedule provides guidance only when coho abundance permits a directed coho harvest, not when the allowable impacts are insufficient to allow coho retention south of Cape Falcon. At such low levels, allocation of the allowable impacts will be accomplished during the Council's preseason process.)

TABLE 5-4. Allocation of allowable ocean harvest of coho salmon (thousands of fish) south of Cape Falcon.\(^a\)

<table>
<thead>
<tr>
<th>Total Allowable Ocean Harvest</th>
<th>Recreational Allocation</th>
<th>Commercial Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td>≤100</td>
<td>≤100(^b)(^c)/</td>
<td>100(^b)/</td>
</tr>
<tr>
<td>200</td>
<td>167(^b)(^c)/</td>
<td>84(^b)/</td>
</tr>
<tr>
<td>300</td>
<td>200</td>
<td>67</td>
</tr>
<tr>
<td>350</td>
<td>217</td>
<td>62</td>
</tr>
<tr>
<td>400</td>
<td>224</td>
<td>56</td>
</tr>
<tr>
<td>500</td>
<td>238</td>
<td>48</td>
</tr>
<tr>
<td>600</td>
<td>252</td>
<td>42</td>
</tr>
<tr>
<td>700</td>
<td>266</td>
<td>38</td>
</tr>
<tr>
<td>800</td>
<td>280</td>
<td>35</td>
</tr>
<tr>
<td>900</td>
<td>290</td>
<td>32</td>
</tr>
<tr>
<td>1,000</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>1,100</td>
<td>310</td>
<td>28</td>
</tr>
<tr>
<td>1,200</td>
<td>320</td>
<td>27</td>
</tr>
<tr>
<td>1,300</td>
<td>330</td>
<td>25</td>
</tr>
<tr>
<td>1,400</td>
<td>340</td>
<td>24</td>
</tr>
<tr>
<td>1,500</td>
<td>350</td>
<td>23</td>
</tr>
<tr>
<td>1,600</td>
<td>360</td>
<td>23</td>
</tr>
<tr>
<td>1,700</td>
<td>370</td>
<td>22</td>
</tr>
<tr>
<td>1,800</td>
<td>380</td>
<td>21</td>
</tr>
<tr>
<td>1,900</td>
<td>390</td>
<td>21</td>
</tr>
<tr>
<td>2,000</td>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>2,500</td>
<td>450</td>
<td>18</td>
</tr>
<tr>
<td>3,000</td>
<td>500</td>
<td>17</td>
</tr>
</tbody>
</table>

\(^a\) The allocation schedule is based on the following formula: first 150,000 coho to the recreational base (this amount may be reduced as provided in footnote b); over 150,000 to 350,000 fish, share at 2:1, 0.667 to troll and 0.333 to recreational; over 350,000 to 800,000 the recreational share is 217,000 plus 14% of the available fish over 350,000; above 800,000 the recreational share is 280,000 plus 10% of the available fish over 800,000.

Note: The allocation schedule provides guidance only when coho abundance permits a directed coho harvest, not when the allowable impacts are insufficient to allow general coho retention south of Cape Falcon. At such low levels, allocation of the allowable impacts will be determined in the Council's preseason process. Deviations from the allocation may also be allowed to meet consultation standards for ESA-listed stocks (e.g., the 1998 biological opinion for California coastal coho requires no retention of coho in fisheries off California).

\(^b\) If the commercial allocation is insufficient to meet the projected hook-and-release mortality associated with the commercial all-salmon-except-coho season, the recreational allocation will be reduced by the number needed to eliminate the deficit.

\(^c\) When the recreational allocation is 167,000 coho or less, special allocation provisions apply to the recreational harvest distribution by geographic area (unless superseded by requirements to meet a consultation standard for ESA-listed stocks); see text of FMP as modified by Amendment 11 allocation provisions.
The allocation schedule is designed to give sufficient coho to the recreational fishery to increase the probability of attaining no less than a Memorial Day to Labor Day season as stock sizes increase. This increased allocation means that, in many years, actual catch in the recreational fishery may fall short of its allowance. In such situations, managers will make an inseason reallocation of unneeded recreational coho to the south of Cape Falcon troll fishery. The reallocation should be structured and timed to allow the commercial fishery sufficient opportunity to harvest any available reallocation prior to September 1, while still assuring completion of the scheduled recreational season (usually near mid-September) and, in any event, the continuation of a recreational fishery through Labor Day. This reallocation process will occur no later than August 15 and will involve projecting the recreational fishery needs for the remainder of the summer season. The remaining projected recreational catch needed to extend the season to its scheduled closing date will be a harvest guideline rather than a quota. If the guideline is met prior to Labor Day, the season may be allowed to continue if further fishing is not expected to result in any considerable danger of impacting the allocation of another fishery or of failing to meet an escapement goal.

The allocation schedule is also designed to assure there are sufficient coho allocated to the troll fishery at low stock levels to ensure a full Chinook troll fishery. This hooking mortality allowance will have first priority within the troll allocation. If the troll allocation is insufficient for this purpose, the remaining number of coho needed for the estimated incidental coho mortality will be deducted from the recreational share. At higher stock sizes, directed coho harvest will be allocated to the troll fishery after hooking mortality needs for Chinook troll fishing have been satisfied.

The allowable harvest south of Cape Falcon may be further partitioned into subareas to meet management objectives of the FMP. Allowable harvests for subareas south of Cape Falcon will be determined by an annual blend of management considerations including:

1. Abundance of contributing stocks
2. Allocation considerations of concern to the Council
3. Relative abundance in the fishery between Chinook and coho
4. Escapement goals
5. Maximizing harvest potential

Troll coho quotas may be developed for subareas south of Cape Falcon consistent with the above criteria. California recreational catches of coho, including projections of the total catch to the end of the season, would be included in the recreational allocation south of Cape Falcon, but the area south of the Oregon-California border would not close when the allocation is met; except as provided below when the recreational allocation is at 167,000 or fewer fish.

When the south of Cape Falcon recreational allocation is equal to or less than 167,000 coho:

1. The recreational fisheries will be divided into two major subareas, as listed in #2 below, with independent quotas (i.e., if one quota is not achieved or is exceeded, the underage or overage will not be added to or deducted from the other quota; except as provided under #3 below).

2. The two major recreational subareas will be managed within the constraints of the following impact quotas, expressed as a percentage of the total recreational allocation (percentages based on avoiding large deviations from the historical harvest shares):

 a. Central Oregon (Cape Falcon to Humbug Mountain) - 70%
 b. South of Humbug Mountain - 30%
In addition,
(1) Horse Mountain to Point Arena will be managed for an impact guideline of 3 percent of the south of Cape Falcon recreational allocation, and

(2) There will be no coho harvest constraints south of Point Arena. However, the projected harvest in this area (which averaged 1,800 coho from 1986-1990) will be included in the south of Humbug Mountain impact quota.

3. Coho quota transfers can occur on a one-for-one basis between subareas if Chinook constraints preclude access to coho.

5.3.3 Tribal Indian Fisheries

5.3.3.1 California

On October 4, 1993 the Solicitor, Department of Interior, issued a legal opinion in which he concluded that the Yurok and Hoopa Valley Indian tribes of the Klamath River Basin have a federally protected right to the fishery resource of their reservations sufficient to support a moderate standard of living or 50 percent of the total available harvest of Klamath-Trinity basin salmon, whichever is less. The Secretary of Commerce recognized the tribes' federally reserved fishing right as applicable law for the purposes of the MSA (58 FR 68063, December 23, 1993). The Ninth Circuit Court of Appeals upheld the conclusion that the Hoopa Valley and Yurok tribes have a federally reserved right to harvest fish in Parravano v. Babbitt and Brown, 70 F.3d 539 (1995) (Cert. denied in Parravano v. Babbitt and Brown 110, S.Ct 2546 [1996]). The Council must recognize the tribal allocation in setting its projected escapement level for the Klamath River.

5.3.3.2 Columbia River

Pursuant to a September 1, 1983 Order of the U.S. District Court, the allocation of harvest in the Columbia River was established under the "Columbia River Fish Management Plan" which was implemented in 1988 by the parties of U.S. v. Oregon. This plan replaced the original 1977 plan (pages 16-20 of the 1978 FMP). Since the Columbia River Fishery Management Plan expired on December 31, 1998, fall Chinook in Columbia River fisheries were managed through 2007 under the guidance of annual management agreements among the U.S. v. Oregon parties. In 2008, a new 10 year management agreement was negotiated through the U.S. v. Oregon process, which included revisions to some in-river objectives. This most recent plan is the "2008-2017 U.S. v Oregon Management Agreement". The plan provides a framework within which the relevant parties may exercise their sovereign powers in a coordinated and systematic manner in order to protect, rebuild, and enhance upper Columbia River fish runs while providing harvest for both treaty Indian and non-Indian fisheries. The parties to the agreement are the United States, the states of Oregon, Washington, and Idaho, and four Columbia River treaty Indian tribes-Warm Springs, Yakama, Nez Perce, and Umatilla.

5.3.3.3 U.S. v. Washington Area

Treaty Indian tribes have a legal entitlement to the opportunity to take up to 50 percent of the harvestable surplus of stocks which pass through their usual and accustomed fishing areas. The treaty Indian troll harvest which would occur if the tribes chose to take their total 50 percent share of the weakest stock in the ocean, is computed with the current version of the Fishery Regulation Assessment Model (FRAM), assuming this level of harvest did not create conservation or allocation problems on other stocks. A quota may be established in accordance with the objectives of the relevant treaty tribes concerning allocation of the treaty Indian share to ocean and inside fisheries. The total quota does not represent a guaranteed ocean harvest, but a maximum allowable catch.
The requirement for the opportunity to take up to 50 percent of the harvestable surplus determines the treaty shares available to the inside/outside Indian and all-citizen fisheries. Ocean coho harvest ceilings off the Washington coast for treaty Indians and all-citizen fisheries are independent within the constraints that (1) where feasible, conservation needs of all stocks must be met; (2) neither group precludes the other from the opportunity to harvest its share, and; (3) allocation schemes may be established to specify outside/inside sharing for various stocks.

6.5 SEASONS AND QUOTAS

For each management area or subarea, the Council has the option of managing the commercial and recreational fisheries for either coho or Chinook using the following methods: (1) fixed quotas and seasons; (2) adjustable quotas and seasons; and (3) seasons only. The Council may also use harvest guidelines within quotas or seasons to trigger inseason management actions established in the preseason regulatory process.

Quotas provide very precise management targets and work best when accurate estimates of stock abundance and distribution are available, or when needed to ensure protection of depressed stocks from potential overfishing. The Council does not view quotas as guaranteed harvests, but rather the maximum allowable harvest, which assures meeting the conservation objective of the species or stock of concern. While time and area restrictions are not as precise as quotas, they allow flexibility for effort and harvest to vary in response to abundance and distribution.

6.5.1 Preferred Course of Action

Because of the need to use both seasons and quotas, depending on the circumstances, the Council will make the decision regarding seasons and quotas annually during the preseason regulatory process, subject to the limits specified below. Fishing seasons and quotas also may be modified during the season as provided under Section 10.2.

6.5.2 Procedures for Calculating Seasons

Seasons will be calculated using the total allowable ocean harvest determined by procedures described in Chapter 5, and further allocated to the commercial and recreational fishery in accordance with the allocation plan presented in Section 5.3, and after consideration of the estimated amount of effort required to catch the available fish, based on past seasons.

Recreational seasons will be established with the goal of encompassing Memorial Day and/or Labor Day weekends in the season, if feasible. Opening dates will be adjusted to provide reasonable assurance that the recreational fishery is continuous, minimizing the possibility of an in-season closure.

Criteria used to establish commercial seasons, in addition to the estimated allowable ocean harvests, the allocation plan, and the expected effort during the season, will be: (1) bycatch mortality; (2) size, poundage, and value of fish caught; (3) effort shifts between fishing areas; (4) harvest of pink salmon in odd-numbered years; and (5) protection for weak stocks when they frequent the fishing areas at various times of the year.

6.5.3 Species-Specific and Other Selective Fisheries

6.5.3.1 Guidelines

In addition to the all-species and single or limited species seasons established for the commercial and recreational fisheries, other species-limited fisheries, such as "ratio" fisheries and fisheries selective for marked or hatchery fish, may be adopted by the Council during the preseason regulatory process. In adopting such fisheries, the Council will consider the following guidelines:

1. Harvestable fish of the target species are available.
2. Harvest impacts on incidental species will not exceed allowable levels determined in the
management plan.

3. Proven, documented, selective gear exists (if not, only an experimental fishery should be
considered).

4. Significant wastage of incidental species will not occur or a written economic analysis demonstrates
the landed value of the target species exceeds the potential landed value of the wasted species.

5. The selective fishery will occur in an acceptable time and area where wastage can be minimized
and target stocks are maximally available.

6. Implementation of selective fisheries for marked or hatchery fish must be in accordance with U.S.
v. Washington stipulation and order concerning co-management and mass marking (Case No. 9213,
Subproceeding No. 96-3) and any subsequent stipulations or orders of the U.S. District Court, and
consistent with international objectives under the PST (e.g., to ensure the integrity of the coded-
wire tag program).

6.5.3.2 Selective Fisheries Which May Change Allocation Percentages
North of Cape Falcon

As a tool to increase management flexibility to respond to changing harvest opportunities, the Council may
implement deviations from the specified port area allocations and/or gear allocations to increase harvest
opportunity through mark-selective fisheries. The benefits of any mark-selective fishery will vary from
year to year and fishery to fishery depending on stock abundance, the mix of marked and unmarked fish,
projected hook-and-release mortality rates, and public acceptance. These factors should be considered on
an annual and case-by-case basis when utilizing mark-selective fisheries. The deviations for mark-selective
fisheries are subordinate to the allocation priorities in Section 5.3.1.1 and may be allowed under the
following management constraints:

1. Mark-Selective fisheries will first be considered during the months of May and/or June for Chinook
and July through September for coho. However, the Council may consider mark-selective fisheries at
other times, depending on year to year circumstances identified in the preceding paragraph.

2. The total impacts within each port area or gear group on the critical natural stocks of management
concern are not greater than those under the original allocation without the mark-selective fisheries.

3. Other allocation objectives (i.e., treaty Indian, or ocean and inside allocations) are satisfied during
negotiations in the North of Cape Falcon Forum.

4. The mark-selective fishery is assessed against the guidelines in Section 6.5.3.1.

5. Mark-selective fishery proposals need to be made in a timely manner in order to allow sufficient time
for analysis and public comment on the proposal before the Council finalizes its fishery
recommendations.

If the Council chooses to deviate from specified port and/or gear allocations, the process for establishing a
mark-selective fishery would be as follows:

1. Allocate the TAC among the gear groups and port areas according to the basic FMP allocation process
described in Section 5.3.1 without the mark-selective fishery.

2. Each gear group or port area may utilize the critical natural stock impacts allocated to its portion of the
TAC to access additional harvestable, marked fish, over and above the harvest share established in step
one, within the limits of the management constraints listed in the preceding paragraph.
6.5.4 Procedures for Calculating Quotas

Quotas will be based on the total allowable ocean harvest and the allocation plan as determined by the procedures of Chapter 5.

To the extent adjustable quotas are used, they may be subject to some or all of the following inseason adjustments:
1. For coho, private hatchery contribution to the ocean fisheries in the OPI area.
2. Unanticipated loss of shakers (bycatch mortality of undersized fish or unauthorized fish of another species that have to be returned to the water) during the season. (Adjustment for coho hooking mortality during any all-salmon-except-coho season will be made when the quotas are established.)
3. Any catch that take place in fisheries within territorial waters that are inconsistent with federal regulations in the EEZ.
4. If the ability to update inseason stock abundance is developed in the future, adjustments to total allowable harvest could be made, where appropriate.
5. The ability to redistribute quotas between subareas depending on the performance toward achieving the overall quota in the area.

Changes in the quotas as a result of the inseason adjustment process will be avoided unless the changes are of such magnitude that they can be validated by the STT and Council, given the precision of the original estimates.

The basis for determining the private hatchery contribution in (1) above will be either coded-wire tag analysis or analysis of scale patterns, whichever is determined by the STT to be more accurate, or another more accurate method that may be developed in the future, as determined by the STT and Council.

In reference to (4) and (5) above, if reliable techniques become available for making inseason estimates of stock abundance, and provision is made in any season for its use, a determination of techniques to be applied will be made by the Council through the Salmon Methodology Review process and discussed during the preseason regulatory process.

6.5.5 Procedures for Regulating Ocean Harvests of Pink and Sockeye

Sockeye salmon are only very rarely caught in Council-managed ocean salmon fisheries and no specific procedures have been established to regulate their harvest. Procedures for pink salmon are as follows:

1. All-species seasons will be planned such that harvest of pink salmon can be maximized without exceeding allowable harvests of Chinook and/or coho and within conservation and allocation constraints of the pink stocks.
2. Species specific or ratio fisheries for pink salmon will be considered under the guidelines for species specific fisheries presented in Section 6.5.3, and allocation constraints of the pink stocks.
APPENDIX C
OREGON PRODUCTION INDEX DATA

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE C-1</td>
<td>Millions of coho smolts released annually into the OPI area by geographic area and rearing agency</td>
<td>127</td>
</tr>
<tr>
<td>TABLE C-2</td>
<td>Data set used in predicting Oregon production index hatchery (OPIH) adult coho.</td>
<td>128</td>
</tr>
<tr>
<td>TABLE C-3</td>
<td>Estimated coho salmon natural spawner abundance in Oregon coastal basins for each OCN coho management section</td>
<td>130</td>
</tr>
<tr>
<td>TABLE C-4</td>
<td>Data set used in predicting Oregon coastal natural river (OCNR) coho ocean recruits with random survey sampling and Mixed Stock Model (MSM) accounting</td>
<td>131</td>
</tr>
</tbody>
</table>
TABLE C-1. Millions of coho smolts a/ released annually into the OPI area by geographic area and rearing agency

<table>
<thead>
<tr>
<th>Year or Average</th>
<th>Oregon</th>
<th>Washington</th>
<th>Columbia River</th>
<th>Total</th>
<th>ODFWb/</th>
<th>Yearlings</th>
<th>Total</th>
<th>California</th>
<th>Total OPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-1965</td>
<td>5.6</td>
<td>-</td>
<td>6.1</td>
<td>4.5</td>
<td>16.2</td>
<td>2.0</td>
<td>-</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>1966-1970</td>
<td>6.0</td>
<td>10.2</td>
<td>4.9</td>
<td>15.1</td>
<td>6.5</td>
<td>27.6</td>
<td>2.9</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>1971-1975</td>
<td>6.8</td>
<td>10.7</td>
<td>6.8</td>
<td>17.5</td>
<td>4.5</td>
<td>28.8</td>
<td>3.9</td>
<td>0.0</td>
<td>3.9</td>
</tr>
<tr>
<td>1976-1980</td>
<td>8.0</td>
<td>7.3</td>
<td>10.1</td>
<td>17.4</td>
<td>4.7</td>
<td>30.1</td>
<td>3.8</td>
<td>1.4</td>
<td>5.2</td>
</tr>
<tr>
<td>1981-1985</td>
<td>7.1</td>
<td>4.3</td>
<td>14.4</td>
<td>18.7</td>
<td>3.2</td>
<td>30.0</td>
<td>3.9</td>
<td>3.3</td>
<td>7.2</td>
</tr>
<tr>
<td>1986-1990</td>
<td>7.3</td>
<td>3.1</td>
<td>15.6</td>
<td>18.7</td>
<td>4.1</td>
<td>30.1</td>
<td>5.2</td>
<td>1.9</td>
<td>7.1</td>
</tr>
<tr>
<td>1991</td>
<td>10.4</td>
<td>3.7</td>
<td>15.3</td>
<td>19.0</td>
<td>5.9</td>
<td>35.2</td>
<td>5.3</td>
<td>-</td>
<td>5.3</td>
</tr>
<tr>
<td>1992</td>
<td>11.5</td>
<td>4.3</td>
<td>14.3</td>
<td>18.6</td>
<td>2.7</td>
<td>32.8</td>
<td>6.2</td>
<td>-</td>
<td>6.2</td>
</tr>
<tr>
<td>1993</td>
<td>11.1</td>
<td>4.3</td>
<td>14.8</td>
<td>19.1</td>
<td>4.1</td>
<td>34.3</td>
<td>4.3</td>
<td>-</td>
<td>4.3</td>
</tr>
<tr>
<td>1994</td>
<td>9.1</td>
<td>2.5</td>
<td>12.0</td>
<td>14.5</td>
<td>3.0</td>
<td>26.6</td>
<td>5.2</td>
<td>-</td>
<td>5.2</td>
</tr>
<tr>
<td>1995</td>
<td>7.1</td>
<td>3.4</td>
<td>12.9</td>
<td>16.3</td>
<td>1.7</td>
<td>25.1</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
</tr>
<tr>
<td>1996</td>
<td>8.4</td>
<td>3.4</td>
<td>12.9</td>
<td>16.3</td>
<td>3.4</td>
<td>28.1</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>1997</td>
<td>6.1</td>
<td>3.2</td>
<td>7.8</td>
<td>11.0</td>
<td>3.9</td>
<td>21.0</td>
<td>2.9</td>
<td>-</td>
<td>2.9</td>
</tr>
<tr>
<td>1998</td>
<td>6.1</td>
<td>5.8</td>
<td>11.4</td>
<td>17.2</td>
<td>3.6</td>
<td>26.8</td>
<td>1.7</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>1999</td>
<td>7.6</td>
<td>4.0</td>
<td>11.5</td>
<td>15.5</td>
<td>4.8</td>
<td>27.9</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>2000</td>
<td>7.8</td>
<td>6.2</td>
<td>10.8</td>
<td>17.0</td>
<td>5.9</td>
<td>30.7</td>
<td>0.9</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>2001</td>
<td>7.6</td>
<td>4.2</td>
<td>9.7</td>
<td>13.9</td>
<td>3.7</td>
<td>25.2</td>
<td>0.9</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>2002</td>
<td>7.5</td>
<td>3.3</td>
<td>8.6</td>
<td>11.9</td>
<td>4.3</td>
<td>23.7</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>2003</td>
<td>8.2</td>
<td>3.3</td>
<td>8.7</td>
<td>12.0</td>
<td>3.1</td>
<td>23.3</td>
<td>0.8</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>2004</td>
<td>6.7</td>
<td>3.0</td>
<td>8.8</td>
<td>11.8</td>
<td>3.6</td>
<td>22.1</td>
<td>0.8</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>2005</td>
<td>6.1</td>
<td>2.5</td>
<td>9.1</td>
<td>11.6</td>
<td>2.8</td>
<td>20.6</td>
<td>0.8</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>2006</td>
<td>6.1</td>
<td>2.8</td>
<td>9.0</td>
<td>11.7</td>
<td>2.6</td>
<td>20.4</td>
<td>0.8</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>2007</td>
<td>6.2</td>
<td>3.1</td>
<td>9.0</td>
<td>12.1</td>
<td>3.1</td>
<td>21.4</td>
<td>0.7</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>2008</td>
<td>6.9</td>
<td>2.8</td>
<td>9.2</td>
<td>12.0</td>
<td>2.9</td>
<td>21.9</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>2009</td>
<td>6.9</td>
<td>2.5</td>
<td>8.3</td>
<td>10.8</td>
<td>3.2</td>
<td>20.9</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>2010</td>
<td>5.9</td>
<td>2.0</td>
<td>7.5</td>
<td>9.5</td>
<td>3.1</td>
<td>18.6</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>2011</td>
<td>5.8</td>
<td>1.8</td>
<td>8.4</td>
<td>10.2</td>
<td>3.0</td>
<td>19.0</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>2012</td>
<td>5.9</td>
<td>2.2</td>
<td>7.4</td>
<td>9.7</td>
<td>2.7</td>
<td>18.2</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>2013</td>
<td>6.0</td>
<td>2.0</td>
<td>7.8</td>
<td>9.8</td>
<td>2.9</td>
<td>18.6</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>2014</td>
<td>6.5</td>
<td>1.5</td>
<td>7.4</td>
<td>8.9</td>
<td>3.0</td>
<td>18.4</td>
<td>0.4</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>2015</td>
<td>5.7</td>
<td>2.1</td>
<td>7.4</td>
<td>9.5</td>
<td>3.0</td>
<td>18.2</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>2016c/</td>
<td>5.7</td>
<td>2.2</td>
<td>6.9</td>
<td>9.1</td>
<td>3.0</td>
<td>17.7</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

a/ Defined here as 30 fish per pound or larger and released in February or later.
b/ Beginning in 1989, does not include minor releases from STEP projects.
c/ Preliminary.
TABLE C-2. Data set used in predicting Oregon production index hatchery (OPIH) adult coho. Adults and jacks shown in thousands of fish and smolts in millions of fish. (Page 1 of 2)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>OPIH</th>
<th>MSM</th>
<th>Adults (t)</th>
<th>Columbia River</th>
<th>OR Coast</th>
<th>CA</th>
<th>Normal Tillage</th>
<th>Delayed Smolt Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>2,765.1</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1971</td>
<td>3,365.0</td>
<td></td>
<td>179.4</td>
<td>172.8</td>
<td>6.6</td>
<td>28.8</td>
<td>24.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1972</td>
<td>1,924.8</td>
<td></td>
<td>103.7</td>
<td>100.8</td>
<td>2.9</td>
<td>33.4</td>
<td>28.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1973</td>
<td>1,817.0</td>
<td></td>
<td>91.4</td>
<td>85.7</td>
<td>5.7</td>
<td>35.3</td>
<td>28.1</td>
<td>1.8</td>
</tr>
<tr>
<td>1974</td>
<td>3,071.1</td>
<td></td>
<td>144.2</td>
<td>132.0</td>
<td>12.1</td>
<td>33.6</td>
<td>25.6</td>
<td>2.9</td>
</tr>
<tr>
<td>1975</td>
<td>1,652.8</td>
<td></td>
<td>76.2</td>
<td>75.1</td>
<td>1.1</td>
<td>32.5</td>
<td>26.0</td>
<td>1.8</td>
</tr>
<tr>
<td>1976</td>
<td>3,885.3</td>
<td></td>
<td>171.5</td>
<td>146.2</td>
<td>25.3</td>
<td>34.0</td>
<td>27.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1977</td>
<td>987.5</td>
<td></td>
<td>53.8</td>
<td>46.3</td>
<td>7.5</td>
<td>33.5</td>
<td>28.7</td>
<td>0.2</td>
</tr>
<tr>
<td>1978</td>
<td>1,824.1</td>
<td></td>
<td>103.2</td>
<td>99.2</td>
<td>4.0</td>
<td>35.5</td>
<td>31.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1979</td>
<td>1,476.7</td>
<td></td>
<td>72.5</td>
<td>64.1</td>
<td>8.4</td>
<td>37.1</td>
<td>27.6</td>
<td>5.0</td>
</tr>
<tr>
<td>1980</td>
<td>1,224.0</td>
<td></td>
<td>57.7</td>
<td>51.6</td>
<td>6.0</td>
<td>34.2</td>
<td>22.2</td>
<td>6.7</td>
</tr>
<tr>
<td>1981</td>
<td>1,064.5</td>
<td></td>
<td>48.7</td>
<td>40.6</td>
<td>8.1</td>
<td>32.3</td>
<td>22.5</td>
<td>5.6</td>
</tr>
<tr>
<td>1982</td>
<td>1,266.8</td>
<td></td>
<td>61.3</td>
<td>55.0</td>
<td>6.3</td>
<td>37.2</td>
<td>25.6</td>
<td>6.8</td>
</tr>
<tr>
<td>1983i</td>
<td>599.2</td>
<td></td>
<td>68.3</td>
<td>61.0</td>
<td>7.2</td>
<td>32.6</td>
<td>22.7</td>
<td>5.0</td>
</tr>
<tr>
<td>1984</td>
<td>691.3</td>
<td></td>
<td>31.6</td>
<td>28.0</td>
<td>3.6</td>
<td>30.9</td>
<td>21.9</td>
<td>5.1</td>
</tr>
<tr>
<td>1985</td>
<td>717.5</td>
<td></td>
<td>26.0</td>
<td>18.2</td>
<td>7.8</td>
<td>34.4</td>
<td>20.1</td>
<td>9.1</td>
</tr>
<tr>
<td>1986</td>
<td>2,435.8</td>
<td>2,412.0</td>
<td>77.5</td>
<td>64.6</td>
<td>12.9</td>
<td>32.8</td>
<td>16.6</td>
<td>12.2</td>
</tr>
<tr>
<td>1987</td>
<td>887.2</td>
<td>779.4</td>
<td>32.9</td>
<td>24.2</td>
<td>8.7</td>
<td>39.5</td>
<td>23.9</td>
<td>9.0</td>
</tr>
<tr>
<td>1988</td>
<td>1,669.3</td>
<td>1,467.8</td>
<td>85.2</td>
<td>72.3</td>
<td>12.9</td>
<td>35.0</td>
<td>21.1</td>
<td>7.7</td>
</tr>
<tr>
<td>1989</td>
<td>1,720.2</td>
<td>1,922.0</td>
<td>60.8</td>
<td>55.0</td>
<td>5.8</td>
<td>36.0</td>
<td>22.3</td>
<td>7.2</td>
</tr>
<tr>
<td>1990</td>
<td>718.4</td>
<td>713.6</td>
<td>46.6</td>
<td>37.1</td>
<td>9.6</td>
<td>35.9</td>
<td>21.1</td>
<td>8.5</td>
</tr>
<tr>
<td>1991</td>
<td>1,874.8</td>
<td>1,816.5</td>
<td>68.6</td>
<td>60.7</td>
<td>7.9</td>
<td>37.2</td>
<td>23.2</td>
<td>7.1</td>
</tr>
<tr>
<td>1992</td>
<td>543.6</td>
<td>512.6</td>
<td>25.6</td>
<td>19.9</td>
<td>5.7</td>
<td>42.1</td>
<td>29.3</td>
<td>6.0</td>
</tr>
<tr>
<td>1993</td>
<td>261.7</td>
<td>223.3</td>
<td>27.1</td>
<td>19.6</td>
<td>7.5</td>
<td>38.6</td>
<td>27.3</td>
<td>5.5</td>
</tr>
<tr>
<td>1994</td>
<td>202.3</td>
<td>214.1</td>
<td>5.2</td>
<td>3.9</td>
<td>1.3</td>
<td>38.5</td>
<td>28.4</td>
<td>6.0</td>
</tr>
<tr>
<td>1995</td>
<td>147.2</td>
<td>139.4</td>
<td>11.8</td>
<td>9.1</td>
<td>2.7</td>
<td>32.2</td>
<td>23.5</td>
<td>3.1</td>
</tr>
<tr>
<td>1996</td>
<td>185.2</td>
<td>176.5</td>
<td>17.4</td>
<td>14.1</td>
<td>3.2</td>
<td>29.6</td>
<td>21.0</td>
<td>4.2</td>
</tr>
<tr>
<td>1997</td>
<td>200.7</td>
<td>195.6</td>
<td>20.4</td>
<td>15.8</td>
<td>4.6</td>
<td>31.5</td>
<td>24.6</td>
<td>3.4</td>
</tr>
<tr>
<td>1998</td>
<td>207.5</td>
<td>228.3</td>
<td>9.7</td>
<td>6.7</td>
<td>3.0</td>
<td>24.6</td>
<td>18.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1999</td>
<td>334.5</td>
<td>372.5</td>
<td>29.5</td>
<td>23.6</td>
<td>5.9</td>
<td>29.0</td>
<td>23.8</td>
<td>3.0</td>
</tr>
<tr>
<td>2000</td>
<td>673.2</td>
<td>673.1</td>
<td>34.8</td>
<td>31.3</td>
<td>3.5</td>
<td>30.2</td>
<td>23.8</td>
<td>4.1</td>
</tr>
<tr>
<td>2001</td>
<td>1,417.1</td>
<td>1,478.7</td>
<td>87.4</td>
<td>71.7</td>
<td>15.7</td>
<td>32.0</td>
<td>28.6</td>
<td>2.0</td>
</tr>
<tr>
<td>2002</td>
<td>649.8</td>
<td>689.5</td>
<td>25.2</td>
<td>18.9</td>
<td>6.3</td>
<td>25.0</td>
<td>22.1</td>
<td>1.4</td>
</tr>
<tr>
<td>2003</td>
<td>936.6</td>
<td>1,009.9</td>
<td>49.9</td>
<td>41.7</td>
<td>8.2</td>
<td>25.3</td>
<td>23.4</td>
<td>0.3</td>
</tr>
<tr>
<td>2004</td>
<td>622.1</td>
<td>693.6</td>
<td>35.4</td>
<td>29.4</td>
<td>6.0</td>
<td>24.5</td>
<td>21.2</td>
<td>2.0</td>
</tr>
<tr>
<td>2005</td>
<td>443.2</td>
<td>454.0</td>
<td>25.0</td>
<td>21.2</td>
<td>3.8</td>
<td>23.2</td>
<td>21.2</td>
<td>0.8</td>
</tr>
<tr>
<td>2006</td>
<td>440.6</td>
<td>523.4</td>
<td>25.9</td>
<td>20.9</td>
<td>5.0</td>
<td>21.8</td>
<td>20.2</td>
<td>0.4</td>
</tr>
<tr>
<td>2007</td>
<td>476.6</td>
<td>545.3</td>
<td>36.4</td>
<td>34.2</td>
<td>2.2</td>
<td>21.6</td>
<td>20.3</td>
<td>0.1</td>
</tr>
<tr>
<td>2008</td>
<td>565.3</td>
<td>576.9</td>
<td>16.1</td>
<td>14.9</td>
<td>1.2</td>
<td>22.7</td>
<td>20.8</td>
<td>0.6</td>
</tr>
<tr>
<td>2009</td>
<td>1,066.2</td>
<td>1,051.0</td>
<td>60.4</td>
<td>58.4</td>
<td>2.0</td>
<td>22.7</td>
<td>20.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>
TABLE C-2. Data sets used in predicting Oregon production index hatchery (OPIH) adult coho. Adults and jacks shown in thousands of fish and smolts in millions of fish. (Page 2 of 2)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Adults (t)</th>
<th>Columbia (t-1)</th>
<th>OR Coast/CA (t-1)</th>
<th>Normal (t-1)</th>
<th>Smolts (t-1)</th>
<th>Delayed Smolt (t-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPIH(^{a})</td>
<td>MSM(^{b})</td>
<td>Total OPI(^{c})</td>
<td>Total OPI(^{c})</td>
<td>Normal (^{d})</td>
<td>Delayed Smolt (^{i})</td>
</tr>
<tr>
<td>2010</td>
<td>551.3</td>
<td>546.5</td>
<td>25.1</td>
<td>23.8</td>
<td>21.9</td>
<td>20.7</td>
</tr>
<tr>
<td>2011</td>
<td>442.3</td>
<td>454.2</td>
<td>23.3</td>
<td>22.2</td>
<td>19.3</td>
<td>18.2</td>
</tr>
<tr>
<td>2012</td>
<td>182.3</td>
<td>183.1</td>
<td>17.9</td>
<td>13.9</td>
<td>19.9</td>
<td>18.1</td>
</tr>
<tr>
<td>2013</td>
<td>316.9</td>
<td>335.1</td>
<td>26.3</td>
<td>24.1</td>
<td>19.2</td>
<td>17.1</td>
</tr>
<tr>
<td>2014</td>
<td>1,263.6</td>
<td>1,316.5</td>
<td>51.4</td>
<td>49.4</td>
<td>19.6</td>
<td>18.0</td>
</tr>
<tr>
<td>2015</td>
<td>251.7</td>
<td>254.7</td>
<td>39.6</td>
<td>37.0</td>
<td>19.4</td>
<td>16.9</td>
</tr>
<tr>
<td>2016</td>
<td>233.8</td>
<td>233.9</td>
<td>19.7</td>
<td>18.6</td>
<td>18.9</td>
<td>16.9</td>
</tr>
<tr>
<td>2017</td>
<td>-</td>
<td>394.3 (^{k})</td>
<td>22.9</td>
<td>22.4</td>
<td>18.4</td>
<td>16.5</td>
</tr>
</tbody>
</table>

\(^{a}\) Adult OPI = Harvest impacts plus escapement for public hatchery stocks originating in the Columbia River, Oregon coastal rivers, and the Klamath River, California.

\(^{b}\) Adult MSM = Harvest impacts plus escapement for public hatchery stocks originating in the Columbia River, Oregon coastal rivers, and the Klamath River. Estimates derived from the MSM and used for prediction beginning in 2008.

\(^{c}\) Jack OPI = Total Jack CR and Jack OC.

\(^{d}\) Jack CR = Columbia River jack returns corrected for small adults.

\(^{e}\) Jack OC = Oregon coastal and California hatchery jack returns corrected for small adults.

\(^{f}\) Total OPI = Columbia River (Sm D + Sm CR), Oregon coastal and Klamath Basin.

\(^{g}\) Sm CR = Columbia River smolt releases from the previous year expected to return as adults in the year listed.

\(^{h}\) Sm D = Columbia River delayed smolt releases from the previous year expected to return as adults in the year listed.

\(^{i}\) Correction term for delayed smolts released from Col. R. hatcheries (Col. R. Jacks \(^{h}\) (Delayed Smolts/Col. R. Smolts)).

\(^{j}\) Data not used in subsequent predictions due to El Niño impacts.

\(^{k}\) Preseason predicted adults.
TABLE C-3.

Estimated coho salmon natural spawner abundance in Oregon coastal basins for each OCN coho management component.

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

20012016
Avg.

4,832
21,928
1,944
4,164
71
32,939

2,047
17,164
13,334
16,698
16
49,259

2,377
32,517
13,008
10,194
0
58,096

2,198
18,736
2,532
4,695
661
28,822

1,218
10,451
1,995
686
2,116
16,466

750
11,614
8,774
1,876
1,121
24,135

431
14,033
2,295
394
376
17,529

1,055
17,205
4,828
1,844
639
25,571

3,827
21,753
16,251
4,252
2,052
48,135

4,445
32,215
14,890
1,947
1,473
54,970

2,120
15,322
19,250
7,857
1,341
45,890

902
2,963
1,686
1,751
218
7,520

798
4,539
4,402
946
271
10,956

5,727
30,577
20,090
6,369
4,607
67,370

847
3,079
1,345
1,029
440
6,740

1,013
6,252
6,022
4,373
688
18,347

2,162
16,272
8,290
4,317
1,006
32,047

NORTH CENTRAL
Salmon
225
Siletz
1,595
Yaquina
3,589
Beaver Ck.
1,832
Alsea
3,228
Siuslaw
10,606
Ind. Tribs.
816
TOTAL
21,891

543
2,129
23,800
3,217
9,073
55,445
5,308
99,515

42
8,038
16,484
5,552
10,281
29,003
1,852
71,252

1,642
8,179
5,539
4,569
5,233
8,729
8,179
42,070

79
14,567
3,441
2,264
13,907
16,907
242
51,407

513
5,205
4,247
1,950
1,972
5,869
1,468
21,224

59
2,197
3,158
611
2,146
3,552
547
12,270

652
20,634
10,913
1,218
13,320
17,491
3,910
68,138

753
24,070
11,182
3,575
14,638
30,607
1,610
86,435

1,382
3,636
6,283 33,094
8,589 19,074
2,072
2,389
9,688 28,337
25,983 28,082
2,548
4,487
56,545 119,099

297
4,495
6,268
1,878
8,470
11,946
492
33,846

1,165
3,680
7,660 19,496
3,553 25,582
2,015
6,564
9,283 25,786
14,118 38,896
1,929
1,890
39,723 121,894

332
2,216
2,400
332
6,185
10,352
856
22,673

1,029
2,361
3,204
1,696
8,578
9,184
354
26,406

1,002
10,139
9,439
2,608
10,633
19,798
2,281
55,899

SOUTH CENTRAL
Umpqua
35,084 43,504 34,783 29,920
Coos
33,595 33,120 25,761 23,337
Coquille
13,833
7,676 22,403 22,138
Floras Ck.
5,664
3,272
952
7,446
Sixes R.
95
95
86
403
Coastal Lakes
19,604 21,977 16,076 18,642
Ind. Tribs.
TOTAL
107,875 109,644 100,061 101,886

42,532
17,048
11,806
506
105
14,725
86,722

18,092
11,266
28,577
1,104
294
24,127
83,460

11,783
1,329
13,968
340
97
8,955
36,472

37,868 57,984 70,019 94,655
14,881 26,979 27,658 10,999
8,791 22,286 23,564 55,667
786
3,203 11,329
9,217
43
176
92
334
23,608 17,349 38,744 20,281
0
188
484
101
85,977 128,165 171,890 191,254

20,969
9,414
5,911
2,502
34
18,922
48
57,800

27,016 66,272
6,884 38,880
23,637 41,660
1,936
1,022
567
410
13,659 22,010
33
106
73,732 170,360

14,843
3,030
3,357
1,585
168
4,729
0
27,712

8,517
4,285
9,147
1,054
138
8,044
0
31,185

38,365
18,029
19,651
3,245
196
18,216
107
97,762

9,957

3,911

5,136

2,409

4,072

6,302

6,966

COASTWIDE
174,720 266,878 236,214 197,287 164,552 132,730 71,407 180,100 265,301 287,076 360,788 104,640 135,621 362,033
a/ The sum of the individual basins may not equal the aggregate totals due to the use of independent estimates at different geographic scales.
b/ Mark recapture estimate based on seining at Huntley Park in the low er Rogue River.

61,197

Component
and Basina/
NORTHERN
Necanicum
Nehalem
Tillamook
Nestucca
Ind. Tribs.
TOTAL

SOUTH
Rogueb/

12,015

8,460

6,805

24,509

414

2,566

3,671

4,545

5,474

130
Environmental Assessment Part 1 (Preseason Report I)
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)

April 2017

11,210

82,241 192,674


TABLE C-4

Data set used in predicting Oregon coastal natural river (OCNR) coho ocean recruits with random survey sampling and Mixed Stock Model (MSM) accounting. All environmental data in year of ocean entry (t-1) except SST-J, which is January of adult return year (t). Spawners is parent brood (t-3). Recruits shown in thousands of fish.

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Adults</th>
<th>Spawners</th>
<th>PDO-JJ</th>
<th>UWI-JAS</th>
<th>UWI-SON</th>
<th>SSH-AMJ</th>
<th>SST-AMJ</th>
<th>SST-J</th>
<th>MEI-ON</th>
<th>SPR-TRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>183.1</td>
<td>204.7</td>
<td>-0.25</td>
<td>41.41</td>
<td>-31.81</td>
<td>-142.53</td>
<td>10.88</td>
<td>-1.08</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>416.3</td>
<td>198.9</td>
<td>-0.33</td>
<td>28.96</td>
<td>-16.05</td>
<td>-62.00</td>
<td>11.69</td>
<td>8.62</td>
<td>-1.38</td>
<td>106</td>
</tr>
<tr>
<td>1972</td>
<td>185.5</td>
<td>129.2</td>
<td>-0.50</td>
<td>33.79</td>
<td>-8.15</td>
<td>-55.60</td>
<td>11.85</td>
<td>8.38</td>
<td>1.70</td>
<td>107</td>
</tr>
<tr>
<td>1973</td>
<td>235.0</td>
<td>51.2</td>
<td>-0.82</td>
<td>41.15</td>
<td>-19.50</td>
<td>-149.03</td>
<td>12.25</td>
<td>9.44</td>
<td>-1.58</td>
<td>80</td>
</tr>
<tr>
<td>1974</td>
<td>196.4</td>
<td>65.6</td>
<td>-1.08</td>
<td>33.20</td>
<td>-8.79</td>
<td>-70.03</td>
<td>10.94</td>
<td>9.27</td>
<td>-1.15</td>
<td>102</td>
</tr>
<tr>
<td>1975</td>
<td>208.4</td>
<td>24.1</td>
<td>-1.05</td>
<td>38.46</td>
<td>-38.99</td>
<td>-147.33</td>
<td>10.83</td>
<td>9.47</td>
<td>-1.88</td>
<td>83</td>
</tr>
<tr>
<td>1976</td>
<td>451.7</td>
<td>37.8</td>
<td>-0.82</td>
<td>22.62</td>
<td>-7.94</td>
<td>-109.57</td>
<td>10.69</td>
<td>9.04</td>
<td>0.71</td>
<td>103</td>
</tr>
<tr>
<td>1977</td>
<td>161.2</td>
<td>28.1</td>
<td>-0.52</td>
<td>30.15</td>
<td>-34.77</td>
<td>-134.00</td>
<td>11.20</td>
<td>9.77</td>
<td>0.98</td>
<td>74</td>
</tr>
<tr>
<td>1978</td>
<td>111.6</td>
<td>34.8</td>
<td>-0.26</td>
<td>16.88</td>
<td>-5.59</td>
<td>-85.27</td>
<td>11.58</td>
<td>11.29</td>
<td>0.08</td>
<td>97</td>
</tr>
<tr>
<td>1979</td>
<td>188.8</td>
<td>39.2</td>
<td>-0.22</td>
<td>24.03</td>
<td>-58.73</td>
<td>-90.47</td>
<td>11.22</td>
<td>8.70</td>
<td>0.71</td>
<td>73</td>
</tr>
<tr>
<td>1980</td>
<td>108.3</td>
<td>13.7</td>
<td>0.17</td>
<td>48.08</td>
<td>-42.72</td>
<td>-63.30</td>
<td>12.06</td>
<td>10.52</td>
<td>0.23</td>
<td>78</td>
</tr>
<tr>
<td>1981</td>
<td>174.5</td>
<td>18.2</td>
<td>0.34</td>
<td>28.80</td>
<td>-54.11</td>
<td>-80.97</td>
<td>12.16</td>
<td>11.79</td>
<td>0.04</td>
<td>88</td>
</tr>
<tr>
<td>1982</td>
<td>185.7</td>
<td>38.4</td>
<td>0.62</td>
<td>28.85</td>
<td>-42.97</td>
<td>-68.40</td>
<td>10.98</td>
<td>9.86</td>
<td>2.23</td>
<td>109</td>
</tr>
<tr>
<td>1983</td>
<td>96.0</td>
<td>25.6</td>
<td>0.57</td>
<td>26.44</td>
<td>-46.62</td>
<td>-8.80</td>
<td>12.14</td>
<td>11.14</td>
<td>-0.05</td>
<td>126</td>
</tr>
<tr>
<td>1984</td>
<td>94.7</td>
<td>30.1</td>
<td>1.03</td>
<td>38.12</td>
<td>-52.44</td>
<td>-63.23</td>
<td>11.43</td>
<td>10.67</td>
<td>-0.17</td>
<td>112</td>
</tr>
<tr>
<td>1985</td>
<td>124.9</td>
<td>68.3</td>
<td>1.04</td>
<td>36.91</td>
<td>-12.17</td>
<td>-80.57</td>
<td>10.95</td>
<td>10.00</td>
<td>-0.10</td>
<td>48</td>
</tr>
<tr>
<td>1986</td>
<td>114.3</td>
<td>19.4</td>
<td>0.79</td>
<td>38.46</td>
<td>-19.72</td>
<td>-82.30</td>
<td>11.51</td>
<td>10.04</td>
<td>0.92</td>
<td>89</td>
</tr>
<tr>
<td>1987</td>
<td>77.8</td>
<td>59.7</td>
<td>1.14</td>
<td>36.07</td>
<td>-34.08</td>
<td>-80.60</td>
<td>11.43</td>
<td>10.60</td>
<td>1.46</td>
<td>81</td>
</tr>
<tr>
<td>1988</td>
<td>152.5</td>
<td>66.3</td>
<td>0.88</td>
<td>42.69</td>
<td>-20.23</td>
<td>-63.23</td>
<td>11.49</td>
<td>9.89</td>
<td>-1.38</td>
<td>68</td>
</tr>
<tr>
<td>1989</td>
<td>114.9</td>
<td>57.2</td>
<td>0.99</td>
<td>35.53</td>
<td>-4.82</td>
<td>-65.87</td>
<td>11.62</td>
<td>9.41</td>
<td>-0.18</td>
<td>97</td>
</tr>
<tr>
<td>1990</td>
<td>63.3</td>
<td>25.3</td>
<td>1.02</td>
<td>42.94</td>
<td>-12.08</td>
<td>-64.70</td>
<td>12.01</td>
<td>9.97</td>
<td>0.34</td>
<td>81</td>
</tr>
<tr>
<td>1991</td>
<td>84.1</td>
<td>45.7</td>
<td>0.83</td>
<td>39.48</td>
<td>-2.08</td>
<td>-111.30</td>
<td>10.92</td>
<td>8.92</td>
<td>1.11</td>
<td>99</td>
</tr>
<tr>
<td>1992</td>
<td>107.6</td>
<td>40.7</td>
<td>0.28</td>
<td>36.75</td>
<td>-24.99</td>
<td>-31.23</td>
<td>12.72</td>
<td>10.12</td>
<td>0.63</td>
<td>123</td>
</tr>
<tr>
<td>1993</td>
<td>74.9</td>
<td>16.9</td>
<td>0.45</td>
<td>40.86</td>
<td>0.14</td>
<td>58.23</td>
<td>13.24</td>
<td>9.36</td>
<td>0.95</td>
<td>161</td>
</tr>
<tr>
<td>1994</td>
<td>41.0</td>
<td>30.4</td>
<td>0.88</td>
<td>39.04</td>
<td>-13.29</td>
<td>-65.40</td>
<td>11.45</td>
<td>11.04</td>
<td>1.35</td>
<td>87</td>
</tr>
<tr>
<td>1995</td>
<td>47.8</td>
<td>40.2</td>
<td>0.93</td>
<td>27.53</td>
<td>-25.29</td>
<td>-65.93</td>
<td>11.19</td>
<td>10.58</td>
<td>-0.46</td>
<td>95</td>
</tr>
<tr>
<td>1996</td>
<td>64.5</td>
<td>45.2</td>
<td>1.48</td>
<td>56.80</td>
<td>-4.70</td>
<td>-48.80</td>
<td>11.44</td>
<td>11.66</td>
<td>-0.24</td>
<td>120</td>
</tr>
<tr>
<td>1997</td>
<td>16.3</td>
<td>38.3</td>
<td>1.42</td>
<td>10.18</td>
<td>-55.94</td>
<td>-16.20</td>
<td>12.10</td>
<td>10.76</td>
<td>2.50</td>
<td>146</td>
</tr>
<tr>
<td>1998</td>
<td>22.4</td>
<td>42.8</td>
<td>1.43</td>
<td>49.68</td>
<td>-43.26</td>
<td>-42.97</td>
<td>11.38</td>
<td>12.26</td>
<td>-0.95</td>
<td>105</td>
</tr>
<tr>
<td>1999</td>
<td>38.3</td>
<td>60.5</td>
<td>1.37</td>
<td>51.00</td>
<td>-34.18</td>
<td>-112.70</td>
<td>10.67</td>
<td>9.54</td>
<td>-1.01</td>
<td>91</td>
</tr>
<tr>
<td>2000</td>
<td>58.7</td>
<td>14.8</td>
<td>0.78</td>
<td>35.78</td>
<td>-26.83</td>
<td>-56.73</td>
<td>11.36</td>
<td>10.00</td>
<td>-0.54</td>
<td>72</td>
</tr>
</tbody>
</table>
TABLE C-4. Data set used in predicting Oregon coastal natural river (OCNR) coho ocean recruits with random survey sampling and Mixed Stock Model (MSM) accounting. All environmental data in year of ocean entry (t-1) except SST-J, which is January of adult return year (t). Spawners is parent brood (t-3). Recruits shown in thousands of fish.

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Adults</th>
<th>Spawners</th>
<th>PDO-MJJ</th>
<th>UWI-JAS</th>
<th>UWI-SON</th>
<th>SSH-AMJ</th>
<th>SST-AMJ</th>
<th>SST-J</th>
<th>MEI-ON</th>
<th>SPR.TRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>156.6</td>
<td>21.5</td>
<td>0.35</td>
<td>35.78</td>
<td>-26.83</td>
<td>-56.20</td>
<td>11.36</td>
<td>10.16</td>
<td>-0.55</td>
<td>72</td>
</tr>
<tr>
<td>2002</td>
<td>246.1</td>
<td>34.7</td>
<td>-0.40</td>
<td>47.08</td>
<td>-38.19</td>
<td>-126.17</td>
<td>10.68</td>
<td>10.07</td>
<td>-0.21</td>
<td>61</td>
</tr>
<tr>
<td>2003</td>
<td>227.3</td>
<td>61.0</td>
<td>-0.60</td>
<td>50.49</td>
<td>-25.90</td>
<td>-148.63</td>
<td>10.11</td>
<td>10.96</td>
<td>1.05</td>
<td>80</td>
</tr>
<tr>
<td>2004</td>
<td>164.0</td>
<td>143.1</td>
<td>-0.17</td>
<td>55.48</td>
<td>-26.35</td>
<td>-63.47</td>
<td>11.08</td>
<td>10.30</td>
<td>0.54</td>
<td>112</td>
</tr>
<tr>
<td>2005</td>
<td>146.3</td>
<td>236.4</td>
<td>0.04</td>
<td>26.99</td>
<td>4.34</td>
<td>-62.63</td>
<td>11.86</td>
<td>10.21</td>
<td>0.66</td>
<td>110</td>
</tr>
<tr>
<td>2006</td>
<td>113.3</td>
<td>213.3</td>
<td>0.52</td>
<td>51.75</td>
<td>-9.01</td>
<td>-25.67</td>
<td>12.55</td>
<td>11.46</td>
<td>-0.28</td>
<td>145</td>
</tr>
<tr>
<td>2007</td>
<td>64.9</td>
<td>154.1</td>
<td>0.79</td>
<td>53.57</td>
<td>-14.10</td>
<td>-36.40</td>
<td>11.15</td>
<td>9.84</td>
<td>1.12</td>
<td>112</td>
</tr>
<tr>
<td>2008</td>
<td>157.0</td>
<td>139.9</td>
<td>0.64</td>
<td>27.53</td>
<td>-9.88</td>
<td>-123.73</td>
<td>10.62</td>
<td>8.92</td>
<td>-1.19</td>
<td>74</td>
</tr>
<tr>
<td>2009</td>
<td>262.9</td>
<td>104.7</td>
<td>0.16</td>
<td>32.71</td>
<td>-10.66</td>
<td>-113.27</td>
<td>9.62</td>
<td>9.37</td>
<td>-0.64</td>
<td>89</td>
</tr>
<tr>
<td>2010</td>
<td>255.6</td>
<td>57.3</td>
<td>-0.29</td>
<td>24.33</td>
<td>-47.08</td>
<td>-96.03</td>
<td>10.45</td>
<td>10.76</td>
<td>1.02</td>
<td>82</td>
</tr>
<tr>
<td>2011</td>
<td>352.4</td>
<td>156.1</td>
<td>-0.50</td>
<td>34.21</td>
<td>-32.89</td>
<td>-48.53</td>
<td>11.68</td>
<td>10.12</td>
<td>-1.69</td>
<td>100</td>
</tr>
<tr>
<td>2012</td>
<td>98.1</td>
<td>245.4</td>
<td>-0.81</td>
<td>29.33</td>
<td>-26.30</td>
<td>-46.27</td>
<td>10.70</td>
<td>9.18</td>
<td>-0.94</td>
<td>100</td>
</tr>
<tr>
<td>2013</td>
<td>130.2</td>
<td>244.7</td>
<td>-0.75</td>
<td>53.55</td>
<td>-29.90</td>
<td>-34.47</td>
<td>11.02</td>
<td>9.89</td>
<td>0.10</td>
<td>121</td>
</tr>
<tr>
<td>2014</td>
<td>377.4</td>
<td>336.0</td>
<td>-0.76</td>
<td>35.30</td>
<td>-7.81</td>
<td>-106.63</td>
<td>10.66</td>
<td>9.06</td>
<td>0.04</td>
<td>100</td>
</tr>
<tr>
<td>2015</td>
<td>64.6</td>
<td>80.2</td>
<td>-0.43</td>
<td>41.26</td>
<td>-40.11</td>
<td>-30.07</td>
<td>11.17</td>
<td>12.30</td>
<td>0.60</td>
<td>101</td>
</tr>
<tr>
<td>2016</td>
<td>74.4</td>
<td>110.8</td>
<td>0.19</td>
<td>40.41</td>
<td>-7.85</td>
<td>-65.43</td>
<td>10.28</td>
<td>11.00</td>
<td>2.27</td>
<td>92</td>
</tr>
</tbody>
</table>

2017b/ 88.8 - - - - - - - - 9.93 - -

a/ Environmental Index descriptions:
- PDO - Pacific Decadal Oscillation (4-year moving average)
- UWI - Upwelling wind index (mean upwelling winds index in months of ocean migration year at 42° N 125° W)
- SSH - Sea surface height (South Beach, OR at 44° 37.5΄ N, 124° 02.6΄ W)
- SST - Sea surface temperature (mean sea surface temperature in January of return year at Charleston, OR)
- MEI - Multi-variate ENSO index
- SPR.TRN - Spring transition date (Julian)

b/ Adult recruits is a forecasted number.
PUBLIC HEARINGS ON
SALMON ALTERNATIVES

All Hearings Begin at 7 p.m.

Monday, March 27
Chateau Westport
Beach Room
710 W Hancock
Westport, WA 98595
(360) 268-9101

Monday, March 27
Red Lion Hotel
South Umpqua Room
1313 N Bayshore Drive
Coos Bay, OR 97420
(541) 267-4141

Tuesday, March 28
City of Fort Bragg
Town Hall
363 N. Main St.
Fort Bragg, CA 95437
(707) 961-2823

Public comment on the Alternatives will also be accepted during the April Council meeting on Friday, April 7, during the public comment period for Agenda Item E.3 at the Doubletree, 2001 Point West Way, Sacramento, CA 95815, phone: 916-929-8855. Written comments received at the Council office by 5:00 p.m., on Thursday, March 30, 2017 will be distributed to all Council members.

This document may be cited in the following manner:

A report of the Pacific Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award Number FNA15NMF4410016.
TABLE OF CONTENTS

LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF ACRONYMS AND ABBREVIATIONS	iv

1.0 Introduction

1.1 Purpose and Need ... 1

2.0 Selection of Final Management Measures 2

3.0 Salmon Technical Team Concerns 3

4.0 Salmon Fishery Management Plan Requirements 3

5.0 Species Listed Under the Endangered Species Act 6

6.0 Obligations Under the Pacific Salmon Treaty 8

6.1 Chinook Salmon Management 8

6.2 Coho Salmon Management ... 8

7.0 Description of the Alternatives 10

7.1 Commercial .. 10

7.2 Recreational .. 11

7.3 Treaty Indian .. 12

8.0 Affected Environment and Analysis of Impacts 12

8.1 Salmon Stocks in the Fishery 13

8.1.1 Chinook Salmon ... 13

8.1.1.1 North of Cape Falcon ... 13

8.1.1.2 South of Cape Falcon .. 14

8.1.2 Coho Salmon ... 15

8.1.3 Pink Salmon .. 17

8.1.4 Summary of Environmental Impacts on Target Stocks 17

8.1.4.1 Targeted Salmon Stocks .. 18

8.1.4.2 ESA Listed Salmon Stocks 18

8.2 Socioeconomics .. 18

8.2.1 Alternative I ... 20

8.2.2 Alternative II ... 21

8.2.3 Alternative III ... 22

8.2.4 Summary of Impacts on the Socioeconomic Environment 22

8.3 Non-target Fish Species .. 23

8.4 Marine Mammals ... 24

8.5 ESA Listed Species ... 24

8.6 Seabirds ... 24

8.7 Biodiversity and Ecosystem Function 25

8.8 Ocean and Coastal Habitats .. 25

8.9 Public Health and Safety .. 25

8.10 Cumulative Impacts .. 25

8.10.1 Consideration of the Affected Resource 25

8.10.2 Geographic Boundaries ... 25

8.10.3 Temporal Boundaries ... 26

8.10.4 Past, Present, and Reasonably Foreseeable Future Actions 26

8.10.5 Magnitude and Significance of Proposed Action 28

8.10.5.1 Fishery and Fish Resources 28
8.10.5.2 Protected Resources
8.10.5.3 Biodiversity/Ecosystem Function and Habitats
8.10.5.4 Socioeconomic Environment
9.0 CONCLUSION
10.0 LIST OF AGENCIES AND PERSONS CONSULTED
11.0 REFERENCES
APPENDIX A: PROJECTED IMPACTs FOR age-3 sacramento RIVER winter chinook and
ADULT KLAMATH RIVER FALL CHINOOK
APPENDIX B: NEPA AND ESA ANALYSES INCORPORATED BY REFERENCE
LIST OF TABLES

TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. 32
TABLE 2. 2017 Recreational management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. 50
TABLE 3. 2017 Treaty Indian troll management Alternatives for ocean salmon fisheries - Council adopted 52
TABLE 3. 2017 Treaty Indian troll management Alternatives for ocean salmon fisheries - Council Adopted 53
TABLE 4. 2017 Chinook and coho harvest quotas and guidelines (*) for ocean salmon fishery management Alternatives adopted by the Council 54
TABLE 6. Preliminary projections of Chinook and coho harvest impacts for 2017 ocean salmon fishery management Alternatives adopted by the Council. 60
TABLE 7. Expected coastwide lower Columbia Natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho, and Lower Columbia River (LCR) natural tule Chinook exploitation rates by fishery for 2017 ocean fisheries management Alternatives adopted by the Council. 62
TABLE 8. Projected coho mark rates for 2017 fisheries under base period fishing patterns (percent marked) 63
TABLE 9. Preliminary projected exvessel value under Council-adopted 2017 non-Indian commercial troll regulatory Alternatives 64
TABLE 10. Preliminary projected angler trips and coastal community income impacts generated under Council-adopted 2017 recreational ocean salmon fishery regulatory Alternatives compared to 2016 and the 2012-2016 average (in inflation adjusted dollars). 65

LIST OF FIGURES

FIGURE 1. Projected community income impacts associated with landings projected under the Council adopted 2017 commercial fishery Alternatives compared to 2016 and the 2012-2016 average.. 67
FIGURE 2. Projected community income impacts associated with angler effort projected under the Council adopted 2017 recreational fishery Alternatives compared to 2016 and the 2012-2016 average.. 68
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABM</td>
<td>Aggregate Abundance Based Management</td>
</tr>
<tr>
<td>ABC</td>
<td>acceptable biological catch</td>
</tr>
<tr>
<td>ACL</td>
<td>annual catch limit</td>
</tr>
<tr>
<td>AEQ</td>
<td>adult equivalent</td>
</tr>
<tr>
<td>BO</td>
<td>biological opinion</td>
</tr>
<tr>
<td>CDFW</td>
<td>California Department of Fish and Wildlife</td>
</tr>
<tr>
<td>CFGC</td>
<td>California Fish and Game Commission</td>
</tr>
<tr>
<td>CO</td>
<td>central Oregon (Florence south jetty to Humbug Mt.)</td>
</tr>
<tr>
<td>Council</td>
<td>Pacific Fishery Management Council</td>
</tr>
<tr>
<td>CPUE</td>
<td>catch per unit effort</td>
</tr>
<tr>
<td>CWT</td>
<td>coded-wire tag</td>
</tr>
<tr>
<td>DPS</td>
<td>Distinct Population Segment</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habitat</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño/Southern Oscillation</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>ESU</td>
<td>Evolutionarily Significant Unit</td>
</tr>
<tr>
<td>FB</td>
<td>Fort Bragg (Horse Mt. to Point Arena)</td>
</tr>
<tr>
<td>FRAM</td>
<td>Fishery Regulation Assessment Model</td>
</tr>
<tr>
<td>FMA</td>
<td>fishery management area</td>
</tr>
<tr>
<td>FMP</td>
<td>fishery management plan</td>
</tr>
<tr>
<td>FONSI</td>
<td>finding of no significant impact</td>
</tr>
<tr>
<td>GSI</td>
<td>genetic stock identification</td>
</tr>
<tr>
<td>IPHC</td>
<td>International Pacific Halibut Commission</td>
</tr>
<tr>
<td>ISBM</td>
<td>Individual Stock Based Management</td>
</tr>
<tr>
<td>KC</td>
<td>California KMZ (OR/CA border to Horse Mountain)</td>
</tr>
<tr>
<td>KO</td>
<td>Oregon KMZ (Humbug Mountain to the OR/CA border)</td>
</tr>
<tr>
<td>KMZ</td>
<td>Klamath Management Zone (the ocean zone between Humbug Mountain and Horse Mountain where management emphasis is on Klamath River fall Chinook)</td>
</tr>
<tr>
<td>KRFC</td>
<td>Klamath River fall Chinook</td>
</tr>
<tr>
<td>LCN</td>
<td>lower Columbia River natural (coho)</td>
</tr>
<tr>
<td>LCR</td>
<td>lower Columbia River (natural tule Chinook)</td>
</tr>
<tr>
<td>LRH</td>
<td>lower river hatchery (tule fall Chinook returning to hatcheries below Bonneville Dam)</td>
</tr>
<tr>
<td>LRW</td>
<td>Lower Columbia River wild fall Chinook, (bright fall Chinook returning primarily to the North Fork Lewis River).</td>
</tr>
<tr>
<td>MO</td>
<td>Monterey (Pigeon Point to the U.S./Mexico border)</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>MSA</td>
<td>Magnuson-Stevens Act</td>
</tr>
<tr>
<td>MSY</td>
<td>maximum sustainable yield</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NO</td>
<td>northern Oregon (Cape Falcon to Florence South Jetty)</td>
</tr>
<tr>
<td>NAO</td>
<td>National Oceanic and Atmospheric Administration Administrative Order</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>ODFW</td>
<td>Oregon Department of Fish and Wildlife</td>
</tr>
<tr>
<td>OCN</td>
<td>Oregon coastal natural (coho)</td>
</tr>
<tr>
<td>OFL</td>
<td>overfishing limit</td>
</tr>
<tr>
<td>OLE</td>
<td>Office of Law Enforcement (NOAA)</td>
</tr>
<tr>
<td>OPI</td>
<td>Oregon Production Index</td>
</tr>
<tr>
<td>OSP</td>
<td>Oregon State Police</td>
</tr>
<tr>
<td>OY</td>
<td>optimum yield</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDO</td>
<td>Pacific (inter) Decadal Oscillation</td>
</tr>
<tr>
<td>PSC</td>
<td>Pacific Salmon Commission</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Salmon Treaty</td>
</tr>
<tr>
<td>RER</td>
<td>rebuilding exploitation rate</td>
</tr>
<tr>
<td>RMP</td>
<td>Resource Management Plan</td>
</tr>
<tr>
<td>RK</td>
<td>Rogue/Klamath (hatchery coho)</td>
</tr>
<tr>
<td>SACL</td>
<td>annual catch limit spawner abundance</td>
</tr>
<tr>
<td>SCH</td>
<td>Spring Creek Hatchery (tule fall Chinook returning to Spring Creek Hatchery)</td>
</tr>
<tr>
<td>SEAK</td>
<td>Southeast Alaska</td>
</tr>
<tr>
<td>SMSG</td>
<td>MSY spawning escapement</td>
</tr>
<tr>
<td>SET</td>
<td>spawning escapement target</td>
</tr>
<tr>
<td>SF</td>
<td>San Francisco (Point Arena to Pigeon Point)</td>
</tr>
<tr>
<td>SI</td>
<td>Sacramento Index</td>
</tr>
<tr>
<td>SONCC</td>
<td>Southern Oregon/Northern California Coast (coho ESU)</td>
</tr>
<tr>
<td>SRFC</td>
<td>Sacramento River fall Chinook</td>
</tr>
<tr>
<td>SRFI</td>
<td>Snake River fall (Chinook) Index</td>
</tr>
<tr>
<td>SRW</td>
<td>Snake River wild fall Chinook</td>
</tr>
<tr>
<td>SRWC</td>
<td>Sacramento River winter Chinook</td>
</tr>
<tr>
<td>STT</td>
<td>Salmon Technical Team</td>
</tr>
<tr>
<td>SWO</td>
<td>State Waters Only (fisheries off Oregon south of Cape Falcon)</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish and Wildlife Service</td>
</tr>
<tr>
<td>WCVI</td>
<td>West Coast Vancouver Island</td>
</tr>
<tr>
<td>WDFW</td>
<td>Washington Department of Fish and Wildlife</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION
This document has been prepared by the staff of the Pacific Fishery Management Council (Council) and the Salmon Technical Team (STT) to describe the Council’s proposed ocean salmon management Alternatives for 2017 and characterize their expected impacts on ocean salmon fisheries and the stocks which support them. The Council solicits public comments on the proposed management Alternatives in preparation for adopting final management recommendations at its April meeting. Oral and written comments may be presented at public hearings at the times and locations displayed on the inside front cover of this report. Additional comment will be accepted during the April Council meeting at the DoubleTree Hotel in Sacramento, California. Written comments received at the Council office by March 30, 2017 will be copied and distributed to all Council members (Council staff cannot assure distribution of comments received after March 30, 2017).

This report also constitutes the second part of an Environmental Assessment (EA) to comply with National Environmental Policy Act (NEPA) requirements for the 2017 ocean salmon regulations. An EA is used to determine whether an action being considered by a Federal agency has significant environmental impacts. This part of the EA includes a statement of the purpose and need, a description of the affected environment, a description of 2017 ocean salmon regulation Alternatives being considered, and an analysis of the effects of those Alternatives on the affected environment. The first part of the EA (Preseason Report I; PFMC 2017b) included a description of the No-Action Alternative and an analysis of the effects of the No-Action Alternative on salmon stocks managed under the Pacific Coast Salmon Fishery Management Plan (FMP), which is one component of the affected environment. Along with the description and analysis of the Proposed Action in Preseason Report III (developed after the Council makes a final recommendation in April 2017), these three parts of the EA will provide the necessary components to determine if a finding of no significant impact (FONSI) or Environmental Impact Statement (EIS) is warranted.

1.1 Purpose and Need
The purpose of this action, implementation of the 2017 ocean salmon fishery management measures, is to allow fisheries to harvest surplus production of healthy natural and hatchery salmon stocks within the constraints specified under the Salmon FMP, the Pacific Salmon Treaty (PST), and consultation standards established for salmon stocks listed under the Endangered Species Act (ESA). In achieving this purpose, management measures must take into account the allocation of harvest among different user groups and port areas. Without this action, 2016 management measures would be in effect, which do not consider changes in abundance of stocks in the mixed stock ocean salmon fisheries. Therefore, this action is needed to ensure constraining stocks are not overharvested and that harvest of abundant stocks can be optimized to achieve the most overall benefit to the nation.

The Salmon FMP establishes nine more general harvest-related objectives:

1. Establish ocean exploitation rates for commercial and recreational salmon fisheries that are consistent with requirements for stock conservation objectives and annual catch limits, specified ESA consultation or recovery standards, or Council adopted rebuilding plans.

2. Fulfill obligations to provide for Indian harvest opportunity as provided in treaties with the United States, as mandated by applicable decisions of the Federal courts, and as specified in the October 4, 1993, opinion of the Solicitor, Department of Interior, with regard to Federally-recognized Indian fishing rights of Klamath River tribes.

3. Maintain ocean salmon fishing seasons that support established recreational and commercial fisheries, while meeting salmon harvest allocation objectives among ocean and inside recreational and commercial
fisheries that are fair and equitable, and in which fishing interests shall equitably share the obligations of fulfilling any treaty or other legal requirements for harvest opportunities.

4. Minimize fishery mortalities for those fish not landed from all ocean salmon fisheries as consistent with achieving optimum yield (OY) and bycatch management specifications.

5. Manage and regulate fisheries, so the OY encompasses the quantity and value of food produced, the recreational value, and the social and economic values of the fisheries.

6. Develop fair and creative approaches to managing fishing effort and evaluate and apply effort management systems as appropriate to achieve these management objectives.

7. Support the enhancement of salmon stock abundance in conjunction with fishing effort management programs to facilitate economically viable and socially acceptable commercial, recreational, and tribal seasons.

8. Achieve long-term coordination with the member states of the Council, Indian tribes with Federally recognized fishing rights, Canada, the North Pacific Fishery Management Council, Alaska, and other management entities which are responsible for salmon habitat or production. Manage consistent with the Pacific Salmon Treaty and other international treaty obligations.

9. In recommending seasons, to the extent practicable, promote the safety of human life at sea.

These objectives, along with the consultation standards established under the ESA, provide "sideboards" for setting management measures necessary to implement the Salmon FMP, which conforms to the terms and requirements of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and the National Standards Guidelines. In 2017, Klamath River fall Chinook salmon abundance is forecast below the FMP conservation objective; fisheries south of Cape Falcon, Oregon will be managed to comply with the harvest control rule for that stock which sets de minimis fishing impacts. North of Cape Falcon, Oregon, Queets coho are expected to return in low numbers and therefore fisheries are shaped to avoid them.

2.0 SELECTION OF FINAL MANAGEMENT MEASURES

The Council's final ocean salmon season recommendations will be based on the range of Alternatives presented in this report and guidance received from deliberations at management fora such as the north of Cape Falcon planning process (sponsored by the States of Washington and Oregon and the treaty Indian tribes in that area), Pacific Salmon Commission (PSC), and from public hearings sponsored by the Council and the States of Washington, Oregon, and California. Final recommendations concerning season dates, catch quotas, and exploitation rates may vary from the range of Alternatives presented in this report depending upon determination of allocations, allowable harvest levels, public comment, or the final impact analyses completed by the STT. Elements of the Alternatives may be recombined to alter season patterns and quotas, or measures such as bag limits, days of fishing per week, special landing restrictions, and other specific regulatory details may also change. In addition, inseason modification of management measures may be used to ensure achievement of the Council's management objectives.

Specific details pertaining to season structure and special management measures for the treaty Indian troll fishery north of Cape Falcon are established in tribal regulations. Chinook and coho quota levels for the treaty Indian troll fishery may be adjusted if substantial changes in incidental fishing mortality result from tribal regulations, preseason or inseason.
The impact analyses presented in this document reflect uncertainties and limitations of information available at the time of the March 2017 Council meeting. At this point in the planning cycle, the STT’s impact assessments reflect five key assumptions relative to stocks impacted by Canadian and Alaskan fisheries:

1) abundance levels for Canadian Chinook and coho stocks identical to 2016 forecasts;

2) for Chinook fisheries managed under the aggregate abundance based management (AABM) provisions of the 2009 PST Agreement, fishing effort scalars from the final 2016 preseason model run for southeast Alaskan (SEAK), north-central British Columbia, and West Coast Vancouver Island (WCVI) fisheries;

3) for Chinook fisheries managed under individual stock based management (ISBM) regimes pursuant to the 2009 PST Agreement; the 2016 final preseason catches which were a combination of 2015 postseason estimates or the most recent previous three-year average landed catch;

4) for Canadian coho fisheries, single-year postseason fishing effort scalars from FRAM for net (2013), sport (2013, except WCVI -2014) and troll (2012); and

5) for Southern U.S. inside fisheries for Chinook and coho, the 2016 final preseason fishery catch or fishing effort.

In mid-March, U.S. and Canadian fishery managers exchange information regarding preseason expectations for fisheries and the status of Chinook and coho stocks. In addition the PSC’s Chinook Model will be calibrated by the PSC Chinook Technical Committee to determine the allowable catch ceilings under the 2009 PST Agreement. Abundances and fishery expectations will be adjusted in the Council’s fishery planning models prior to the April Council meeting, and inside fisheries will be shaped by state and tribal co-managers both prior to and during the April Council meeting.

Any Alternative considered for adoption that deviates from Salmon FMP objectives or other applicable laws will require implementation by emergency rule. If an emergency rule appears to be necessary, the Council must clearly identify and justify the need for such an action consistent with emergency criteria established by the Council and NMFS.

3.0 SALMON TECHNICAL TEAM CONCERNS

The Salmon Technical Team has no technical/modeling concerns to report at this time.

4.0 SALMON FISHERY MANAGEMENT PLAN REQUIREMENTS

The Council’s Salmon FMP includes objectives for setting annual management measures to regulate ocean salmon fisheries between the U.S./Canada border and the U.S./Mexico border. The objectives include biological, administrative, and allocation requirements. In recommending final management measures, the Council attempts to meet all objectives in a fair and balanced manner, while maintaining established priorities.

Biological objectives for stocks originating in the Council area and impacted by Council area ocean fisheries are listed in Table 3-1 of the Salmon FMP. The objectives generally consist of meeting spawning escapement numbers associated with maximum sustainable yield (S_{MSY}), overfishing limits (OFL), acceptable biological catch (ABC), and annual catch limits (ACL), or exploitation rate limits designed to support recovery of depressed stocks or to rebuild overfished stocks, while encompassing a long term average harvest approximating MSY.
Administrative objectives are requirements for meeting other applicable law outside of the Salmon FMP. These requirements include ESA consultation standards, international treaties, and tribal trust responsibilities. The Salmon FMP defers to NMFS consultation standards for salmon stocks listed under the ESA in regard to biological conservation objectives. Section 5.0 of this document provides greater detail on ESA listed stocks, while impacts of the Council adopted salmon management measures on ESA listed stocks are included in Table 5.

The Salmon FMP requires compliance with relevant terms of the PST. Section 6.0 of this document provides greater detail on PST provisions and stocks, while impacts of the Council adopted salmon management measures on those stocks are included in Table 5.

Treaty trust responsibilities of the Salmon FMP require the Council to abide by Court orders in the *U.S. v. Washington* (Puget Sound), *Hoh v. Baldrige* (Washington coast), and *U.S. v. Oregon* (Columbia River) cases, and the Solicitor General opinion (Klamath River) governing allocation and management of shared salmon resources. Much of the North of Falcon forum is dedicated to annual negotiations establishing allocation among the tribes, non-Indian fishing sectors, and ocean and inside interests. The results of these negotiations allow the Council to complete final management measure recommendations while meeting its biological, administrative, and allocation objectives.

The Columbia River treaty tribes establish periodic management agreements with the state co-managers and Federal agencies. These agreements are approved pursuant to provisions of *U.S. v. Oregon* procedures. Recent agreements have included an entitlement for the treaty tribes of 50 percent of the coho return destined for areas upstream from Bonneville Dam. Council area fisheries are shaped in order to meet this requirement in some years.

The Yurok and Hoopa Valley Tribes are entitled to 50 percent of the total Klamath River fall Chinook (KRFC) harvest, which is calculated as a harvest of KRFC equal to that taken in all non-Indian fisheries. The Council must account for all harvest impacts when assessing the achievement of KRFC conservation objectives.

Although the abundance of coho south of Cape Falcon is sufficient to allow some commercial harvest per the FMP allocation schedule, the depressed status of Klamath River fall Chinook warrant minimizing the fishery impact on this stock.

In addition to the allocation objectives associated with sharing between treaty Indian and non-Indian sectors, the Salmon FMP includes formulas for sharing Chinook and coho quotas north of Cape Falcon between commercial and recreational sectors, and among recreational port subareas, and for coho south of Cape Falcon between commercial and recreational sectors. Alternatives for the 2017 salmon management measures adopted by the Council meet the allocation requirements for Chinook fisheries north of Cape Falcon in the Salmon FMP. Salmon FMP harvest allocation guidelines for north of Cape Falcon also specify the distribution of coho between commercial and recreational sectors and provide for equal recreational harvest opportunity for coho salmon north and south of Leadbetter Point. In response to low stock projections for some coho salmon stocks on the Washington coast and Puget Sound, Alternative I reduces impacts in the commercial troll fishery relative to those in the recreational fishery. Alternative III allows for harvest of coho only in the recreational fishery south of Leadbetter Point (Columbia River Subarea) while requiring release of coho in the commercial fishery and in the recreational fishery north of Leadbetter Point. Alternatives I and III appear to deviate from the FMP harvest allocation guidelines and therefore may require fisheries north of Falcon to be implemented under a temporary rule for emergency action if either is selected.
In support of the adoption of these Alternatives for public review, the Council reviewed the criteria used to evaluate requests for emergency action by the Secretary from Council Operating Procedure 10 (italics below) and provided the following preliminary rationale for considering a deviation from the FMP harvest allocation guidelines.

1. **The issue was not anticipated or addressed in the salmon plan, or an error was made.**
 The issue does not appear to be caused by an error. Rather, the relatively healthy abundance of Chinook and the extremely low abundance of some Washington coast and Puget Sound coho stocks present circumstances that were not anticipated in the FMP to the extent encountered this year. The recreational fishery is more dependent on coho than the commercial fishery, and the Columbia River Subarea is much more dependent on coho to achieve the FMP objectives than Westport or the ports farther to the north. Alternative I allocates a larger share to the recreational fishery, and Alternative III allocates the small number of harvestable coho to the recreational fishery in the Columbia River Subarea while relying on the ability of the northern ports to access harvestable Chinook to achieve the management objectives in the FMP. Therefore, the Council is considering Alternatives that vary from the coho harvest allocation guidelines and that would require implementation via emergency rule.

2. **Waiting for a plan amendment to be implemented would have substantial adverse biological or economic consequences.**
 In the event that regulations that address non-retention of coho in the fishery were not able to move forward, there would be significant economic consequences to the ports and communities of the Columbia River, Westport, La Push, and Neah Bay. The Alternatives should optimize the harvest of harvestable stocks while meeting conservation objectives to the best of our ability. A plan amendment could not be completed in time.

3. **In the case of allocation issues, the affected user representatives support the proposed emergency action.**
 The Council appreciates the hard work of the commercial troll and recreational fishery representatives involved in the North of Falcon process. Their assistance was critical to the development of the Alternatives and there is full support of the Alternatives going out for public review, including Alternatives that may deviate from strict adherence to the FMP.

4. **The action is necessary to meet FMP objectives.**
 The structure of the Alternatives and the potential deviation from the strict terms of the FMP have the potential to better optimize harvest and conservation and thereby more fully meet FMP objectives.

5. **If the action is taken, long-term yield from the stock complex will not be decreased.**
 It is not anticipated that any aspect of these Alternatives would decrease long-term yield. The potential deviation from the FMP allocation guidelines is intended to have the opposite effect by implementing coho non-retention regulations in areas of concern while considering modest harvest opportunity where appropriate.
5.0 SPECIES LISTED UNDER THE ENDANGERED SPECIES ACT

Since 1989, NMFS has listed the following 17 Evolutionarily Significant Units (ESUs) of salmon under the ESA:

<table>
<thead>
<tr>
<th>ESU</th>
<th>Status</th>
<th>Most Recent</th>
<th>Original Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento River Winter</td>
<td>Endangered</td>
<td>76 FR 50447</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Snake River Fall</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Snake River Spring/Summer</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Puget Sound</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Lower Columbia River</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Upper Willamette River</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Upper Columbia River Spring</td>
<td>Endangered</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Central Valley Spring</td>
<td>Threatened</td>
<td>76 FR 50447</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>California Coastal</td>
<td>Threatened</td>
<td>76 FR 50447</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Hood Canal Summer-Run</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Columbia River</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Central California Coastal</td>
<td>Endangered</td>
<td>76 FR 50447</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>S. Oregon/ N. California Coastal</td>
<td>Threatened</td>
<td>76 FR 50447</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Oregon Coastal</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Lower Columbia River</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Snake River</td>
<td>Endangered</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
<tr>
<td>Ozette Lake</td>
<td>Threatened</td>
<td>76 FR 50448</td>
<td>8/15/2011</td>
</tr>
</tbody>
</table>

As the listings have occurred, NMFS has initiated formal consultations and issued biological opinions (BOs) that consider the impacts resulting from implementation of the Salmon FMP, or from annual management measures, to listed salmonid species. NMFS has also reinitiated consultation on certain ESUs when new information has become available on the status of the stocks or on the impacts of the Salmon FMP on the stocks. The consultation standards referred to in this document include (1) reasonable and prudent alternatives, (2) conservation objectives for which NMFS conducted Section 7 consultations and arrived at a no-jeopardy conclusion, and (3) NMFS requirements under Section 4(d) determinations.

A list of current BOs in effect, the species they apply to, and their duration follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Evolutionarily Significant Unit covered and effective period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8/1996</td>
<td>Snake River spring/summer and fall Chinook and sockeye (until reinitiated)</td>
</tr>
<tr>
<td>4/28/1999</td>
<td>Oregon Coastal natural coho, Southern Oregon/ Northern California coastal coho, Central California coastal coho (until reinitiated)</td>
</tr>
<tr>
<td>4/28/2000</td>
<td>Central Valley spring Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/27/2001</td>
<td>Hood Canal summer chum 4(d) limit (until reinitiated)</td>
</tr>
<tr>
<td>4/30/2001</td>
<td>Upper Willamette Chinook, Upper Columbia spring Chinook, Lake Ozette sockeye, Columbia River chum, and 10 steelhead ESUs (until reinitiated)</td>
</tr>
<tr>
<td>4/30/2004</td>
<td>Puget Sound Chinook (until reinitiated)</td>
</tr>
<tr>
<td>6/13/2005</td>
<td>California coastal Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/30/2010</td>
<td>Sacramento River winter Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/26/2012</td>
<td>Lower Columbia River Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/9/2015</td>
<td>Lower Columbia River natural coho (until reinitiated)</td>
</tr>
</tbody>
</table>
Amendment 12 to the Salmon FMP added the generic category “species listed under the ESA” to the list of stocks in the salmon management unit and modified respective escapement goals to include “manage consistent with NMFS jeopardy standards or recovery plans to meet immediate conservation needs and long-term recovery of the species.” Amendment 14 specified those listed ESUs and clarified which stocks in the FMP management unit were representative of the ESUs.

In a letter received by the Council on March 3, 2017, NMFS provided guidance on protective measures for species listed under the ESA during the 2017 fishing season. The letter summarized the requirements of NMFS’ BOs on the effects of potential actions under the salmon FMP on listed salmon and provided the anticipated consultation standards of the BOs in preparation for the 2017 management season, as well as further guidance and recommendations for the 2018 management season.

The ESA consultation standards, exploitation rates, and other criteria in place for the 2017 management season are presented in Table 5. Some listed stocks are either rarely caught in Council fisheries (e.g., spring Chinook from the upper Columbia River) or already receive sufficient protection from other salmon FMP and ESA standards (e.g., Central Valley spring Chinook). NMFS has determined that management actions designed to limit catch from these ESUs, beyond what will be provided by harvest constraints for other stocks, are not necessary.

Of the listed Chinook and coho, Council-managed fisheries have substantive impacts on Sacramento River winter Chinook (SRWC), Central Valley spring Chinook, California coastal Chinook, Snake River wild (SRW) fall Chinook, lower Columbia River (LCR) fall Chinook, and all of the coho stocks.

Additional listed salmonid ESUs found within the Council area, but not substantively impacted by Council managed fisheries, include:

<table>
<thead>
<tr>
<th>Chinook</th>
<th>Sockeye</th>
<th>Chum</th>
<th>Steelhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snake River spring/summer</td>
<td>Snake River (endangered)</td>
<td>Columbia River (threatened)</td>
<td>Southern California (endangered)</td>
</tr>
<tr>
<td>(threatened)</td>
<td></td>
<td></td>
<td>South-central California coast</td>
</tr>
<tr>
<td>Upper Willamette (threatened)</td>
<td></td>
<td></td>
<td>(threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper Columbia River (endangered)</td>
</tr>
<tr>
<td>Puget Sound (threatened)</td>
<td>Ozette Lake Sockeye (threatened)</td>
<td>Hood Canal summer (threatened)</td>
<td>Central Valley, California (threatened)</td>
</tr>
<tr>
<td>Upper Columbia River (endangered)</td>
<td></td>
<td></td>
<td>Central California coast (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper Willamette River (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Columbia River (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Northern California (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Assessment Part 2 (Preseason Report II) April 2017
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
6.0 OBLIGATIONS UNDER THE PACIFIC SALMON TREATY

In 1985 the PST was signed, setting long-term goals for the benefit of the shared salmon resources of the United States and Canada. The PSC is the body formed by the governments of Canada and the United States to implement the Pacific Salmon Treaty.

6.1 Chinook Salmon Management

A new agreement under the PST was negotiated in 2008 and formally accepted by both the U.S. and Canada in December of 2008. This new agreement took effect on January 1, 2009, and includes a 30 percent reduction in the catch ceilings for AABM fisheries off the West Coast Vancouver Island and a 15 percent reduction in the catch ceilings for AABM fisheries in Southeast Alaska Chinook relative to the catch ceilings in effect for these fisheries since 1999. Under the terms of the 2009 PST Agreement, Council fisheries for Chinook salmon continue to be subject to the ISBM provisions of Annex 4, Chapter 3, adopted in 1999. These provisions require the combined adult equivalent (AEQ) exploitation rate by all U.S. fisheries south of the U.S./Canada border be reduced by 40 percent from the 1979-1982 base period for a specified set of Chinook indicator stocks, substantively impacted in U.S. ISBM fisheries, if they do not achieve their management objectives.

Many Chinook stocks of concern to the Council are affected by fisheries off Canada and Alaska. Maximum allowable catches by AABM fishery complexes off the WCVI, Northern British Columbia, and Southeast Alaska are determined through the annual calibration of the PSC Chinook Model. Canadian fisheries that are not included in AABM complexes are managed under ISBM constraints, which require a 36.5 percent reduction in AEQ exploitation rates relative to the 1979-1982 base period on specified Chinook indicator stocks that do not achieve their management objectives. Expectations for Canadian and Alaskan fisheries harvest and stock abundance forecasts are incorporated into the Chinook Fishery Regulation Assessment Model (FRAM) to estimate total exploitation rate impacts from all marine fisheries (Table 5).

Key considerations for Canadian domestic fishery management for Chinook in 2017 include, (1) meeting domestic conservation obligations for WCVI, Strait of Georgia, and Fraser River spring stocks; (2) Chinook harvests by native fisheries; and (3) incidental impacts during commercial and native fisheries directed at sockeye, and chum salmon. It is anticipated that the details of the fishery regulatory package off WCVI will be driven by levels of allowable impact on WCVI and Lower Strait of Georgia Chinook and Interior Fraser (Thompson River) coho.

6.2 Coho Salmon Management

In 2002, the PSC adopted a management plan for coho salmon originating in Washington and Southern British Columbia river systems. The plan is directed at the conservation of key management units, four from Southern British Columbia (Interior Fraser, Lower Fraser, Strait of Georgia Mainland, and Strait of Georgia Vancouver Island) and nine from Washington (Skagit, Stillaguamish, Snohomish, Hood Canal, Strait of Juan de Fuca, Quillayute, Hoh, Queets, and Grays Harbor). Exploitation rate limits for intercepting fisheries are established for individual management units through formulas specified in the 2002 PST Southern Coho Management Plan, and are based on total allowable fishery exploitation rates.

The categorical status of U.S. coho management units is reported to comply with obligations pursuant to the 2002 PST Southern Coho Management Plan. Categorical status is employed by the PSC under the 2002 PST Southern Coho Management Plan to indicate general ranges of allowable total exploitation rates for U.S. and Canadian coho management units. Three categories are employed: low (total exploitation rate less than 20 percent), moderate (total exploitation rate 20 percent to 40 percent), and abundant (total exploitation rate greater than 40 percent). For the Puget Sound management units, the 2002 PST Southern Coho Management Plan uses the thresholds and stepped harvest rate goals from the Comprehensive Coho...
Agreement, developed by Washington and the Puget Sound tribes, and adopted by the Council as FMP conservation objectives in November 2009. Actual exploitation rate constraints for Canadian fisheries on U.S. coho management units are determined by formulas that specify sharing of allowable exploitation rates and a “composite rule.” The composite rule adjusts constraints for Canadian fishery exploitation rates based on the number of U.S. management units which fall in a given category. For example, if only one Washington coastal or Puget Sound coho management unit is in low status, Canadian fisheries are constrained to a total exploitation rate on that unit of 12 percent; if two or more Washington coastal management units are in low status, the constraint becomes 10 percent. The most restrictive exploitation rate limit for Canadian fishery impacts on U.S. coho management units is 10 percent.

For several Washington coastal coho management units, management objectives are expressed as a range of spawning escapements expected to produce MSY. Allowable exploitation rates are calculated from the forecast abundance and the lower end of the escapement range and used to classify the categorical status of the management units. This rate is the maximum allowed under the PST when the management unit is in the moderate or abundant status, but exploitation rates up to 20 percent are allowed if the management unit is in the low abundance status.

For 2017, Puget Sound and Washington coast coho constraints are as follows:

<table>
<thead>
<tr>
<th>FMP Stock</th>
<th>Total Exploitation Rate Constraint</th>
<th>Categorical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skagit</td>
<td>20%</td>
<td>Critical</td>
</tr>
<tr>
<td>Stillaguamsh</td>
<td>20%</td>
<td>Critical</td>
</tr>
<tr>
<td>Snohomish</td>
<td>40%</td>
<td>Low</td>
</tr>
<tr>
<td>Hood Canal</td>
<td>65%</td>
<td>Normal</td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>40%</td>
<td>Low</td>
</tr>
<tr>
<td>Quillayute Fall</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td>Hoh</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Queets</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor</td>
<td>65%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PST Southern Coho Management Plan</th>
<th>U.S. Management Unit</th>
<th>Total Exploitation Rate Constraint</th>
<th>Categorical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skagit</td>
<td>20%</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Stillaguamsh</td>
<td>20%</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Snohomish</td>
<td>40%</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>65%</td>
<td>Abundant</td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>40%</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Quillayute Fall</td>
<td>60%</td>
<td>Abundant</td>
<td></td>
</tr>
<tr>
<td>Hoh</td>
<td>66%</td>
<td>Abundant</td>
<td></td>
</tr>
<tr>
<td>Queets</td>
<td>20%</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor</td>
<td>29%</td>
<td>Moderate</td>
<td></td>
</tr>
</tbody>
</table>

a/ Preliminary. For Puget Sound stocks, the exploitation rate constraints and categorical status (Normal, Low, Critical) reflect application of Comprehensive Coho Agreement rules, as adopted in the FMP. For Washington Coast stocks, exploitation rate constraints represent MFMT. Note that under U.S. v. Washington and Hoh v. Baldridge case law, the management objectives can differ from FMP objectives provided there is an annual agreement among the state and tribal comanagers; therefore, the exploitation rates used to report categorical status do not necessarily represent maximum allowable rates for these stocks.

b/ Preliminary. For Puget Sound and Washington Coast management units, the exploitation rate constraints reflect application of the 2002 PST Southern Coho Management Plan.

c/ Categories (Abundant, Moderate, Low) correspond to the general exploitation rate ranges depicted in paragraph 3(a) of the 2002 PST Southern Coho Management Plan. For Washington Coast stocks, categorical status is determined by the exploitation rate associated with meeting the escapement goal (or the lower end of the escapement goal range). This also becomes the maximum allowable rate unless the stock is in the “Low” status. In that case an ER of up to 20% is allowed.
Key considerations for Canadian fishery management for coho in 2017 are expected to include, (1) meeting domestic conservation obligations for Interior Fraser (including Thompson River) coho; (2) coho harvests by First Nations fisheries; (3) incidental impacts during commercial and First Nations fisheries directed at pink, Chinook, sockeye, and chum salmon; and (4) the desire to provide increased opportunity for sport fisheries through mark-selective retention regulations. The Canadian fishery regimes affecting coho are expected to be driven by Canadian domestic allowable impacts on the Thompson River component of the Interior Fraser management unit.

In previous years, prior to 2014, Canadian fisheries were managed so as not to exceed a three percent maximum exploitation rate. In May 2014, Canada decided to permit up to a 16% exploitation rate on upper Fraser coho in Canadian fisheries to allow for impacts in fisheries directed at a record Fraser sockeye forecast. The projected status of Canadian coho management units in 2017 indicates continuing concerns for the condition of Interior Fraser coho. With a record low sockeye forecast this year, the Interior Fraser coho management unit is anticipated to remain in low status, resulting in a requirement to constrain the total mortality fishery exploitation rate for 2017 Southern U.S. fisheries to a maximum of 10.0 percent.

7.0 DESCRIPTION OF THE ALTERNATIVES

Detailed information on the proposed ocean salmon regulation Alternatives are presented in Tables 1 (non-Indian commercial), 2 (recreational), and 3 (treaty Indian). Notable changes from recent seasons are highlighted below.

7.1 Commercial

Alternatives for the area north of Cape Falcon reflect a similar total abundance of Chinook, lower abundance of Columbia River hatchery coho and a higher abundance of natural coho compared to 2016. In 2017, allowable catch of Chinook will likely be slightly higher than 2016 due to a higher relative abundance of Spring Creek Hatchery Chinook, similar expected impacts in northern fisheries, and a total exploitation rate limit on LCR natural tule fall Chinook identical to 2016. Coho catch quotas will be higher than in 2016 due to harvestable Columbia River hatchery coho and improved abundance of natural stocks on the Washington coast and in Puget Sound.

Alternative I north of Cape Falcon assigns two-thirds of the troll Chinook quota to the May-June Chinook directed fishery; Alternative II assigns 50 percent to the May-June Chinook directed fishery, while Alternative III assigns 60 percent to the May-June Chinook directed fishery. In Alternatives I and II, the May-June fishery opens initially seven days per week with sub-quotas in the area north of the Queets River and in the area south of Leadbetter Point. In Alternative III, the May-June fishery opens May 1-9, then five days per week with landing and possession limits in all areas and sub-quotas in the area north of the Queets River and in the area south of Leadbetter Point. The summer all-salmon fishery in Alternative I opens seven days per week and includes weekly Chinook and coho landing and possession limits in all areas and a Chinook sub-quota in the areas north of the Queets River. Alternative II is open five days per week with landing and possession limits and a Chinook sub-quota in the areas north of the Queets River. Alternative III is closed to coho retention with Chinook landing and possession limits and Chinook sub-quotas in the area north of the Queets River and in the area south of Leadbetter Point.

Commercial fisheries south of Cape Falcon will be constrained by an extremely low forecast abundance of KRFC, which results in a maximum allowable exploitation rate of 8.1 percent on this stock per de minimis fishing criteria in the FMP. In addition, commercial fisheries south of Point Arena, California, will be constrained by conservation concerns for ESA-listed SRWC. In response to these concerns, Alternative III specifies a complete closure of all commercial fisheries south of Cape Falcon.
For the Tillamook and Newport areas, Alternative I for Chinook fisheries opens on April 15 with variable open days in all months through July and open all days in September and October. For Alternative II, the Tillamook, Newport, and Coos Bay areas are open most days beginning April 15 through early June, as well as two days in August in the Tillamook and Newport areas. Commercial salmon fisheries are closed in all areas in Alternative III.

In the Klamath Management Zone (KMZ), both the Oregon and California portions are closed in all Alternatives.

In the Fort Bragg area the fishery is limited to September in Alternative I, and is completely closed under Alternatives II and III.

In the San Francisco area, the fishery would be open for most of August and all of September under Alternatives I and II. For Alternative II, fishing during this time would be confined to the region between Point Reyes and Pigeon Point, with the area from Point Arena to Point Reyes closed. The October Monday through Friday fall area target zone fishery from Point Reyes to Point San Pedro is included in Alternatives I and II as well. Alternative III is closed.

The Monterey area is open for the months of May and June in Alternatives I and II. Alternative III is closed.

7.2 Recreational

Alternative I includes a Chinook directed mark-selective recreational fishery between the Queets River and Cape Falcon in June with a coastwide quota of 7,500 marked Chinook. The sub-areas north of the Queets River open June 24 through September 30 for all salmon species, seven days per week, while the areas south of the Queets River open for all salmon species, July 1 through September 30. This Alternative includes a late-season opportunity in the area between Cape Alava and the Queets River October 1 through October 15.

In Alternative II, all sub-areas north of Cape Falcon open for all salmon species, seven days per week on June 24. The scheduled ending date for all sub-areas is September 30, with the exception of the Westport subarea, which is scheduled to close September 17. The bag limit in the areas north of the Queets River includes two fish plus one additional pink in this Alternative.

In Alternative III, marked coho retention is allowed only in the area between Leadbetter Point and Cape Falcon; all sub-areas north of Leadbetter Point would operate under coho non-retention regulations. In this alternative, the Neah Bay, La Push, and Columbia River Subareas open July 1, seven days per week; the Westport Subarea opens July 2, five days per week. Scheduled ending dates range from September 7 through September 16 with a late-season opportunity in the area between Cape Alava and the Queets River October 1 through October 15.

In all Alternatives north of Cape Falcon, all retained coho must be marked with a healed adipose fin clip. In the Westport subarea, the Grays Harbor Control Zone is closed beginning August 14 in all Alternatives.

For the North and Central Oregon coast south of Cape Falcon, Chinook fisheries are open March 15 through October 31 under Alternatives I and II. For Alternative III, Chinook fisheries are open March 15 through April 30. Alternatives I and II feature a mark-selective coho quota fishery in the summer, including the Oregon KMZ (Alternative II), with quota sizes and opening/closing dates that vary among the Alternatives. A non-mark-selective coho fishery also exists for the Cape Falcon to Humbug Mountain area beginning on
September 2 under Alternative I. The non-mark-selective coho quota is being considered due to the relative abundances of Oregon Coast natural (OCN) coho and Oregon Production Index (OPI) hatchery coho forecasts, which tend to reduce expected mark rates and increase the number of release mortalities on natural stocks in September.

Chinook fishing in the Oregon KMZ is closed in all Alternatives. Alternative II is open for the summer mark-selective coho quota fishery described in the paragraph above. The California KMZ is closed to all species in all Alternatives.

For areas south of the KMZ, the season will begin on April 1 under all Alternatives. Minimum size limits in this area range from 20 to 24 inches, with higher size limits in the south to protect SRWC which tend to be smaller compared to other Chinook stocks in the ocean.

In the Fort Bragg area, Alternative I allows for fishing April through May and mid-August through mid-November. For Alternative II, the fishery would be open in April and May, 12 days in July, and September through mid-November. Alternative III would only allow fishing in the month of April.

For the San Francisco area, the season would continue through the end of October with a two week closure in early May under Alternative I. For Alternative II, the season would also continue through October but with a closure during all of May and half of June. Alternative III would only allow fishing in April.

For the Monterey North area, from Pigeon Point to Point Sur, the recreational fishery would remain open until July 15 under Alternative I and June 30 under Alternative II. Like the rest of the coast, fishing would end on April 30 for Alternative III.

For the Monterey South area, from Point Sur to the U.S./Mexico border, Alternatives I and II would be open for the months of April and May. Alternative III would only be open for the month of April.

7.3 Treaty Indian
Alternatives are generally similar in structure to past years, with quotas that are similar to 2016 for Chinook. Coho catch quotas will be higher than in 2016 due to an increase in harvestable Columbia River hatchery coho and improved abundance of natural stocks on the Washington coast and in Puget Sound. All three Alternatives will have a Chinook directed fishery in the May-June time period with half of the Chinook quota and the all species fishery will occur from July to September 15. All Alternatives have the provision that if the Chinook quota for the May-June fishery is exceeded, the excess will be deducted from the later all-salmon season.

8.0 AFFECTED ENVIRONMENT AND ANALYSIS OF IMPACTS
Based on National Oceanic and Atmospheric Administration (NOAA) Administrative Order (NAO) 216-6 Section 6.02, the affected environment may consist of the following components:
- Target (FMP) species
- Social or economic environments
- Non-target species
- Essential Fish Habitat
- Public health or safety
- ESA listed (non-salmon) species or critical habitat
- Marine mammals
Biodiversity or ecosystem function

8.1 Salmon Stocks in the Fishery

Target stocks include Chinook, coho, and pink salmon stocks identified in Appendix A, Table A-1 of Preseason Report I (Part 1 of this EA; PFMC 2017b), which includes several ESA listed Chinook and coho stocks. These ESA listed stocks are not targeted in Council area salmon fisheries, but will be included in the analysis of effects on target species because they are impacted coincidentally with targeted salmon stocks and frequently constrain access to targeted stocks. Environmental impacts to other ESA listed species (e.g., marine mammals) from the Alternatives will be analyzed in a later section of this EA.

A description of the historical baseline for this component of the affected environment is presented in the Review of 2016 Ocean Salmon Fisheries (PFMC 2017a). A more general description of salmon life history and population characteristics is presented in PFMC 2006. The current status (2017 ocean abundance forecasts) of the environmental components expected to be affected by the 2017 ocean salmon fisheries regulation Alternatives (FMP salmon stocks) are described in PFMC 2017b. The criteria used to evaluate whether there are significant effects from the Alternatives on target stocks are achievement of conservation objectives, ACLs, and rebuilding criteria. For ESA listed stocks impacted by the fishery, ESA consultation standards are applied to determine whether there are significant effects. The Salmon FMP conservation objectives are based on the best available science and are intended to prevent overfishing while achieving optimum yield from West Coast salmon fisheries as required by the MSA. The ESA consultation standards are likewise based on the best available science and are intended to ensure that fishery impacts do not appreciably reduce the likelihood of survival and recovery of listed species in the wild. FMP conservation objectives also include criteria for rebuilding overfished stocks. Therefore conservation objectives and consultation standards are appropriate indicators for determining the significance of fishery management actions referred to in NAO 216-6, Section 6.02.

8.1.1 Chinook Salmon

8.1.1.1 North of Cape Falcon

Abundance projections important to Chinook harvest management north of Cape Falcon in 2017 are:

- Columbia River hatchery tules. Combined production of Lower River Hatchery (LRH) and Spring Creek Hatchery (SCH) stocks returning to the Columbia River is predicted to be 250,800, slightly higher than the 2016 preseason expectation of 223,300. The 2017 LRH forecast abundance is 92,400, below the forecast of 133,700 in 2016. The 2017 SCH forecast abundance is 158,400, which is considerably higher than last year’s forecast of 89,600.

The primary Chinook salmon management objective shaping the Alternatives north of Cape Falcon is:

- NMFS consultation standards and annual guidance for ESA listed stocks as provided in Section 5.0 above. Relevant stocks for the area north of Cape Falcon include LCR natural tule Chinook and Columbia Lower River Wild (LRW) fall Chinook.

Fishery quotas under the Alternatives are presented in Table 4. Stock-specific management criteria and their forecast values under the Alternatives are provided in Table 5. Projected fishery landings, bycatch, and bycatch mortality under the Alternatives are summarized in Table 6. Table 7 provides a breakdown of impacts by fishery and area for LCR natural tule Chinook. Descriptions pertaining to the achievement of key objectives for Chinook salmon management north of Cape Falcon are found below.
• **LCR natural tule fall Chinook.** The exploitation rate on LCR natural tule fall Chinook in Alternative I is slightly above the 41.0 percent NMFS consultation standard maximum in 2017, assuming the same preseason river fishery harvest rates as last year. Additional shaping of PSC fisheries prior to the April Council meeting may result in minor changes to the anticipated ERs presented in the Alternatives. LCR tules are the constraining Chinook stock for fisheries north of Cape Falcon in 2017.

• **SRW fall Chinook.** Alternatives have ocean exploitation rates of 43.3 percent or less of the base period exploitation rates, which is less than the ESA consultation standard of no more than 70 percent of the 1988-1993 base period exploitation rate for all ocean fisheries. SRW Chinook will not constrain ocean fisheries north of Cape Falcon in 2017.

Alternatives II and III for Chinook fisheries north of Cape Falcon satisfy NMFS ESA consultation standards and guidance, FMP conservation objectives, and all other objectives for relevant Chinook stocks (Table 5). The NMFS ESA consultation standard for LCR natural tule fall Chinook is exceeded in Alternative I. Meeting the ESA consultation standard for natural tules may be achievable following updates in PSC fisheries and shaping of inriver fisheries.

8.1.1.2 South of Cape Falcon

Status of Chinook stocks important to 2017 Chinook harvest management south of Cape Falcon are:

- **KRFC.** The ocean abundance forecast for this stock is 42,000 age-3, 10,600 age-4, and 1,700 age-5 fish. Last year’s preseason forecast was 93,400 age-3, 45,100 age-4, and 3,700 age-5 fish.

- **SRWC.** No abundance forecast is made for this stock. The geometric mean of the most recent three years of escapement is 2,521 fish which represents a decrease in this quantity relative to last year.

- **SRFC.** The SI forecast is 230,700, which is lower than last year’s preseason forecast of 299,600.

Key Chinook salmon management objectives shaping the Alternatives south of Cape Falcon are:

- **KRFC natural area spawner escapement of at least 11,379 adults, which is produced, in expectation, by a maximum exploitation rate of 8.1 percent (FMP control rule).**

- **NMFS consultation standards and annual guidance for ESA listed stocks as provided in Section 5.0 above.** Relevant stocks for the area south of Cape Falcon include SRWC, California coastal Chinook, SRW fall Chinook, and LCR natural tule Chinook.

In 2017, invoking *de minimis* fishing rates that were adopted under FMP Amendment 16 will be necessary because KRFC potential spawner abundance is projected to be less than 54,267 natural-area adults, the abundance at which the harvest control rule allows for a projected natural-area adult escapement of less than S_{MSY}. The FMP includes the following guidance with regard to *de minimis* exploitation rates: “When recommending an allowable *de minimis* exploitation rate in a given year, the Council shall also consider the following circumstances:

- The potential for critically low natural spawner abundance, including considerations for substocks that may fall below crucial genetic thresholds;
- Spawner abundance levels in recent years;
The status of co-mingled stocks;
Indicators of marine and freshwater environmental conditions;
Minimal needs for tribal fisheries;
Whether the stock is currently in an approaching overfished condition;
Whether the stock is currently overfished;
Other considerations as appropriate”.

At the March 2017 PFMC meeting, each of the circumstances above were discussed by the Council and its advisors during the development of the three Alternatives for south of Cape Falcon fisheries. The risk for substocks to fall below crucial genetic thresholds in 2017 was expected to be substantial (> 80 percent) under either a no-fishing scenario or fishing at the de minimis level. In 2016, KRFC spawner escapement was well below both the SMSY and minimum stock size threshold specified in the FMP. Regarding the status of co-mingled stocks, the STT reported that the primary stocks that comingle with KRFC have relatively low forecast abundance for 2017. NMFS’ Northwest and Southwest Fisheries Science Centers presented information indicating that the broods that will contribute to 2017 harvest and escapement encountered poor ocean conditions in the California Current Ecosystem. KRFC meet the FMP criteria for approaching an overfished condition in Preseason Report I (PFMC 2017b); although NMFS has not yet made a formal determination. Finally, KRFC are not overfished.

Fishery quotas under the Alternatives are presented in Table 4. Stock-specific management criteria and their forecast values under the Alternatives are provided in Table 5. Projected fishery landings, bycatch, and bycatch mortality under the Alternatives are summarized in Table 6. Table 7 provides a breakdown of impacts by fishery and area for LCR tule Chinook. Appendix B presents tables of the SRWC age-3 impact rate and KRFC impacts, by fishery/month/management area, under the three Alternatives. Descriptions pertaining to the achievement of key objectives for Chinook salmon management south of Cape Falcon are found below.

- **KRFC.** The control rule-defined minimum of 11,379 natural area adult spawners is met by each of the Alternatives.
- **SRWC.** The ESA consultation standard that (1) limits the forecast age-3 impact rate in 2017 fisheries south of Point Arena to a maximum of 15.8 percent and (2) specifies time/area closures and minimum size limit constraints south of Point Arena, is met by each of the Alternatives.
- **SRFC.** The control rule-defined minimum of 122,000 hatchery and natural area adult spawners is met by each of the Alternatives.
- **California coastal Chinook.** The ESA consultation standard that limits the forecast KRFC age-4 ocean harvest rate to a maximum of 16.0 percent is met by each of the Alternatives.
- **SRW fall Chinook.** SRW Chinook will not constrain ocean fisheries south of Cape Falcon in 2017.

All of the Alternatives for Chinook fisheries south of Cape Falcon satisfy NMFS ESA consultation standards and guidance, FMP conservation objectives, and all other objectives for relevant Chinook stocks (Table 5).

8.1.2 Coho Salmon
Abundance projections important to coho harvest management in Council area fisheries are:
• **OPI Hatchery coho.** The 2017 forecast for hatchery coho from the Columbia River and the coast south of Cape Falcon of 394,300 is similar to the 2016 forecast of 396,500. The Columbia River early coho forecast is 231,700 compared to the 2016 forecast of 153,700 and the Columbia River late coho forecast is 154,600, compared to the 2016 forecast of 226,900.

• **OCN coho.** The 2017 OCN forecast is 101,900 compared to the 2016 forecast of 152,700.

• **LCN coho.** The 2017 LCN forecast is 30,100 compared to the 2016 forecast of 40,000.

• **Puget Sound coho.** Among Puget Sound natural stocks, Skagit, and Stillaguamish are in the critical category in 2017. Strait of Juan de Fuca and Snohomish coho are in the low category. Hood Canal coho are in the normal category.

• **Interior Fraser (Thompson River) coho.** This Canadian stock continues to be depressed, and will continue to constrain ocean coho fisheries north of Cape Falcon in 2017.

• **Washington coastal coho.** The Queets River coho forecast is very low in 2017 and will constrain ocean fisheries.

Key coho salmon management objectives shaping the Alternatives are:

• NMFS consultation standards and annual guidance for ESA listed stocks as provided in Section 5.0 above. Relevant stocks include Central California Coast coho (south of the Oregon/California border), Southern Oregon/Northern California Coastal (SONCC) coho, OCN coho, and LCN coho. The maximum allowable exploitation rates for 2017 are: 1) a combined marine/freshwater exploitation rate not to exceed 30.0 percent for OCN coho, 2) a combined exploitation rate in marine-area and mainstem Columbia River fisheries not to exceed 18.0 percent for LCN coho, and 3) a marine exploitation rate not to exceed 13.0 percent for Rogue/Klamath hatchery coho, used as a surrogate for the SONCC coho ESU. Furthermore, coho retention is prohibited in all California ocean fisheries.

• Salmon FMP conservation objectives and obligations under the PST Southern Coho Management Plan for stocks originating along the Washington coast, Puget Sound, and British Columbia as provided in Section 6.2 above. The forecasts for several Puget Sound and Interior Fraser coho stocks in 2017 are low; however, the majority of the exploitation on these stocks occurs in Puget Sound and will be addressed in development of fishing seasons for inside waters during the North of Falcon co-management process by the state and tribes prior to the April Council meeting. Because of their abundance status, Interior Fraser coho are subject to an exploitation rate ceiling of 10.0 percent in southern U.S. fisheries under the PST Southern Coho Management Plan. Queets coho will likely be the key management stock constraining ocean fisheries north of Cape Falcon.

Fishery quotas under the Alternatives are presented in Table 4. Stock-specific management criteria and their forecast values under the Alternatives are provided in Table 5. Projected fishery landings, bycatch, and bycatch mortality under the Alternatives are summarized in Table 6. Table 7 provides a breakdown of impacts by fishery and area for LCN, OCN, and RK coho. Table 8 provides expected coho mark rates for west coast fisheries by month.

• **LCN coho.** Alternatives II and III satisfy the maximum 18.0 percent exploitation rate when 2017 projected marine impacts are combined with the 2016 preseason modeled impacts for mainstem
Columbia River fisheries. Alternative I is slightly above the maximum exploitation rate. Marine exploitation rates projected for 2017 Alternatives range from 12.7 percent in Alternative I to 5.1 percent in Alternative III.

- **Queets wild coho.** The FMP MSY adult spawner objective for Queets wild coho is 5,800; projected ocean escapement values for the 2017 Alternatives range from 5,500 in Alternative I to 5,900 in Alternative III.

- **Interior Fraser coho.** Southern U.S. exploitation rates in all Alternatives are less than the 10.0 percent maximum required by the PST Southern Coho Management Plan when 2017 projected marine impacts are combined with the 2016 preseason modeled impacts for Puget Sound fisheries. Shaping of the State and Tribal inside fisheries will occur during the North of Falcon process, and ocean fisheries may require further shaping before final management measures are adopted in order to comply with the PST limit.

- **Puget Sound coho.** Total exploitation rates for all Puget Sound stocks are less than the maximum required by the FMP matrix in all Alternatives when 2017 projected marine impacts are combined with the 2016 preseason modeled impacts for Puget Sound fisheries. However, coho fisheries were extremely restricted in Puget Sound in 2016 and it is expected that the fisheries will be expanded in 2017. Shaping of the State and Tribal inside fisheries will occur during the North of Falcon process, and ocean fisheries may require further shaping before final management measures are adopted in order to comply with the FMP limits.

All of the Alternatives for coho fisheries satisfy NMFS ESA consultation standards and guidance, FMP conservation objectives, and all other objectives for relevant coho stocks other than those listed above (Table 5).

8.1.3 Pink Salmon

Pink salmon are sufficiently abundant to merit management consideration in 2017. Impacts on Chinook and coho in pink-directed fisheries may be part of negotiations to reach a final agreement in North of Cape Falcon ocean and Puget Sound fisheries.

8.1.4 Summary of Environmental Impacts on Target Stocks

Stock forecasts for some Canadian stocks and the actual PST limits on AABM fisheries are not known at this time, and preliminary values have been used in the analyses presented in this report. These forecasts and limits will be available prior to the April Council meeting. Negotiations in the North of Falcon process will not be completed until the April Council meeting. These negotiations affect allocation of stock impacts primarily among inside fisheries (State, Tribal, recreational, various commercial sectors, etc.) but also between inside and ocean fisheries.

Environmental impacts on salmon stocks are assessed based on compliance with conservation objectives, ACLs, rebuilding plans, and ESA consultation standards. As noted in the description of the Alternatives (Tables 1, 2, and 3), if analyses using the updated values and the results of these negotiations do not result in compliance with FMP conservation objectives or ESA consultation standards, some Alternatives will not be viable and impacts in Council-area fisheries will need to be modified to comply with all applicable objectives and standards. If updated values and negotiations result in compliance with applicable objectives and standards, Council area fishery impacts would not increase; therefore, the analysis of effects would include the upper bound of a reasonable range of effects under the Alternatives considered for 2017 Council area ocean salmon fisheries.
8.1.4.1 Targeted Salmon Stocks

Based on current assumptions regarding Canadian, Alaskan, and inside fishery impacts, all target salmon stocks (non-ESA listed) meet their FMP conservation objectives under Alternatives I, II, and III, with the exception of Klamath River fall Chinook salmon, which will be managed under a harvest control rule. The FMP MSY adult spawner objective for Queets wild coho of 5,800 is not projected to be met under Alternatives I and II, however, provisions of FMP allow Tribal and WDFW comanagers to agree to escapement objectives below the FMP MSY objective. These negotiations will be ongoing through the North of Falcon process.

8.1.4.2 ESA Listed Salmon Stocks

Based on current assumptions regarding Canadian, Alaskan, and inside fishery impacts, all ESA listed salmon stocks meet their ESA consultation standards under Alternatives II and III (Table 5). Under Alternative I, ESA consultation standards are met except that the total exploitation rate for LCN tule Chinook exceeds the allowable rate, and the ocean exploitation rate for LCN coho, when combined with 2016 freshwater harvest rates, will exceed the total allowable exploitation rate (Table 5). Changes in the impacts in northern fisheries from current assumptions and further shaping of ocean and inside fisheries may result in compliance with the ESA consultation standards; however, additional restrictions to Council area fisheries may be necessary to meet both consultation standards and inside fishery needs.

Council-area fisheries have a minor impact on ESA-listed Puget Sound Chinook and on most Chinook stocks subject to the 2009 PST Agreement. At this point there appears to be sufficient flexibility within Council and inside area fisheries as a whole to achieve protection for the Puget Sound Chinook ESU.

8.2 Socioeconomics

In general Council-area ocean salmon fisheries are managed to meet conservation objectives for stocks that are expected to achieve optimum yields while minimizing impacts on depressed stocks. While analysis of biological impacts is organized around salmon stocks that spawn in particular rivers, socioeconomic impacts under the regulatory alternatives are analyzed by ocean fishery management areas as described in the Salmon FMP. Although most stocks range across several areas, the abundance of individual stocks varies between each ocean area, thus the use of management areas facilitates more optimal management of each stock than would coastwide regulations. From north to south, the fishery management areas are (1) from the U.S./Canada border to Cape Falcon (45°46' N. lat.), which is on the Oregon coast south of the Columbia River mouth; (2) between Cape Falcon and Humbug Mountain (42°40'30" N. lat.) on Oregon’s southern coast; (3) the Klamath Management Zone (KMZ), which covers ocean waters from Humbug Mountain in southern Oregon to Horse Mountain (40°05' N. lat.) in northern California; (4) from Horse Mountain to Point Arena (38°57'30" N. lat.) in Mendocino County; and (5) from Point Arena to the U.S./Mexico border. There are also numerous subdivisions within these areas that are used to further balance stock conservation and harvest allocation needs. A map of the boundaries of these areas, also showing the main salmon ports, appears on the inside back cover of this report. Tribal ocean fisheries (including Washington State statistical area 4B) occur only in the area north of Cape Falcon. The S’Kallam, Makah, Quillayute, Hoh, and Quinault Tribes all have fishery areas in the northern part of the area north of Cape Falcon (Table 3). Other federally-recognized tribes participate in in-river fisheries. The following analysis of impacts on the user of the resource and fishing communities is organized around the five broad management areas.

The Review of 2016 Ocean Salmon Fisheries (PFMC 2017a) provides an historical description of the salmon fishery affected environment. In addition to stock status assessments, the document reports socioeconomic impacts of historical fisheries and analyzes the current socioeconomic status of West Coast salmon fisheries. For the purpose of characterizing the economic impact of non-tribal Council-area ocean
salmon fisheries, commercial exvessel value, recreational fishing trips, and community level personal income impacts resulting from both commercial and recreational fishing activities are used. Because tribal allocations may be taken in commercial or ceremonial and subsistence fisheries, tribal allocations are not converted to economic values in this document.

The short-term economic effects of the regulatory Alternatives for non-Indian fisheries are shown in Tables 9 and 10. Table 9 shows projected commercial troll impacts expressed in terms of estimated potential exvessel value. Table 10 shows projected recreational fisheries impacts in terms of the number of projected angler-trips and community personal income impacts associated with those activities. Note that exvessel values shown under the Alternatives for the commercial troll fishery in Table 9 and income impact values shown for the recreational fishery in Table 10 are not directly comparable. More directly comparable measures of short-term economic impacts from commercial and recreational salmon fisheries appear in Figures 1 and 2, which show estimated community income impacts under the commercial troll and recreational fishery Alternatives, respectively, compared to historical impacts in real (inflation-adjusted) dollars. In general, income impacts are estimates of the amount of income generated by the economic linkages associated with a particular activity (see Chapter IV of the Review of 2016 Ocean Salmon Fisheries for additional description of income impact estimates). Income impacts are a measure of relative economic activity. Differences in income impacts between an Alternative and the value for the 2016 fishery indicate the expected impact of the Alternative compared with not taking action, (i.e., if 2016 regulations were to remain in place). While reductions in income impacts associated with an activity may not necessarily reflect net losses, they are likely to indicate losses to businesses and individuals in a community that depends on that activity for livelihood.

Total economic effects for non-Indian fisheries under the Alternatives may vary more or less than is indicated by the short-term impacts on ocean fisheries reported below. Salmon that are not harvested in the ocean do not necessarily result in an economic loss, as they may become available for additional inside harvest in non-Indian commercial, tribal, and recreational fisheries or may provide additional spawning escapement. Alternatives that restrict ocean harvests may increase opportunities for inside harvesters (e.g., higher commercial revenue or more angler trips) or contribute to higher inside catch per unit effort (CPUE) (i.e., lower costs for commercial harvesters and/or higher success rates for recreational fishers). Harvest forgone by both ocean fisheries and inside fisheries may impact future production, although the magnitude of that effect is uncertain depending on the resulting escapement level compared to MSY escapement and the nature of the spawner-recruit relationship, both of which are influenced by habitat conditions in the ocean and in the spawning grounds.

Fishing effort estimates for the recreational fishery south of Cape Falcon are based on measures developed by the STT for modeling biological impacts. STT estimates for south of Cape Falcon use multi-year averages to predict effort for the coming year. Consequently, if the multi-year average for a particular time period and area happens to be higher than last year’s effort level, then the model may forecast an increase in effort for the coming year even though management measures may actually be relatively more constraining, or vice-versa. Estimated recreational effort includes relatively small amounts occurring in state waters only (SWO) fisheries off central and southern Oregon. Recreational fishery effort north of Cape Falcon was estimated using historical CPUE estimates (“success rates”) applied to salmon quotas and expected harvest levels under the Alternatives. Coho quotas north of Cape Falcon for the summer mark-selective coho fishery, are relatively low by historical standards and zero under Alternative III. Quotas for Chinook, while still restrictive compared with the recent past, unlike last year are non-zero under all three Alternatives. Projections of recreational catch north of Cape Falcon were made by applying the historic ratios of actual catch to the actual quotas times the proposed quotas for the two species under each alternative. Effort and economic impacts were then estimated by summing recent year weighted average
coho and Chinook angler success rates multiplied by the projected coho and Chinook catch under the Alternatives.

Exvessel revenues in Table 9 are based on estimated harvest by catch area while commercial income impacts in Figure 1 are based on projected deliveries by landing area. Historically there has been a divergence between these two measures. The difference is due to salmon caught in certain catch areas being delivered to ports in neighboring catch areas. This pattern is particularly true for areas between Humbug Mountain in Oregon and Point Arena in California. In an attempt to account for this effect and assign income impacts to the “correct” landing area, adjustments are made based on historical patterns. The patterns are typically inferred from the most recent year’s catch and landings data. For example, in 2016 there were deliveries of salmon caught between Cape Falcon and Humbug Mountain to landing ports in the Oregon KMZ region; and deliveries of salmon caught south of Horse Mountain to landing ports in the California KMZ region. There were also transfers of harvest between other catch areas and landing ports, but these were relatively smaller by comparison.

The expected harvest levels used to model commercial fishery impacts are taken from Table 6. Estimated harvests include relatively small amounts occurring in state waters only (SWO) fisheries off central and southern Oregon. These total harvest estimates combined with the prior year’s average Chinook weights per fish and exvessel prices per pound were assumed to be the best indicators of expected revenues in the coming season. Coastwide average Chinook weight per fish in 2016, although slightly higher than the prior year, was relatively low compared with recent history; however coastwide average Chinook exvessel prices in 2016 were the highest in inflation-adjusted terms since 1977. If this year’s actual average weight per fish or exvessel prices diverge significantly from what was observed in 2016, then salmon exvessel revenues and resulting commercial fisheries income impacts projected in this document may prove to be correspondingly biased. Unless otherwise noted, the economic effects of the commercial and recreational fisheries Alternatives summarized below are compared in terms of estimated community income impacts.

8.2.1 Alternative I

Under Alternative I, coastwide community personal income impacts from commercial salmon fisheries are projected to be above last year’s (2016) level by 12 percent but below the recent (2012-2016) inflation-adjusted average by 48 percent. Coastwide income impacts from recreational fishing are projected to exceed last year’s level by 73 percent and the recent inflation-adjusted average by 2 percent.

South of Cape Falcon, overall commercial fishery income impacts are projected to fall below last year’s level by 19 percent and also below the inflation-adjusted 2012-2016 average by 64 percent.

Commercial fishery income impacts north of Cape Falcon are projected to be 160 percent above last year and 50 percent higher than the 2012-2016 inflation-adjusted average.

All areas south of Cape Falcon except south of Point Arena would see commercial fishery income impacts below last year’s levels. Areas between Cape Falcon and Humbug Mountain, between Humbug Mountain and Horse Mountain (closed to salmon fishing in federal waters in this Alternative), and between Horse Mountain and Point Arena would see projected declines of 26 percent, 41 percent and 87 percent, respectively, below last year’s levels. South of Point Arena would see a projected increase of 13 percent over last year. All four areas south of Cape Falcon would see projected commercial fishery income impacts that are at least 49 percent below their 2012-2016 inflation-adjusted average.

Projected income impacts from recreational fisheries north of Cape Falcon are 100 percent above last year and 10 percent above the 2012-2016 inflation-adjusted average.
Overall recreational fishery income impacts south of Cape Falcon are projected to be 62 percent higher than last year but one percent below the 2012-2016 inflation-adjusted average. Income impacts are projected to fall below last year’s levels in the KMZ (which is closed to salmon fishing in federal waters in this Alternative) and between Horse Mountain and Point Arena, and above last year’s levels from Cape Falcon to Humbug Mountain and south of Point Arena. Recreational fishery income impacts are projected to be below the 2012-2016 average in all areas south of Cape Falcon except South of Point Arena where an increase of 25 percent is projected.

Tribal ocean fisheries north of Cape Falcon would be allocated 50,000 Chinook for ocean area harvests (compared to a 2016 harvest of 22,800 Chinook) and 40,000 coho (compared with a 2016 harvest of zero coho).

Overall coastwide income impacts for non-Indian fisheries under Alternative I are projected to be above last year and slightly above the recent years’ average. Limited commercial fishing opportunities, especially south of Cape Falcon, will have negative economic effects in those areas. Community income impacts from recreational fishing also are projected to be lower than last year and the recent years’ average in areas between Humbug Mountain and Point Arena.

8.2.2 Alternative II
Under Alternative II, coastwide community personal income impacts from commercial salmon fisheries are projected to fall below last year’s (2016) level by 5 percent and below the recent (2012-2016) inflation-adjusted average by 56 percent. Coastwide income impacts from recreational fishing are projected to exceed last year’s level by 59 percent but to fall below the inflation-adjusted 2012-2016 average by 6 percent.

South of Cape Falcon, overall commercial fishery income impacts are projected to fall below last year’s level by 34 percent and below the inflation-adjusted 2012-2016 average by 71 percent.

Commercial fishery income impacts north of Cape Falcon are projected to be 137 percent above last year and 37 percent higher than the 2012-2016 inflation-adjusted average.

All areas south of Cape Falcon except south of Point Arena would see commercial fishery income impacts below last year’s levels. Areas between Cape Falcon and Humbug Mountain, between Humbug Mountain and Horse Mountain (closed to commercial salmon fishing in federal waters in this Alternative), and between Horse Mountain and Point Arena would see projected declines of 62 percent, 65 percent and 98 percent, respectively, below last year’s levels. South of Point Arena would see a projected increase of 13 percent over last year. All four areas south of Cape Falcon would see projected commercial fishery income impacts that are at least 49 percent below their 2012-2016 inflation-adjusted average.

Projected income impacts from recreational fisheries north of Cape Falcon are 69 percent above last year but 7 percent below the 2012-2016 inflation-adjusted average.

Overall recreational fishery income impacts south of Cape Falcon are projected to be 55 percent higher than last year but 6 percent below the 2012-2016 inflation-adjusted average. Income impacts south of Cape Falcon are projected to fall below last year’s levels and the 2012-2016 inflation-adjusted average in the areas between Humbug Mountain and Point Arena (the KMZ is closed to all Chinook-directed recreational fishing in federal waters in this Alternative, but allows for a coho-only mark-selective fishery in the Oregon portion of the KMZ), but above last year and the 2012-2016 inflation-adjusted average from Cape Falcon to Humbug Mountain and south of Point Arena.
Tribal ocean fisheries north of Cape Falcon would be allocated 40,000 Chinook for ocean area harvests (compared to a 2016 harvest of 22,800 Chinook) and 22,000 coho (compared with a 2016 harvest of zero coho).

Overall coastwide income impacts for non-Indian fisheries under Alternative II are projected to be above last year but slightly below the recent years’ average. Community income impacts from commercial fishing will be lower than under Alternative I in all areas except south of Point Arena. Community income impacts from recreational fishing are projected to be lower than under Alternative I in areas north of Cape Falcon and south of Point Arena, but at least somewhat above Alternative I in all other areas.

8.2.3 Alternative III

Coastwide community personal income impacts from commercial and recreational salmon fisheries under Alternative III are the lowest among the three alternatives. Overall personal income impacts from commercial salmon fisheries are projected to fall below last year’s (2016) level by 64 percent and below the recent (2012-2016) inflation-adjusted average by 83 percent. Coastwide income impacts from recreational fishing are projected to fall below last year’s level by 50 percent and below the inflation-adjusted 2012-2016 average by 70 percent.

Commercial fishery income impacts are projected to fall below last year’s level and below the inflation-adjusted 2012-2016 average in all four management areas south of Cape Falcon. Since the commercial salmon fishery is closed in all federal waters south of Cape Falcon in this Alternative, this effectively results in no commercial landings south of the OR/CA border (due to landing restrictions) and very low levels in Oregon south of Cape Falcon. Commercial fishery income impacts north of Cape Falcon are projected to be 104 percent above last year and 18 percent above the 2012-2016 inflation-adjusted average.

Income impacts from recreational fisheries are projected to fall below last year’s levels and the 2012-2016 inflation adjusted average in all five management areas, including at least 57 percent below last year and the 2012-2016 inflation-adjusted average in areas south of Cape Falcon (which in this Alternative is closed to recreational salmon fishing after April, and not open at all in the KMZ, in federal waters). Areas north of Cape Falcon are projected to see recreational fisheries income impacts 11 percent below last year and 51 percent below the 2012-2016 inflation-adjusted average.

Tribal ocean fisheries north of Cape Falcon would be allocated 30,000 Chinook for ocean area harvests (compared to a 2016 harvest of 22,800 Chinook) and 12,500 coho (compared with a 2016 harvest of zero coho).

Overall coastwide income impacts for non-Indian fisheries under Alternative III are projected to be below last year and the recent years’ average. Community income impacts from commercial fishing will be lower than under Alternative I and Alternative II in all areas, including zero or near zero in the areas south of Cape Falcon. Community income impacts from recreational fishing will also be lower than under Alternative I and Alternative II in all areas, including zero or near zero in the areas between Cape Falcon and Point Arena.

8.2.4 Summary of Impacts on the Socioeconomic Environment

The commercial fishery alternatives are projected to generate coastwide income impacts ranging from 12 percent above to 64 percent below last year’s levels. These levels are also 48 percent to 83 percent below the 2012-2016 inflation-adjusted average. Commercial fishery income impacts are projected to be lower than last year and the 2012-2016 inflation-adjusted average under all three Alternatives in three of the five...
management areas; only north of Cape Falcon is projected to be above last year and the 2012-2016 inflation-adjusted average under all three Alternatives. Under Alternative III there would be little or no commercial salmon landings south of Cape Falcon. The assumed shifting of a portion of landings from areas immediately adjacent to the KMZ to ports in the KMZ area is expected to do little to offset the effect of Oregon state-waters-only and zero California KMZ commercial harvest in those regional ports. Compared with last year, areas South of Point Arena are projected to see small increases in commercial fisheries income impacts under Alternatives I and II, but zero commercial landings income impacts under Alternative III.

Total coastwide income impacts from recreational fisheries are projected to be higher than last year under Alternatives I and II, but below last years under Alternative III. Compared with the 2012-2016 inflation-adjusted average, a small increase is projected under Alternative I but decreases are projected under Alternative II and Alternative III. Areas between Humbug Mountain and Point Arena are projected to see reduced recreational fishery income impacts compared with last year and the 2012-2016 inflation-adjusted average under all three Alternatives. There are no areas that would see increases in recreational fishery income impacts under all three Alternatives compared with last year, or the 2012-2016 inflation-adjusted average. Under Alternative III the areas south of Cape Falcon would see reductions in recreational salmon fishing income impacts of between 57 and 99 percent compared with last year.

Ocean tribal fisheries occur only north of Cape Falcon and would be allocated a maximum of 50,000 Chinook under Alternative I and a minimum of 30,000 Chinook under Alternative III (compared with a 2016 harvest of 22,800 Chinook). Ocean tribal fisheries would be allocated a maximum of 40,000 coho under Alternative I and a minimum of 12,500 coho under Alternative III (compared with a 2016 harvest of zero coho).

8.3 Non-target Fish Species

Prior NEPA analyses have considered the effects of the ocean salmon fisheries on non-target fish species. Since then, ocean salmon fisheries have not changed substantially in terms of season length, areas, depth, bag limits, etc. Nor is there any new information to suggest that the incidental nature of encounters of non-target species in ocean salmon fisheries has changed. Therefore, conclusions from previous environmental analyses indicating that effects on non-target fish species are low and not significant are still applicable, as discussed below. The differences between the Alternatives for the 2017 salmon fishery are not discernible with respect to their effect on non-target fish species.

Impacts to groundfish stocks from salmon troll fisheries continue to be managed as part of the open access groundfish fishery sector, and are at similar levels compared to recent years. Previous environmental analysis concluded that the amount of groundfish taken incidentally in the salmon fishery is very low and is not substantially altered by changes in the salmon fishery. (NMFS 2003; Appendix B). The 2017 ocean salmon regulation Alternatives are not expected to differ substantially from fisheries analyzed previously with respect to groundfish impacts; therefore, effects from the Alternatives to groundfish stocks are not significant.

Impacts to Pacific halibut from salmon troll fisheries continue to be managed under limits established through the International Pacific Halibut Commission (IPHC) process and under the Area 2A (Council area) catch sharing plan. Previous environmental analysis stated that data on the commercial segment of salmon fisheries show the co-occurrence rates for salmon and halibut, coastal pelagic species, highly migratory species, and non-Council managed fish species are low (NMFS 2003; Appendix B). The 2017 ocean salmon regulation Alternatives include Pacific halibut landing restrictions within the range enacted in the past, and are not expected to differ substantially from earlier analyses with respect to Pacific halibut impacts; therefore, effects from the Alternatives to Pacific halibut are not significant. Likewise, there are
no changes to the salmon fishery for 2017 that would change impacts to other non-salmon fish species compared to previous analyses, therefore, effects from the Alternatives to these species are not expected to be significant.

8.4 Marine Mammals
The commercial salmon troll fisheries off the coasts of Washington, Oregon, and California are classified as Category III fisheries, indicating a remote or no likelihood of causing incidental mortality or serious injury to marine mammals (82 FR 3655). Recreational salmon fisheries use similar gear and techniques as the commercial fisheries and are assumed to have similar encounter rates and impacts. The non-ESA listed marine mammal species that are known to interact with ocean salmon fisheries are California sea lion and harbor seals. Populations of both these species are at stable and historically high levels. There is no new information to suggest that the nature of interactions between California sea lions or harbor seals in ocean salmon fisheries has changed since the Category III determination. Therefore, the impacts from the 2017 salmon regulation Alternatives to non-ESA listed marine mammals are not expected to be significant, and there is no discernible difference between the effects of the Alternatives on these resources.

8.5 ESA Listed Species
Available information indicates that Pacific Coast salmon fisheries are not likely to jeopardize the existence of the Guadalupe fur seal (NMFS 2003; Appendix B). No sea turtles have been reported taken by the ocean salmon fisheries off Washington, Oregon, or California, and NMFS has determined that commercial fishing by Pacific Coast salmon fisheries would pose a negligible threat to Pacific turtle species (NMFS 2003; Appendix B). There is no discernible difference between the effects of the Alternatives on these resources.

The NMFS BO on Southern Resident killer whale distinct population segment (NMFS 2008; Appendix B) concluded that ocean salmon fisheries were not likely to jeopardize the continued existence of the Southern Resident killer whales or adversely modify their critical habitat. NMFS has initiated a five year review of the Southern Resident killer whale ESA listing. There is new information that indicates Chinook salmon abundance may correlate with killer whale population growth rate, and while this information is under review, it is possible that future consultation standards for Puget Sound and possibly Council area fisheries will change as a result of this new information. However, the 2017 ocean salmon regulations are covered by the NMFS 2008 BO, and on that basis it is expected that the 2017 regulations would not have significant impacts to Southern Resident killer whales. There is no discernible difference between the effects of the Alternatives on killer whales.

Other ESA listed salmonid species present in Council area waters include sockeye and chum salmon, and steelhead trout. These species are rarely encountered in ocean salmon fisheries, and Alternatives for 2017 Council area ocean salmon fisheries are in compliance with applicable BOs for listed ESUs of these species as listed in Chapter 5 of this document. Because anticipated impacts are negligible, there are no significant impacts expected on listed sockeye or chum salmon or steelhead trout from the Alternatives analyzed in this EA, and there is no discernible difference between the effects of the Alternatives on these resources.

8.6 Seabirds
The types of vessels used in ocean salmon fisheries and the conduct of the vessels are not conducive to collisions or the introduction of rats or other non-indigenous species to seabird breeding colonies. Other types of accidental bird encounters are a rare event for commercial and recreational ocean salmon fisheries (NMFS 2003; Appendix B). Therefore, there are no significant impacts expected on seabirds from the Alternatives analyzed in this EA, and there is no discernible difference between the effects of the Alternatives on seabirds.
8.7 **Biodiversity and Ecosystem Function**

The removal of adult salmon by the ocean fisheries is not considered to significantly affect the lower trophic levels or the overall marine ecosystem because salmon are not the only or primary predator in the marine environment (NMFS 2003; Appendix B). Therefore, no significant impacts are expected on biodiversity or ecosystem function from the Alternatives analyzed in this EA, and there is no discernible difference between the effects of the Alternatives on these resources.

8.8 **Ocean and Coastal Habitats**

Council Area salmon fisheries do not employ bottom contact gear, and there is no evidence of direct gear effects on fish habitat from Council-managed salmon fisheries on essential fish habitat (EFH) for salmon or other managed species (PFMC 2006; Appendix B). Critical habitat for ESA listed salmon does not include Council area ocean water. Because Council area salmon fisheries are conducted at sea and without bottom contact gear, there is no interaction with unique geographic characteristics or other cultural, scientific, or historical resources such as those that might be listed on the National Register of Historical Places.

8.9 **Public Health and Safety**

Fisheries management can affect safety if, for example, season openings make it more likely that fishermen will have to go out in bad weather because fishing opportunities are limited. The Salmon FMP, however, has provisions to adjust management measures if unsafe weather affected fishery access. The Alternatives for 2017 ocean salmon regulations have season structures similar to those employed in previous salmon seasons and are not expected to result in any significant increase in the risk to human health or safety at sea (PFMC 2006; Appendix B). There are also no discernible differences between the effects of the Alternatives on the risk to human health or safety at sea.

8.10 **Cumulative Impacts**

A cumulative effects analysis is required by the Council on Environmental Quality (CEQ) (40 CFR part 1508.7). The purpose of a cumulative effects analysis is to consider the combined effects of many actions on the human environment over time that would be missed if each action were evaluated separately. CEQ guidelines recognize that it is not practical to analyze the cumulative effects of an action from every conceivable perspective, but rather, the intent is to focus on those effects that are truly meaningful. A formal cumulative impact assessment is not necessarily required as part of an EA under NEPA as long as the significance of cumulative impacts has been considered (U.S. EPA 1999). The following addresses the significance of the expected cumulative impacts as they relate to the Pacific Coast salmon fishery.

8.10.1 **Consideration of the Affected Resource**

The affected resources that relate to the Pacific Coast salmon fishery are described in the Affected Environment sections of Preseason I and in Section 8.0 of this report. The significance of the cumulative effects will be discussed in relation to these affected resources listed below.

- Fishery and Fish Resources,
- Protected Resources,
- Biodiversity/Ecosystem Function and Habitats,
- Socioeconomics.

8.10.2 **Geographic Boundaries**

The analysis focuses on actions related to Council-managed ocean salmon commercial and recreational fisheries. Council-managed ocean fisheries occur in the exclusive economic zone (EEZ), from three to 200 miles offshore, off the coasts of the states of Washington, Oregon, and California as well as the ports in...
these states that receive landings from the ocean salmon fisheries. Since salmon are anadromous and spend part of their lifecycle in fresh water, the geographic scope also includes internal waters (e.g., Puget Sound) and rivers that salmon use to migrate towards their spawning grounds.

8.10.3 Temporal Boundaries

The temporal scope of past and present actions for the affected resources is primarily focused on actions that have occurred after framework FMP implementation (1984). The temporal scope of future actions for all affected resources extends about five years into the future. This period was chosen because the dynamic nature of resource management and lack of information on future projects make it very difficult to predict impacts beyond this timeframe with any certainty.

8.10.4 Past, Present, and Reasonably Foreseeable Future Actions

Fishery Actions

The Council sets management measures for ocean salmon fisheries annually based on stock forecasts and in accordance with conservation objectives set in the FMP and guidance provided by NMFS for managing impacts to ESA-listed stocks. The Council manages ocean salmon fisheries through an intensive preseason analysis process to shape salmon fisheries impacts on salmon stocks within the parameters of the FMP conservation measures and ESA requirements.

Fisheries outside of the Council’s jurisdiction also impact the Council-area salmon fishery. The Council considers fisheries managed by the states and treaty Indian tribes in the North of Falcon management process and Columbia River fisheries managed under *U.S. v. Oregon* Management Plan, as well as obligations for fisheries off Alaska and Canada under the Pacific Salmon Treaty (PFMC and NMFS 2014). Additionally, the Council and NMFS manage ocean salmon fisheries inseason to keep fisheries impacts within the constraints set preseason. The Council also conducts annual methodology reviews to improve models and other tools for assessing salmon stocks.

Non-Fishing Related Actions

Because salmon spend part of their lifecycle in fresh water, they are more vulnerable to a broad range of human activities (since humans spend most of their time on land) that affect the quantity and quality of these freshwater environments. These effects are generally well known and diverse. They include physical barriers to migration (dams), changes in water flow and temperature (often a secondary effect of dams or water diversion projects), and degradation of spawning environments (such as increased silt in the water from adjacent land use). Non-fishing activities in the marine environment can introduce chemical pollutants and sewage; and result in changes in water temperature, salinity, dissolved oxygen, and suspended sediment which poses a risk to the affected resources. Human-induced non-fishing activities tend to be localized in nearshore areas and marine project areas. When these activities co-occur, they are likely to work additively or synergistically to decrease habitat quality and may indirectly constrain the sustainability of the managed resources, non-target species, and protected resources. Decreased habitat suitability tends to reduce the tolerance of affected species to the impacts of fishing effort. Mitigation through regulations that would reduce fishing effort could negatively impact human communities. The overall impact to the affected species and their habitats on a population level is unknown, but likely neutral to low negative, since a large portion of these species have a limited or minor exposure to the localized non-fishing perturbations.

For many of the proposed non-fishing activities to be permitted by other Federal agencies, those agencies would examine the potential impacts on the affected resources. The Magnuson-Stevens Act (50 CFR 600.930) imposes an obligation on other Federal agencies to consult with the Secretary of Commerce on actions that may adversely affect EFH. The eight fishery management councils engage in the review process by making comments and recommendations on any Federal or state action that may affect habitat,
including EFH, for their managed species and by commenting on actions likely to substantially affect habitat, including EFH. In addition, under the Fish and Wildlife Coordination Act (Section 662), “whenever the waters of any stream or other body of water are proposed or authorized to be impounded, diverted, the channel deepened, or the stream or other body of water otherwise controlled or modified for any purpose whatever, including navigation and drainage, by any department or agency of the U.S., or by any public or private agency under Federal permit or license, such department or agency first shall consult with the U.S. Fish and Wildlife Service (USFWS), Department of the Interior, and with the head of the agency exercising administration over the wildlife resources of the particular state wherein the” activity is taking place. This act provides another avenue for review of actions by other Federal and state agencies that may impact resources that NMFS manages in the reasonably foreseeable future. In addition, NMFS and the USFWS share responsibility for implementing the ESA. ESA requires NMFS to designate “critical habitat” for any species it lists under the ESA (i.e., areas that contain physical or biological features essential to conservation, which may require special management considerations or protection) and to develop and implement recovery plans for threatened and endangered species. The ESA provides another avenue for NMFS to review actions by other entities that may impact endangered and protected resources whose management units are under NMFS’ jurisdiction.

The effects of climate on the biota of the California Current ecosystem have been recognized for some time. The El Niño-Southern Oscillation (ENSO) is widely recognized to be the dominant mode of inter-annual variability in the equatorial Pacific, with impacts throughout the rest of the Pacific basin and the globe. During the negative (El Niño) phase of the ENSO cycle, jet stream winds are typically diverted northward, often resulting in increased exposure of the Pacific Coast of the U.S. to subtropical weather systems. The impacts of these events to the coastal ocean generally include reduced upwelling winds, deepening of the thermocline, intrusion of offshore (subtropical) waters, dramatic declines in primary and secondary production, poor recruitment, reduced growth and survival of many resident species (such as salmon and groundfish), and northward extensions in the range of many tropical species. Concurrently, top predators such as seabirds and pinnipeds often exhibit reproductive failure. In addition to inter-annual variability in ocean conditions, the North Pacific seems to exhibit substantial inter-decadal variability, which is referred to as the Pacific (inter) Decadal Oscillation (PDO).

Anomalously warm sea surface temperatures in the northeast Pacific Ocean developed in 2013 and continued to persist through much of 2015; this phenomenon was termed “the Blob.” During the persistence of the Blob, distribution of marine species was affected (e.g., tropical and subtropical species were documented far north of their usual ranges), marine mammals and seabirds starved, and a coastwide algal bloom that developed in the summer of 2015 resulted in domoic acid poisoning of animals at various trophic levels, from crustaceans to marine mammals. In 2015-2016, a very strong El Niño event disrupted the Blob, which was declared “dead” by climatologists in December 2015. The extent of the impact of The Blob on salmon and salmon fisheries has not yet been fully determined. It is also uncertain if or when environmental conditions would cause a repeat of this event. However, NMFS’ Northwest and Southwest Fisheries Science Centers presented information to the Council indicating that the broods that will contribute to 2017 harvest and escapement encountered poor ocean conditions in the California Current Ecosystem.

Within the California Current itself, Mendelssohn et al, (2003) described long-term warming trends in the upper 50 to 75 m of the water column. Recent paleoecological studies from marine sediments have indicated that 20th century warming trends in the California Current have exceeded natural variability in ocean temperatures over the last 1,400 years. Statistical analyses of past climate data have improved our understanding of how climate has affected North Pacific ecosystems and associated marine species productivities.
In addition, changes in river flows and flow variability may affect population growth of anadromous fishes. Ward et al. (2015) found that increases in variability in freshwater flows may have a more negative effect than any other climate signal included in their model. Some climate change models predict that in the Pacific Northwest, there will be warmer winters and more variable river flows, which may affect the ability of anadromous fishes to recover in the future (Ward et al. 2015). However, our ability to predict future impacts on a large scale ecosystem stemming from climate forcing events remains uncertain.

8.10.5 Magnitude and Significance of Proposed Action

In determining the magnitude and significance of the cumulative effects, the additive and synergistic effects of the proposed action, as well as past, present, and future actions, must be taken into account. The following section presents the effects of past, present, and reasonably foreseeable future actions on each of the managed resources. This is followed by a discussion on the synergistic effects of the proposed action, as well as past, present, and reasonably foreseeable future actions.

8.10.5.1 Fishery and Fish Resources

Past, present, and reasonably foreseeable future actions that affect the salmon fishery and fish resources are considered annually when the Council sets management measures for ocean salmon fisheries based on stock forecasts and in accordance with conservation objectives set in the FMP and guidance provided by NMFS for managing impacts to ESA-listed stocks. The Council also considers fisheries managed by the states and treaty Indian tribes in the North of Falcon management process and Columbia River fisheries managed under U.S. v. Oregon Management Plan, as well as obligations under the Pacific Salmon Treaty (PFMC and NMFS 2014). Additionally, the Council and NMFS manage ocean salmon fisheries inseason to keep fisheries impacts within the constraints set preseason. The Council also conducts annual methodology reviews to improve models and other tools for assessing salmon stocks. Therefore, the magnitude and significance of cumulative effects, including the proposed action, on the salmon fishery and fish resources are expected to be low positive and not significant.

8.10.5.2 Protected Resources

Past, present, and foreseeable future actions that affect ESA-listed salmon are considered annually when the Council sets management measures for ocean salmon fisheries; NMFS provides guidance for managing impacts to ESA-listed stocks based on biological opinions and stock productivity information provided by the states and analyzed by the STT. Fishery management actions have been taken to manage impacts on ESA-listed salmon, and the states have developed information to better inform fishery management decisions. Therefore, the magnitude and significance of cumulative effects, including the proposed action on ESA-listed salmon are expected to be low positive and not significant.

8.10.5.3 Biodiversity/Ecosystem Function and Habitats

Past, present, and foreseeable future actions that affect biodiversity/ecosystem function and habitats are considered to the extent practicable annually. When considering the proposed action’s removal of adult salmon by the ocean fisheries in addition to past, present, and reasonably foreseeable future actions, such removal of these salmon is not considered to significantly affect the lower trophic levels or the overall marine ecosystem because salmon are not the only primary predator. In addition, Council-area salmon fisheries are conducted at sea with hook-and-line gear and thus, there is no to negligible interactions expected with EFH for salmon or other managed species.

Salmon escapement to fresh water is provides for spawning and for carrying marine derived nutrients to freshwater habitats. The importance of salmon carcasses in the transport of marine derived nutrients to freshwater habitats is described in Appendix A of the FMP and the related EA (see Final Environmental Assessment and Regulatory Impact Review; Pacific Coast Salmon Plan Amendment 18: Incorporating
Revisions to Pacific Salmon Essential Fish Habitat, available on the Council’s website: www.pcouncil.org and also in the Environmental Impact Statement (EIS) for Puget Sound Chinook Harvest Resource Management Plan (Puget Sound Chinook Harvest Resource Management Plan FEIS. NMFS Northwest Region with Assistance from the Puget Sound Treaty Tribes and Washington Department of Fish and Wildlife. December 2004. 2 volumes, available on the NMFS West Coast Region website: http://www.westcoast.fisheries.noaa.gov/; these documents are incorporated herein by reference. Council fisheries are designed to provide escapement of salmon to provide for natural spawning and transport of marine derived nutrients.

8.10.5.4 Socioeconomic Environment
Each year the Council evaluates the socioeconomic impact of past salmon fisheries in the stock assessment and fishery evaluation document (e.g., PFMC 2017a) and also evaluates foreseeable future impacts in the annual preseason reports; these documents are also used as the basis for the NEPA analysis for the annual management measures. The magnitude and significance of cumulative effects, including the proposed action, on the socioeconomic environment is expected to be low positive, and not significant.

9.0 CONCLUSION
This analysis has identified no significant environmental impacts that would result from the 2017 ocean salmon regulation Alternatives, from final regulations selected from within the range presented in these Alternatives.
10.0 LIST OF AGENCIES AND PERSONS CONSULTED

The following public meetings were held as part of the salmon management process (Council-sponsored meetings in bold):

October 18, 2016: Salmon Technical Team/Scientific and Statistical Committee Salmon Subcommittee joint meeting, Portland, Oregon.

November 16-21, 2016: Pacific Fishery Management Council meeting, Garden Grove, California.

January 17-20: Salmon Technical Team (Review preparation), Portland, Oregon.

February 8-9: California Fish and Game Commission meeting, Sacramento, California.

February 21-24: Salmon Technical Team (Preseason Report I preparation), Portland, Oregon.

February 27: Oregon Salmon Industry Group meeting, Newport, Oregon.

March 1: California Department of Fish and Wildlife public meeting, Santa Rosa, California.

March 15: California Fish and Game Commission meeting, Teleconference.

Oregon Fish and Wildlife Commission meeting, Corvallis, Oregon.

March 27-28: Public hearings on management options in Westport, Washington; Coos Bay, Oregon; and Fort Bragg, California.

April 7-12: Pacific Fishery Management Council meeting, Sacramento, California.

April 13: California Fish and Game Commission meeting, Teleconference.

April 21: Oregon Fish and Wildlife Commission meeting, Klamath Falls, Oregon.

May 5: Washington Fish and Wildlife Commission meeting, Teleconference.

The following organizations were consulted and/or participated in preparation of supporting documents:

California Department of Fish and Wildlife
Oregon Department of Fish and Wildlife
Washington Department of Fish and Wildlife

National Marine Fisheries Service, Sustainable Fisheries Division, West Coast Region
National Marine Fisheries Service, Northwest Fisheries Science Center
National Marine Fisheries Service, Southwest Fisheries Science Center
U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office
United States Coast Guard

Northwest Indian Fish Commission
Columbia River Intertribal Fish Commission
West Coast Indian Tribes
11.0 REFERENCES

TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 1 of 9)

<table>
<thead>
<tr>
<th>ALTERNATIVE I</th>
<th>ALTERNATIVE II</th>
<th>ALTERNATIVE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>North of Cape Falcon</td>
<td>North of Cape Falcon</td>
</tr>
<tr>
<td>Supplemental Management Information</td>
<td>Supplemental Management Information</td>
<td>Supplemental Management Information</td>
</tr>
<tr>
<td>Model #: Coho-1712, Chinook 0717</td>
<td>Model #: Coho-1713, Chinook 0817</td>
<td>Model #: Coho-1714, Chinook 0917</td>
</tr>
</tbody>
</table>

A. SEASON ALTERNATIVE DESCRIPTIONS

1. Overall non-Indian TAC: 104,500 (non-mark-selective equivalent of 100,000 Chinook and 64,400 coho marked with a healed adipose fin clip (marked)).
2. Non-Indian commercial troll TAC: 50,000 Chinook and 5,600 marked coho.
3. Trade: May be considered during the April council meeting.
4. Overall Chinook and/or coho TACs may need to be reduced or fisheries adjusted to meet NMFS ESA guidance, FMP requirements, upon conclusion of negotiations in the North of Falcon forum, or upon receipt of preseason catch and abundance expectations for Canadian and Alaskan fisheries.

U.S./Canada Border to Cape Falcon

- May 1 through the earlier of June 30 or 33,300 Chinook, no more than 10,800 of which may be caught in the area between the U.S./Canada border and the Queets River and no more than 11,000 of which may be caught in the area between Leadbetter Pt. and Cape Falcon (C.8).

- Seven days per week (C.1). All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination.

- In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 50 Chinook per vessel per calendar week (Monday through Sunday) will be in place.

- Same as Alternative 1.

U.S./Canada Border to Cape Falcon

- May 1 through the earlier of June 30 or 22,500 Chinook, no more than 7,300 of which may be caught in the area between the U.S./Canada border and the Queets River and no more than 7,400 of which may be caught in the area between Leadbetter Pt. and Cape Falcon (C.8).

- In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 50 Chinook per vessel per open period will be in place.

- May 1-9:
- May 12-June 27 five days per week, Friday through Tuesday.

- In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 40 Chinook per vessel per open period will be in place (C.1, C.6). In the area from the Queets River to Cape Falcon, a landing and possession limit of 50 Chinook per vessel per open period will be in place (C.1, C.6).

- All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination.

- Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 50% of the overall Chinook guideline has been landed, or approximately 50% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border and the Queets River, or approximately 50% of the Chinook subarea guideline has been landed in the area between Leadbetter Pt. and Cape Falcon, inseason action...
Falcon, inseason action will be considered to ensure the guideline is not exceeded. See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 2 of 9)

<table>
<thead>
<tr>
<th>A. SEASON ALTERNATIVE DESCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATIVE I</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon</td>
</tr>
<tr>
<td>• July 1-September 17 or 16,700 Chinook or 5,600 coho whichever comes first; no more than 6,600 Chinook may be caught in the area between the U.S./Canada border and the Queets River (C.8).</td>
</tr>
<tr>
<td>Open seven days a week. Landing and possession limit of 75 Chinook and 35 coho per vessel per calendar week (Monday through Sunday) (C.1). All salmon.</td>
</tr>
<tr>
<td>Chinook minimum size limit of 28 inches total length. Coho minimum size limit of 16 inches total length (B, C.1). All coho must be marked with a healed adipose fin clip (C.8.d). No chum retention north of Cape Alava, Washington in August and September (C.4, C.7). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border to the Queets River, inseason action will be considered to ensure the guideline is not exceeded.</td>
</tr>
</tbody>
</table>

| **ALTERNATIVE II** |
| U.S./Canada Border to Cape Falcon |
| • July 7-September 19 or 22,500 Chinook or 9,600 coho whichever comes first; no more than 8,900 Chinook may be caught in the area between the U.S./Canada border and the Queets River (C.8). |
| Open five days per week, Friday through Tuesday. Landing and possession limit of 60 Chinook and 50 coho per vessel per open period. (C.1). All salmon. |
| Same as Alternative 1. |

| **ALTERNATIVE III** |
| U.S./Canada Border to Cape Falcon |
| • July 1-4, July 7-September 19 or 16,000 Chinook whichever comes first; no more than 6,300 Chinook may be caught in the area between the U.S./Canada border and the Queets River, and no more than 2,000 Chinook may be caught in the area between Leadbetter Point and Cape Falcon (C.8). |
| Open five days per week, Friday through Tuesday. Landing and possession limit of 40 Chinook per vessel per open period. (C.1). All salmon, except coho. |
| Chinook minimum size limit of 28 inches total length (B, C.1). No chum retention north of Cape Alava, Washington in August and September (C.4, C.7). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border to the Queets River, inseason action will be considered to ensure the guideline is not exceeded. |

For all commercial troll fisheries north of Cape Falcon: Mandatory Yelloweye Rockfish Conservation Area, Cape Flattery and Columbia Control Zones, and beginning August 14, Grays Harbor Control Zone closed (C.5). Vessels must land and deliver their fish within 24 hours of any closure of this fishery. Vessels fishing or in possession of salmon while fishing north of Leadbetter Point must land and deliver their fish within the area and north of Leadbetter Point. Vessels fishing or in possession of salmon while fishing south of Leadbetter Point must land and deliver their fish within the area and south of Leadbetter Point, except that Oregon permitted vessels may also land their fish in Garibaldi, Oregon. Under state law, vessels must report their catch on a state fish receiving ticket. Oregon State regulations require all fishers landing salmon into Oregon from any fishery between Leadbetter Point, Washington and Cape Falcon, Oregon must notify ODFW within one hour of delivery or prior to transport away from the port of landing by either calling 541-867-0300 ext. 271 or sending notification via e-mail to nfalcon.trollreport@state.or.us. Notification shall include vessel name and number, number of salmon by species, port of landing and location of delivery, and estimated time of delivery. Inseason actions may modify harvest guidelines in later fisheries to achieve or prevent exceeding the overall allowable troll harvest impacts (C.8).
<table>
<thead>
<tr>
<th>TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 3 of 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A. SEASON ALTERNATIVE DESCRIPTIONS

<table>
<thead>
<tr>
<th>ALTERNATIVE I</th>
<th>ALTERNATIVE II</th>
<th>ALTERNATIVE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florence South Jetty to Humbug Mt.</td>
<td>Florence South Jetty to Humbug Mt.</td>
<td>Florence South Jetty to Humbug Mt.</td>
</tr>
<tr>
<td>• Closed (C.9a).</td>
<td>• April 15-May 26; June 1-6 (C.9a). Seven days per week. All salmon except coho (C.7). Chinook minimum size limit of 28 inches total length (B, C.1). All vessels fishing in the area must land their fish in the State of Oregon. See gear restrictions and definitions (C.2, C.3) and Oregon State regulations for a description of special regulations at the mouth of Tillamook Bay. In 2018, the season will open March 15 for all salmon except coho. Chinook minimum size limit of 28 inches total length. Gear restrictions same as in 2017. This opening could be modified following Council review at its March 2018 meeting.</td>
<td>• Closed (C.9a). In 2018, same as Alternative I.</td>
</tr>
<tr>
<td></td>
<td>Humbug Mt. to OR/CA Border (Oregon KMZ)</td>
<td>Humbug Mt. to OR/CA Border (Oregon KMZ)</td>
</tr>
<tr>
<td>• Closed (C.9.a).</td>
<td>• April 15-May 26; June 1-6 (C.9a). Seven days per week. All salmon except coho (C.7). Chinook minimum size limit of 28 inches total length (B, C.1). All vessels fishing in the area must land their fish in the State of Oregon. See gear restrictions and definitions (C.2, C.3) and Oregon State regulations for a description of special regulations at the mouth of Tillamook Bay.</td>
<td>• Closed (C.9.a). In 2018, same as Alternative I.</td>
</tr>
<tr>
<td></td>
<td>OR/CA Border to Humboldt South Jetty (California KMZ)</td>
<td>OR/CA Border to Humboldt South Jetty (California KMZ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the fishery is closed between the OR/CA border and Humboldt Mountain and open to the south, vessels with fish on board caught in the open area off California may seek temporary mooring in Brookings, Oregon prior to landing in California only if such vessels first notify the Chetco River Coast Guard Station via VHF channel 22A between the hours of 0500 and 2200 and provide the vessel name, number of fish on board, and estimated time of arrival (C.6).</td>
</tr>
<tr>
<td>Humboldt South Jetty to Horse Mt.</td>
<td>Humboldt South Jetty to Horse Mt.</td>
<td>Humboldt South Jetty to Horse Mt.</td>
</tr>
<tr>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
</tr>
<tr>
<td>• September 1-30 (C.9.b). Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1).</td>
<td>• September 1-30 (C.9.b). Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1).</td>
<td>• September 1-30 (C.9.b). Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1).</td>
</tr>
<tr>
<td></td>
<td>In 2018, the season will open April 16-30 for all salmon except coho, with a 27 inch Chinook minimum size limit and the same gear restrictions as in 2017. All fish caught in the area must be landed in the area. This opening could be modified following Council review at its March 2018 meeting.</td>
<td>In 2018, same as Alternative I.</td>
</tr>
</tbody>
</table>

All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). When the CA KMZ fishery is open, all fish caught in the area must be landed south of Horse Mountain (C.6). During September, all fish must be landed north of Point Arena (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).
TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 5 of 9)

A. SEASON ALTERNATIVE DESCRIPTIONS

<table>
<thead>
<tr>
<th>ALTERNATIVE I</th>
<th>ALTERNATIVE II</th>
<th>ALTERNATIVE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Arena to Pigeon Pt. (San Francisco)</td>
<td>Pt. Reyes to Pigeon Pt. (San Francisco)</td>
<td>Pt. Arena to Pigeon Pt. (San Francisco)</td>
</tr>
<tr>
<td>• August 1-29;</td>
<td>• August 1-29;</td>
<td>• Closed (C.9.b).</td>
</tr>
</tbody>
</table>

Point Reyes to Point San Pedro (Fall Area Target Zone)

- October 2-6 and 9-13.

- Five days per week, Monday through Friday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 26 inches total length (B, C.1). All fish caught in this area must be landed between Point Arena and Pigeon Point (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

Pt. Reyes to Point San Pedro (Fall Area Target Zone)

- Same as Alternative 1

Pt. Arena to Pigeon Pt. (San Francisco)

- Closed (C.9.b).

Pigeon Point to U.S./Mexico Border (Monterey)

- May 1-31;
- June 1-30 (C.9.b).

- Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). During September, all fish must be landed south of Point Arena (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

- Closed between Pt. Arena and Pigeon Point, otherwise the same as Alternative 1.

Pigeon Point to U.S./Mexico Border (Monterey)

- Closed (C.9.b).

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state (California Fish and Game Code §8226).
TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 6 of 9)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Length</td>
<td>Head-off</td>
</tr>
<tr>
<td>North of Cape Falcon</td>
<td>28 21.5</td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>28 21.5</td>
<td></td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>27 20.5</td>
<td></td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. < Sept. 1</td>
<td>27 20.5</td>
<td></td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. ≥ Sept. 1</td>
<td>26 19.5</td>
<td></td>
</tr>
<tr>
<td>Pigeon Pt. to U.S./Mexico Border</td>
<td>27 20.5</td>
<td></td>
</tr>
</tbody>
</table>

B. MINIMUM SIZE (Inches) (See C.1)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. **Compliance with Minimum Size or Other Special Restrictions**: All salmon on board a vessel must meet the minimum size, landing/possession limit, or other special requirements for the area being fished and the area in which they are landed if the area is open or has been closed less than 48 hours for that species of salmon. Salmon may be landed in an area that has been closed for a species of salmon more than 48 hours only if they meet the minimum size, landing/possession limit, or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Any person who is required to report a salmon landing by applicable state law must include on the state landing receipt for that landing both the number and weight of salmon landed by species. States may require fish landing/receiving tickets be kept on board the vessel for 90 days or more after landing to account for all previous salmon landings.

C.2. **Gear Restrictions**:
 a. Salmon may be taken only by hook and line using single point, single shank, barbless hooks.
 b. Cape Falcon, Oregon, to the OR/CA border: No more than 4 spreads are allowed per line.
 c. OR/CA border to U.S./Mexico border: No more than 6 lines are allowed per vessel, and barbless circle hooks are required when fishing with bait by any means other than trolling.

C.3. **Gear Definitions**:
 - **Trolling defined**: Fishing from a boat or floating device that is making way by means of a source of power, other than drifting by means of the prevailing water current or weather conditions.
 - **Troll fishing gear defined**: One or more lines that drag hooks behind a moving fishing vessel. In that portion of the fishery management area off Oregon and Washington, the line or lines must be affixed to the vessel and must not be intentionally disengaged from the vessel at any time during the fishing operation.
 - **Spread defined**: A single leader connected to an individual lure and/or bait.
 - **Circle hook defined**: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90° angle.

C.4. **Vessel Operation in Closed Areas with Salmon on Board**:
 a. Except as provided under C.4. b below, it is unlawful for a vessel to have troll or recreational gear in the water while in any area closed to fishing for a certain species of salmon, while possessing that species of salmon; however, fishing for species other than salmon is not prohibited if the area is open for such species, and no salmon are in possession.
 b. When Genetic Stock Identification (GSI) samples will be collected in an area closed to commercial salmon fishing, the scientific research permit holder shall notify NOAA OLE, USCG, CDFW, WDFW, ODFW and OSP at least 24 hours prior to sampling and provide the following information: the vessel name, date, location and time collection activities.
will be done. Any vessel collecting GSI samples in a closed area shall not possess any salmon other than those from which GSI samples are being collected. Salmon caught for collection of GSI samples must be immediately released in good condition after collection of samples.
TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 7 of 9)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (Continued)

C.5. Control Zone Definitions:

a. **Cape Flattery Control Zone** - The area from Cape Flattery (48°23'00" N. lat.) to the northern boundary of the U.S. EEZ; and the area from Cape Flattery south to Cape Alava (48°10'00" N. lat.) and east of 125°05'00" W. long.

b. **Mandatory Yelloweye Rockfish Conservation Area** – The area in Washington Marine Catch Area 3 from 48°00.00' N. lat.; 125°14.00' W. long. to 48°02.00' N. lat.; 125°16.50' W. long. and connecting back to 48°00.00' N. lat.; 125°14.00' W. long.

c. **Grays Harbor Control Zone** - The area defined by a line drawn from the Westport Lighthouse (46° 53'18" N. lat., 124° 07'01" W. long.) to Buoy #2 (46° 52'42" N. lat., 124°12'42" W. long.) to Buoy #3 (46° 55'00" N. lat., 124°14'48" W. long.) to the Grays Harbor north jetty (46° 55'36" N. lat., 124°10'51" W. long.).

d. **Columbia Control Zone** - An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy #4 (46°13'35" N. lat., 124°06'50" W. long.) and the green lighted Buoy #7 (46°15'09" N. lat., 124°06'16" W. long.); on the east, by the Buoy #10 line which bears north/south at 357° true from the south jetty at 46°14'00" N. lat., 124°03'07" W. long. to its intersection with the north jetty; on the south, by a line running northeast/southwest between the red lighted Buoy #4 and the tip of the south jetty (46°14'03" N. lat., 124°04'05" W. long.); and, on the south, by a line running northeast/southwest between the green lighted Buoy #7 to the tip of the north jetty (46°15'48" N. lat., 124°05'20" W. long.), and then along the north jetty to the point of intersection with the Buoy #10 line; and, on the south, by a line running northwest/southeast between the red lighted Buoy #4 and the tip of the south jetty (46°14'03" N. lat., 124°04'05" W. long.), and then along the south jetty to the point of intersection with the Buoy #10 line.

e. **Klamath Control Zone** - The ocean area at the Klamath River mouth bounded on the north by 41°38'48" N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124°23'00" W. long. (approximately 12 nautical miles off shore); and on the south by 41°26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).

f. Waypoints for the 40 fathom regulatory line from Cape Falcon to Humbug Mt. (50 CFR 660.71 (k) (12)-(70).

<table>
<thead>
<tr>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°46.00'</td>
<td>124°04.49'</td>
</tr>
<tr>
<td>45°44.34'</td>
<td>124°05.09'</td>
</tr>
<tr>
<td>45°40.64'</td>
<td>124°04.90'</td>
</tr>
<tr>
<td>45°33.00'</td>
<td>124°04.46'</td>
</tr>
<tr>
<td>45°32.27'</td>
<td>124°04.74'</td>
</tr>
<tr>
<td>45°29.26'</td>
<td>124°04.22'</td>
</tr>
<tr>
<td>45°20.25'</td>
<td>124°04.67'</td>
</tr>
<tr>
<td>45°19.99'</td>
<td>124°04.62'</td>
</tr>
<tr>
<td>45°17.50'</td>
<td>124°04.91'</td>
</tr>
<tr>
<td>45°11.29'</td>
<td>124°05.20'</td>
</tr>
<tr>
<td>45°05.80'</td>
<td>124°05.40'</td>
</tr>
<tr>
<td>45°05.08'</td>
<td>124°05.93'</td>
</tr>
<tr>
<td>45°03.83'</td>
<td>124°06.47'</td>
</tr>
<tr>
<td>45°01.70'</td>
<td>124°06.53'</td>
</tr>
<tr>
<td>44°58.75'</td>
<td>124°06.14'</td>
</tr>
<tr>
<td>44°51.28'</td>
<td>124°10.21'</td>
</tr>
<tr>
<td>44°49.49'</td>
<td>124°10.90'</td>
</tr>
<tr>
<td>44°44.96'</td>
<td>124°14.39'</td>
</tr>
<tr>
<td>44°43.44'</td>
<td>124°14.78'</td>
</tr>
<tr>
<td>44°42.26'</td>
<td>124°13.81'</td>
</tr>
<tr>
<td>44°41.68'</td>
<td>124°15.38'</td>
</tr>
<tr>
<td>44°34.87'</td>
<td>124°15.80'</td>
</tr>
<tr>
<td>44°33.74'</td>
<td>124°14.44'</td>
</tr>
<tr>
<td>44°27.66'</td>
<td>124°16.99'</td>
</tr>
<tr>
<td>44°19.13'</td>
<td>124°19.22'</td>
</tr>
<tr>
<td>44°15.35'</td>
<td>124°17.38'</td>
</tr>
<tr>
<td>44°14.38'</td>
<td>124°17.18'</td>
</tr>
<tr>
<td>44°09.23'</td>
<td>124°15.96'</td>
</tr>
</tbody>
</table>

Environmental Assessment Part 2 (Preseason Report II) April 2017
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 8 of 9)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

C.6. Notification When Unsafe Conditions Prevent Compliance with Regulations: If prevented by unsafe weather conditions or mechanical problems from meeting special management area landing restrictions, vessels must notify the U.S. Coast Guard and receive acknowledgment of such notification prior to leaving the area. This notification shall include the name of the vessel, port where delivery will be made, approximate amount of salmon (by species) on board, the estimated time of arrival, and the specific reason the vessel is not able to meet special management area landing restrictions.

In addition to contacting the U.S. Coast Guard, vessels fishing south of the Oregon/California border must notify CDFW within one hour of leaving the management area by calling 800-889-8346 and providing the same information as reported to the U.S. Coast Guard. All salmon must be offloaded within 24 hours of reaching port.

C.7. Incidental Halibut Harvest: During authorized periods, the operator of a vessel that has been issued an incidental halibut harvest license may retain Pacific halibut caught incidentally in Area 2A while trolling for salmon. Halibut retained must be no less than 32 inches in total length, measured from the tip of the lower jaw with the mouth closed to the extreme end of the middle of the tail, and must be landed with the head on. When halibut are caught and landed incidental to commercial salmon fishing by an IPHC license holder, any person who is required to report the salmon landing by applicable state law must include on the state landing receipt for that landing both the number of halibut landed, and the total dressed, head-on weight of halibut landed, in pounds, as well as the number and species of salmon landed.

License applications for incidental harvest must be obtained from the International Pacific Halibut Commission (phone: 206-634-1838). Applicants must apply prior to mid-March 2017 for 2017 permits (exact date to be set by the IPHC in early 2017). Incidental harvest is authorized only during April, May, and June of the 2016 troll seasons and after June 30 in 2017 if quota remains and if announced on the NMFS hotline (phone: 800-662-9825 or 206-526-6667). WDFW, ODFW, and CDFW will monitor landings. If the landings are projected to exceed the IPHC’s 34,123 pound preseason allocation or the total Area 2A non-Indian commercial halibut allocation, NMFS will take inseason action to prohibit retention of halibut in the non-Indian salmon troll fishery.

Alternative I - (Status Quo) May 1, 2017 through December 31, 2017, and April 1-30, 2018, license holders may land or possess no more than one Pacific halibut per each three Chinook, except one Pacific halibut may be possessed or landed without meeting the ratio requirement, and no more than 20 halibut may be possessed or landed per trip. Pacific halibut retained must be no less than 32 inches in total length (with head on).

Alternative II - May 1, 2017 through December 31, 2017, and April 1-30, 2018, license holders may land or possess no more than one Pacific halibut per each two Chinook, except one Pacific halibut may be possessed or landed without meeting the ratio requirement, and no more than 30 halibut may be possessed or landed per trip. Pacific halibut retained must be no less than 32 inches in total length (with head on).

Alternative III - May 1, 2017 through December 31, 2017, and April 1-30, 2018, license holders may land or possess no more than one Pacific halibut per each two Chinook, except one Pacific halibut may be possessed or landed without meeting the ratio requirement, and no more than 35 halibut may be possessed or landed per trip. Pacific halibut retained must be no less than 32 inches in total length (with head on).

Incidental Pacific halibut catch regulations in the commercial salmon troll fishery adopted for 2017, prior to any 2017 inseason action, will be in effect when incidental Pacific halibut retention opens on April 1, 2018 unless otherwise modified by inseason action at the March 2018 Council meeting.

a. “C-shaped” yelloweye rockfish conservation area is an area to be voluntarily avoided for salmon trolling. NMFS and the Council request salmon trollers voluntarily avoid this area in order to protect yelloweye rockfish. The area is defined in the Pacific Council Halibut Catch Sharing Plan in the North Coast subarea (Washington marine area 3), with the following coordinates in the order listed:

48°18' N. lat.; 125°18' W. long.;
48°18' N. lat.; 124°59' W. long.;
48°11' N. lat.; 124°59' W. long.;
48°11' N. lat.; 125°11' W. long.;
48°04' N. lat.; 125°11' W. long.;
48°04' N. lat.; 124°59' W. long.;
48°00' N. lat.; 124°59' W. long.;
48°00' N. lat.; 125°18' W. long.;
and connecting back to 48°18' N. lat.; 125°18' W. long.
TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 9 of 9)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

C.8. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:

a. Chinook remaining from the May through June non-Indian commercial troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline if the transfer would not result in exceeding preseason impact expectations on any stocks.

b. Chinook remaining from the June non-Indian commercial troll quotas in the Oregon KMZ may be transferred to the Chinook quota for the July open period if the transfer would not result in exceeding preseason impact expectations on any stocks.

c. NMFS may transfer fish between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the areas’ representatives on the Salmon Advisory Subpanel (SAS), and if the transfer would not result in exceeding preseason impact expectations on any stocks.

d. At the March 2018 meeting, the Council will consider inseason recommendations for special regulations for any experimental fisheries (proposals must meet Council protocol and be received in November 2017).

e. If retention of unmarked coho is permitted by inseason action, the allowable coho quota will be adjusted to ensure preseason projected impacts on all stocks is not exceeded.

f. Landing limits may be modified inseason to sustain season length and keep harvest within overall quotas.

C.9. State Waters Fisheries: Consistent with Council management objectives:

a. The State of Oregon may establish additional late-season fisheries in state waters.

b. The State of California may establish limited fisheries in selected state waters.

Check state regulations for details.

C.10. For the purposes of California Fish and Game Code, Section 8232.5, the definition of the Klamath Management Zone (KMZ) for the ocean salmon season shall be that area from Humbug Mountain, Oregon, to Horse Mountain, California.
TABLE 2. 2017 Recreational management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 1 of 8)

<table>
<thead>
<tr>
<th>A. SEASON ALTERNATIVE DESCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATIVE I</td>
</tr>
<tr>
<td>North of Cape Falcon</td>
</tr>
<tr>
<td>Supplemental Management Information</td>
</tr>
<tr>
<td>1. Overall non-Indian TAC: 104,500 (non-mark-selective equivalent of 100,000) Chinook and 64,400 coho marked with a healed adipose fin clip (marked).</td>
</tr>
<tr>
<td>2. Recreational TAC: 54,500 (non-mark selective equivalent of 50,000) Chinook and 58,800 marked coho; all retained coho must be marked.</td>
</tr>
<tr>
<td>3. A trade with commercial troll may be considered in April.</td>
</tr>
<tr>
<td>4. No Area 4B add-on fishery.</td>
</tr>
<tr>
<td>5. Buoy 10 fishery opens August 1 with an expected landed catch of 15,000 marked coho in August and September.</td>
</tr>
<tr>
<td>6. Overall Chinook and/or coho TACs may need to be reduced or fisheries adjusted to meet NMFS ESA guidance, FMP requirements, upon conclusion of negotiations in the North of Falcon forum, or upon receipt of preseason catch and abundance expectations for Canadian and Alaskan fisheries.</td>
</tr>
</tbody>
</table>

Queets Rivers to Leadbetter Point

- June 17 through earlier of June 30 or a coastwide marked Chinook quota of 7,500 (C.5).
- Seven days per week. Two fish per day, all salmon except coho. All Chinook must be marked with a healed adipose fin clip (C.1). Chinook 24-inch total length minimum size limit (B). See gear restrictions and definitions (C.2, C.3).
- Inseason management may be used to sustain season length and keep harvest within the overall Chinook recreational TAC for north of Cape Falcon (C.5).

(Left intentionally blank)
TABLE 2. 2017 Recreational management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 2 of 8)

<table>
<thead>
<tr>
<th>A. SEASON ALTERNATIVE DESCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEADBETTER POINT TO CAPE FALCON</td>
</tr>
<tr>
<td>ALTERNATIVE I</td>
</tr>
<tr>
<td>June 17 through earlier of June 30 or a coastwide marked Chinook quota of 7,500 (C.5). Seven days per week. Two fish per day, all salmon except coho. All Chinook must be marked with a healed adipose fin clip (C.1). Chinook 24-inch total length minimum size limit (B). See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook recreational TAC for north of Cape Falcon (C.5).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S./CANADA BORDER TO CAPE ALAVA (NEAH BAY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATIVE I</td>
</tr>
<tr>
<td>June 24 through earlier of September 30 or 6,120 marked coho subarea quota with a subarea guideline of 8,800 Chinook (C.5). Seven days per week. All salmon, except no chum beginning August 1; two fish per day. All coho must be marked with a healed adipose fin clip (C.1). Beginning August 1, Chinook non-retention east of the Bonilla-Tatoosh line (C.4.a) during Council managed ocean fishery. See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Alava (Neah Bay)</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Alava (Neah Bay)</td>
</tr>
<tr>
<td>CAPE ALAVA TO QUEETS RIVER (LA PUSH SUBAREA)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>ALTERNATIVE I</td>
</tr>
<tr>
<td>June 24 through earlier of September 30 or 1,530 marked coho subarea quota with a subarea guideline of 2,700 Chinook (C.5).</td>
</tr>
<tr>
<td>Cape Alava to Queets River (La Push Subarea)</td>
</tr>
<tr>
<td>Cape Alava to Queets River (La Push Subarea)</td>
</tr>
<tr>
<td>Cape Alava to Queets River (La Push Subarea)</td>
</tr>
</tbody>
</table>
A. SEASON ALTERNATIVE DESCRIPTIONS

<table>
<thead>
<tr>
<th>ALTERNATIVE I</th>
<th>ALTERNATIVE II</th>
<th>ALTERNATIVE III</th>
</tr>
</thead>
</table>
| **Queets River to Leadbetter Point (Westport Subarea)**
 - July 1 through earlier of September 30 or 21,750 marked coho subarea quota with a subarea guideline of 21,900 Chinook (C.5).
 Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook. All coho must be marked with a healed adipose fin clip (C.1). See gear restrictions and definitions (C.2, C.3). Grays Harbor Control Zone closed beginning August 14 (C.4.b). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5). | **Queets River to Leadbetter Point (Westport Subarea)**
 - June 24 through earlier of September 17 or 18,650 marked coho subarea quota with a subarea guideline of 21,400 Chinook (C.5).
 Same as Alternative 1. | **Queets River to Leadbetter Point (Westport Subarea)**
 - July 2 through earlier of September 7 or a subarea guideline of 19,000 Chinook (C.5).
 Five days per week (Sunday through Thursday). All salmon, except coho; two fish per day (C.1). See gear restrictions and definitions (C.2, C.3). Grays Harbor Control Zone closed beginning August 14 (C.4.b). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5). |
| **Leadbetter Point to Cape Falcon (Columbia River Subarea)**
 - July 1 through earlier of September 30 or 29,400 marked coho subarea quota with a subarea guideline of 13,500 Chinook (C.5).
 Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook. All coho must be marked with a healed adipose fin clip (C.1). See gear restrictions and definitions (C.2, C.3). Columbia Control Zone closed (C.4.c). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5). | **Leadbetter Point to Cape Falcon (Columbia River Subarea)**
 - June 24 through earlier of September 30 or 25,200 marked coho subarea quota with a subarea guideline of 13,200 Chinook (C.5).
 Same as Alternative 1. | **Leadbetter Point to Cape Falcon (Columbia River Subarea)**
 - July 1 through earlier of September 16 or 18,900 marked coho subarea quota with a subarea guideline of 11,700 Chinook (C.5).
 Same as Alternative 1. |
A. SEASON ALTERNATIVE DESCRIPTIONS

<table>
<thead>
<tr>
<th>South of Cape Falcon</th>
<th>South of Cape Falcon</th>
<th>South of Cape Falcon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATIVE I</td>
<td>ALTERNATIVE II</td>
<td>ALTERNATIVE III</td>
</tr>
<tr>
<td>Supplemental Management Information</td>
<td>Supplemental Management Information</td>
<td>Supplemental Management Information</td>
</tr>
<tr>
<td>2. Sacramento Index exploitation rate of 42.2%.</td>
<td>2. Sacramento Index exploitation rate of 39.1%.</td>
<td>2. Sacramento Index exploitation rate of 21.0%.</td>
</tr>
<tr>
<td>5. Overall recreational coho TAC: 30,000 coho marked with a healed adipose fin clip (marked), and 10,000 coho in the non-mark-selective coho fishery.</td>
<td>5. Overall recreational coho TAC: 20,000 coho marked with a healed adipose fin clip (marked).</td>
<td>5. Overall recreational coho TAC: Zero.</td>
</tr>
<tr>
<td>6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the CFGC.</td>
<td>6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the CFGC.</td>
<td>6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the CFGC.</td>
</tr>
</tbody>
</table>

Cape Falcon to Humbug Mt.

- March 15-October 31 (C.6), except as provided below during the all-salmon mark-selective and September non-mark-selective coho fisheries.

 Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).
 - Non-mark-selective coho fishery: September 2 through the earlier of September 30 or a landed catch of 10,000 coho (C.5).
 - Seven days per week. All salmon, two fish per day (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

The all salmon except coho season reopens the earlier of October 1 or attainment of the coho quota (C.5).

In 2018, the season between Cape Falcon and Humbug Mountain will open March 15 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3).

Cape Falcon to Humbug Mt.

- March 15-April 30 (C.6).

 Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

Fishing in the Stonewall Bank yelloweye rockfish conservation area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

In 2018, same as Alternative 1.

In 2018, same as Alternative 1.
<table>
<thead>
<tr>
<th>Season Alternative Descriptions</th>
<th>ALTERNATIVE I</th>
<th>ALTERNATIVE II</th>
<th>ALTERNATIVE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>All-salmon mark-selective coho fishery: June 24 through the earlier of July 31 or a landed catch of 30,000 marked coho (C.5). Seven days per week. All salmon, two fish per day. All retained coho must be marked with a healed adipose fin clip (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 16 inches total length (B). See gear restrictions and definitions (C.2, C.3). Any remainder of the mark-selective quota may be transferred on an impact neutral basis to the September non-mark-selective quota from Cape Falcon to Humbug Mountain. The all salmon except coho season reopens the earlier of August 1 or attainment of the coho quota (C.5.e). Fishing in the Stonewall Bank Yelloweye Rockfish Conservation Area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).</td>
<td>Cape Falcon to OR/CA Border. All-salmon mark-selective coho fishery June 24 through the earlier of August 17 or a landed catch of 20,000 marked coho (C.5). Seven days per week. All salmon, except no Chinook retention in the area from Humbug Mt. to the OR/CA border (Oregon KMZ). Two fish per day. All retained coho must be marked with a healed adipose fin clip (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 16 inches total length (B). See gear restrictions and definitions (C.2, C.3). The all salmon except coho season between Cape Falcon and Humbug Mt. reopens the earlier of August 18 or attainment of the coho quota. Fishing in the Stonewall Bank Yelloweye Rockfish Conservation Area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).</td>
<td>(left intentionally blank)</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border. (Oregon KMZ)</td>
<td>Closed (C.6).</td>
<td>Humbug Mt. to OR/CA Border. (Oregon KMZ)</td>
<td>Closed (C.6).</td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt. (California KMZ)</td>
<td>Closed (C.6).</td>
<td>OR/CA Border to Horse Mt. (California KMZ)</td>
<td>Closed (C.6).</td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt. (California KMZ)</td>
<td>Closed (C.6).</td>
<td>OR/CA Border to Horse Mt. (California KMZ)</td>
<td>Closed (C.6).</td>
</tr>
</tbody>
</table>
TABLE 2. 2017 Recreational management Alternatives for non-Indian ocean salmon fisheries - Council Adopted. (Page 6 of 8)

A. SEASON ALTERNATIVE DESCRIPTIONS

<table>
<thead>
<tr>
<th>ALTERNATIVE I</th>
<th>ALTERNATIVE II</th>
<th>ALTERNATIVE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
<td>Horse Mt. to Point Arena (Fort Bragg)</td>
</tr>
<tr>
<td>• April 1-May 31;</td>
<td>• April 1-May 31;</td>
<td>• April 1-30 (C.6).</td>
</tr>
<tr>
<td>• August 15-November 12 (C.6).</td>
<td>• July 1-12;</td>
<td>Same as Alternative 1.</td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B). See gear restrictions and definitions (C.2, C.3).</td>
<td>• September 1-November 12 (C.6). Same as Alternative 1.</td>
<td>In 2018, same as Alternative 1.</td>
</tr>
<tr>
<td>In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3).</td>
<td>In 2018, same as Alternative 1.</td>
<td>In 2018, same as Alternative 1.</td>
</tr>
<tr>
<td>Point Arena to Pigeon Point (San Francisco)</td>
<td>Point Arena to Pigeon Point (San Francisco)</td>
<td>Point Arena to Pigeon Point (San Francisco)</td>
</tr>
<tr>
<td>• April 1-30;</td>
<td>• April 1-30;</td>
<td>• April 1-30 (C.6).</td>
</tr>
<tr>
<td>• May 15-October 31 (C.6).</td>
<td>• June 15-October 31 (C.6).</td>
<td>Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).</td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length through April 30, 20 inches thereafter (B). See gear restrictions and definitions (C.2, C.3).</td>
<td>In 2018, same as Alternative 1.</td>
<td>In 2018, same as Alternative 1.</td>
</tr>
<tr>
<td>In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3).</td>
<td>In 2018, same as Alternative 1.</td>
<td>In 2018, same as Alternative 1.</td>
</tr>
<tr>
<td>Pigeon Point to Point Sur (Monterey North)</td>
<td>Pigeon Point to Point Sur (Monterey North)</td>
<td>Pigeon Point to Point Sur (Monterey North)</td>
</tr>
<tr>
<td>• April 1-July 15 (C.6).</td>
<td>• April 1-June 30 (C.6).</td>
<td>• April 1-30 (C.6).</td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).</td>
<td>Same as Alternative 1.</td>
<td>Same as Alternative 1.</td>
</tr>
<tr>
<td>In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3).</td>
<td>In 2018, same as Alternative 1.</td>
<td>In 2018, same as Alternative 1.</td>
</tr>
<tr>
<td>Point Sur to U.S./Mexico Border (Monterey South)</td>
<td>Point Sur to U.S./Mexico Border (Monterey South)</td>
<td>Point Sur to U.S./Mexico Border (Monterey South)</td>
</tr>
<tr>
<td>• April 1-May 31 (C.6).</td>
<td>• April 1-May 31 (C.6).</td>
<td>• April 1-30 (C.6).</td>
</tr>
<tr>
<td>Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).</td>
<td>Same as Alternative 1.</td>
<td>Same as Alternative 1.</td>
</tr>
<tr>
<td>In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3).</td>
<td>In 2018, same as Alternative 1.</td>
<td>In 2018, same as Alternative 1.</td>
</tr>
</tbody>
</table>

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state (California Code of Regulations Title 14 Section 1.73).
B. MINIMUM SIZE (Inches) (See C.1)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>24</td>
<td>16</td>
<td>None</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>24</td>
<td>16</td>
<td>None</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt. (Alt. 1 in September)</td>
<td>24</td>
<td>24</td>
<td>None</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border</td>
<td>-</td>
<td>16</td>
<td>None</td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. ≤ April 30</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. > April 30</td>
<td>20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Pigeon Pt. to Pt. Sur</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Pt. Sur to U.S./Mexico Border</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
</tbody>
</table>

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size and Other Special Restrictions:
All salmon on board a vessel must meet the minimum size or other special requirements for the area being fished and the area in which they are landed if that area is open. Salmon may be landed in an area that is closed only if they meet the minimum size or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Ocean Boat Limits: Off the coast of Washington, Oregon, and California, each fisher aboard a vessel may continue to use angling gear until the combined daily limits of Chinook and coho salmon for all licensed and juvenile anglers aboard have been attained (additional state restrictions may apply).

C.2. Gear Restrictions:
Salmon may be taken only by hook and line using barbless hooks. All persons fishing for salmon, and all persons fishing from a boat with salmon on board, must meet the gear restrictions listed below for specific areas or seasons.

- **U.S./Canada Border to Pt. Conception, California:** No more than one rod may be used per angler; and no more than two single point, single shank barbless hooks are required for all fishing gear. [Note: ODFW regulations in the state-water fishery off Tillamook Bay may allow the use of barbed hooks to be consistent with inside regulations.]

- **Horse Mt., California, to Pt. Conception, California:** Single point, single shank, barbless circle hooks (see gear definitions below) are required when fishing with bait by any means other than trolling, and no more than two such hooks shall be used. When angling with two hooks, the distance between the hooks must not exceed five inches when measured from the top of the eye of the top hook to the inner base of the curve of the lower hook, and both hooks must be permanently tied in place (hard tied). Circle hooks are not required when artificial lures are used without bait.
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

C.3. Gear Definitions:

a. Recreational fishing gear defined: Off Oregon and Washington, angling tackle consists of a single line that must be attached to a rod and reel held by hand or closely attended; the rod and reel must be held by hand while playing a hooked fish. No person may use more than one rod and line while fishing off Oregon or Washington. Off California, the line must be attached to a rod and reel held by hand or closely attended; weights directly attached to a line may not exceed four pounds (1.8 kg). While fishing off California north of Pt. Conception, no person fishing for salmon, and no person fishing from a boat with salmon on board, may use more than one rod and line. Fishing includes any activity which can reasonably be expected to result in the catching, taking, or harvesting of fish.

b. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90° angle.

c. Trolling defined: Angling from a boat or floating device that is making way by means of a source of power, other than drifting by means of the prevailing water current or weather conditions.

c. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse (46° 53'18" N. lat., 124° 07'01" W. long.) to Buoy #2 (46° 52'42" N. lat., 124°12'42" W. long.) to Buoy #3 (46° 55'00" N. lat., 124°14'48" W. long.) to the Grays Harbor north jetty (46° 55'36" N. lat., 124°10'51" W. long.).

d. Columbia Control Zone: The ocean area at the Klamath River mouth bounded on the north by 41°38'48" N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124°23'00" W. long. (approximately 12 nautical miles off shore); and, on the south by 41°26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).

e. Stonewall Bank Yelloweye Rockfish Conservation Area: The area defined by the following coordinates in the order listed:

 44°37.46' N. lat.; 124°24.92' W. long.
 44°37.46' N. lat.; 124°23.63' W. long.
 44°28.71' N. lat.; 124°24.10' W. long.
 44°31.42' N. lat.; 124°25.47' W. long.
 and connecting back to 44°37.46' N. lat.; 124°24.92' W. long.

f. Klamath Control Zone: The ocean area at the Klamath River mouth bounded on the north by 41°38'48" N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124°23'00" W. long. (approximately 12 nautical miles off shore); and, on the south by 41°26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).

C.4. Control Zone Definitions:

a. The Bonilla-Tatoosh Line: A line running from the western end of Cape Flattery to Tatoosh Island Lighthouse (48°23'30" N. lat., 124°44'12" W. long.) to the buoy adjacent to Duntze Rock (48°24'37" N. lat., 124°44'37" W. long.), then in a straight line to Bonilla Pt. (48°35'39" N. lat., 124°42'58" W. long.) on Vancouver Island, British Columbia.

b. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse (46° 53'18" N. lat., 124° 07'01" W. long.) to Buoy #2 (46° 52'42" N. lat., 124°12'42" W. long.) to Buoy #3 (46° 55'00" N. lat., 124°14'48" W. long.) to the Grays Harbor north jetty (46° 55'36" N. lat., 124°10'51" W. long.).

c. Columbia Control Zone: An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy #4 (46°13'35" N. lat., 124°06'50" W. long.) and the green lighted Buoy #7 (46°15'09" N. lat., 124°06'16" W. long.); on the east, by the Buoy #10 line which bears north/south at 357° true from the south jetty at 46°14'00" N. lat., 124°03'07" W. long. to its intersection with the north jetty; on the north, by a line running northeast/southwest between the green lighted Buoy #7 to the tip of the north jetty (46°15'48" N. lat., 124°05'20" W. long. and then along the north jetty to the point of intersection with the Buoy #10 line; and on the south, by a line running northeast/southwest between the red lighted Buoy #4 and tip of the south jetty (46°14'03" N. lat., 124°04'05" W. long.), and then along the south jetty to the point of intersection with the Buoy #10 line.

d. Stonewall Bank Yelloweye Rockfish Conservation Area: The area defined by the following coordinates in the order listed:

 44°37.46' N. lat.; 124°24.92' W. long.
 44°37.46' N. lat.; 124°23.63' W. long.
 44°28.71' N. lat.; 124°24.10' W. long.
 44°31.42' N. lat.; 124°25.47' W. long.
 and connecting back to 44°37.46' N. lat.; 124°24.92' W. long.

f. Klamath Control Zone: The ocean area at the Klamath River mouth bounded on the north by 41°38'48" N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124°23'00" W. long. (approximately 12 nautical miles off shore); and, on the south by 41°26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).

c. Chinook and coho may be transferred between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the representatives of the SAS, and if the transfer would not result in exceeding preseason impact expectations on any stocks.

d. Fishery managers may consider inseason action modifying regulations restricting retention of unmarked coho. To remain consistent with preseason expectations, any inseason action shall consider, if significant, the difference between observed and preseason forecasted mark rates. Such a consideration may also include a change in bag limit of two salmon, no more than one of which may be a coho.

e. Marked coho remaining from the Cape Falcon to OR/CA border recreational mark-selective coho quota may be transferred inseason to the Cape Falcon to Humbug Mt. non-mark-selective recreational fishery if the transfer would not result in exceeding preseason impact expectations on any stocks.
C.6. Additional Seasons in State Territorial Waters: Consistent with Council management objectives, the States of Washington, Oregon, and California may establish limited seasons in state waters. Check state regulations for details.

TABLE 3. 2017 Treaty Indian troll management Alternatives for ocean salmon fisheries - Council adopted. (Page 1 of 2)

<table>
<thead>
<tr>
<th>A. SEASON ALTERNATIVE DESCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLEMENTAL MANAGEMENT INFORMATION</td>
</tr>
<tr>
<td>ALTERNATIVE I</td>
</tr>
<tr>
<td>Overall Treaty-Indian TAC: 50,000 Chinook and 40,000 coho.</td>
</tr>
<tr>
<td>Overall Chum and/or coho TACs may need to be reduced or fisheries adjusted to meet NMFS ESA guidance, FMP requirements, upon conclusion of negotiations in the North of Falcon forum, or upon receipt of preseason catch and abundance expectations for Canadian and Alaskan fisheries.</td>
</tr>
</tbody>
</table>

- May 1 through the earlier of June 30 or 25,000 Chinook quota.
- All salmon except coho. If the Chinook quota is exceeded, the excess will be deducted from the later all-salmon season (C.5). See size limit (B) and other restrictions (C).
- July 1 through the earlier of September 15, or 25,000 Chinook quota, or 40,000 coho quota.
- All Salmon. See size limit (B) and other restrictions (C).

B. MINIMUM SIZE (Inches)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Length</td>
<td>Head-off</td>
</tr>
<tr>
<td>North of Cape Falcon</td>
<td>24.0 (61.0 cm)</td>
<td>18.0 (45.7 cm)</td>
</tr>
</tbody>
</table>

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Tribe and Area Boundaries. All boundaries may be changed to include such other areas as may hereafter be authorized by a Federal court for that tribe’s treaty fishery.

MAKAH - Washington State Statistical Area 4B and that portion of the FMA north of 48°02’15” N. lat. (Norwegian Memorial) and east of 125°44’00” W. long.

QUILEUTE - That portion of the FMA between 48°10’00” N. lat. (Cape Alava) and 47°3’70” N. lat. (Queets River) and east of 125°44’00” W. long.

HOH - That portion of the FMA between 47°54’18” N. lat. (Quillayute River) and 47°21’00” N. lat. (Quinault River) and east of 125°44’00” W. long.
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (Continued)

C.2. Gear restrictions
a. Single point, single shank, barbless hooks are required in all fisheries.
b. No more than eight fixed lines per boat.
c. No more than four hand held lines per person in the Makah area fishery (Washington State Statistical Area 4B and that portion of the FMA north of 48°02’15” N. lat. (Norwegian Memorial) and east of 125°44’00” W. long.)

C.3. Quotas
a. The quotas include troll catches by the S’Klallam and Makah Tribes in Washington State Statistical Area 4B from May 1 through August 31.
b. The Quileute Tribe will continue a ceremonial and subsistence fishery during the time frame of October 1 through October 15 in the same manner as in 2004-2015. Fish taken during this fishery are to be counted against treaty troll quotas established for the 2017 season (estimated harvest during the October ceremonial and subsistence fishery: 20 Chinook; 40 coho).

C.4. Area Closures
a. The area within a six nautical mile radius of the mouths of the Queets River (47°31’42” N. lat.) and the Hoh River (47°45’12” N. lat.) will be closed to commercial fishing.
b. A closure within two nautical miles of the mouth of the Quinault River (47°21’00” N. lat.) may be enacted by the Quinault Nation and/or the State of Washington and will not adversely affect the Secretary of Commerce’s management regime.

C.5. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:
a. Chinook remaining from the May through June treaty-Indian ocean troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline on a fishery impact equivalent basis.
TABLE 4. 2017 Chinook and coho harvest quotas and guidelines (*) for ocean salmon fishery management Alternatives adopted by the Council.
NORTH OF CAPE FALCON

<table>
<thead>
<tr>
<th>Fishery or Quota Designation</th>
<th>Chinook for Alternative</th>
<th>Coho for Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREATY INDIAN OCEAN TROLL<sup>a</sup></td>
<td>25,000</td>
<td>20,000</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Except Coho)</td>
<td>25,000</td>
<td>-</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Species)</td>
<td>50,000</td>
<td>40,000</td>
</tr>
<tr>
<td>TOTAL TREATY INDIAN OCEAN TROLL</td>
<td>50,000</td>
<td>40,000</td>
</tr>
<tr>
<td>NON-INDIAN COMMERCIAL TROLL<sup>b</sup></td>
<td>33,300</td>
<td>22,500</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Except Coho)</td>
<td>33,300</td>
<td>-</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Species)</td>
<td>16,700</td>
<td>22,500</td>
</tr>
<tr>
<td>TOTAL NON-INDIAN COMMERCIAL TROLL</td>
<td>50,000</td>
<td>45,000</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queets River to Cape Falcon (All Except Coho)<sup>c</sup></td>
<td>7,500</td>
<td>-</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Alava<sup>d</sup></td>
<td>8,800</td>
<td>7,900</td>
</tr>
<tr>
<td>Cape Alava to Queets River<sup>e</sup></td>
<td>2,800</td>
<td>2,500</td>
</tr>
<tr>
<td>Queets River to Leadbetter Pt.<sup>f</sup></td>
<td>21,900</td>
<td>21,400</td>
</tr>
<tr>
<td>Leadbetter Pt. to Cape Falcon<sup>g</sup></td>
<td>13,500</td>
<td>13,200</td>
</tr>
<tr>
<td>TOTAL RECREATIONAL</td>
<td>54,500</td>
<td>40,000</td>
</tr>
<tr>
<td>TOTAL NORTH OF CAPE FALCON</td>
<td>154,500</td>
<td>130,000</td>
</tr>
</tbody>
</table>

SOUTH OF CAPE FALCON

<table>
<thead>
<tr>
<th>Fishery or Quota Designation</th>
<th>Chinook for Alternative</th>
<th>Coho for Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL TROLL<sup>a</sup></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OR/CA Border to Humboldt South Jetty</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL COMMERCIAL TROLL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to Oregon/California Border</td>
<td>-</td>
<td>40,000<sup>a</sup></td>
</tr>
<tr>
<td>TOTAL SOUTH OF CAPE FALCON</td>
<td>40,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>

*a/ Quotas are non-mark selective for both Chinook and coho.
b/ Quotas are non-mark-selective for Chinook and mark-selective for coho.
c/ Quotas are mark-selective for Chinook, equivalent to unmarked quotas of 3,000.
d/ Does not include Buoy 10 fishery. Expected catch in August and September: Alternative I - 15,000 marked coho; Alternative II - 15,000 marked coho; Alternative III - 15,000 marked coho.
e/ The quota consists of both mark-selective and non-mark-selective coho quotas: 30,000 and 10,000 respectively. Both quotas only extend south to Humbug Mountain.
f/ Quotas are mark-selective for coho.
TABLE 5. 2017 Projected key stock escapements (thousands of fish) or management criteria for ocean fishery Alternatives adopted by the Council

<table>
<thead>
<tr>
<th>Key Stock/Criteria</th>
<th>Alternative I</th>
<th>Alternative II</th>
<th>Alternative III</th>
<th>Spawner Objective or Other Comparative Standard as Noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia Upriver Brights</td>
<td>271.1</td>
<td>274.4</td>
<td>281.3</td>
<td>74.0 Minimum ocean escapement to attain 40.0 natural adults over McNary Dam, with normal distribution and no mainstem harvest.</td>
</tr>
<tr>
<td>Mid-Columbia Brights</td>
<td>47.6</td>
<td>48.1</td>
<td>49.3</td>
<td>14.9 Minimum ocean escapement to attain 7.9 for Little White Salmon egg-take, assuming average conversion and no mainstem harvest.</td>
</tr>
<tr>
<td>Columbia Lower River Hatchery Tules</td>
<td>95.2</td>
<td>97.3</td>
<td>98.9</td>
<td>25.0 Minimum ocean escapement to attain 14.8 adults for hatchery egg-take, with average conversion and no lower river mainstem or tributary harvest.</td>
</tr>
<tr>
<td>Columbia Lower River Natural Tules (threatened)</td>
<td>41.3%</td>
<td>39.9%</td>
<td>38.3%</td>
<td>≤ 41.0% Total adult equivalent fishery exploitation rate (2017 NMFS ESA guidance).</td>
</tr>
<tr>
<td>Columbia Lower River Wild (threatened)</td>
<td>13.2</td>
<td>13.3</td>
<td>13.6</td>
<td>6.9 Minimum ocean escapement to attain MSY spawner goal of 5.7 for N. Lewis River fall Chinook (NMFS ESA consultation standard).</td>
</tr>
<tr>
<td>Spring Creek Hatchery Tules</td>
<td>159.7</td>
<td>167.1</td>
<td>171.3</td>
<td>8.2 Minimum ocean escapement to attain 6.0 adults for Spring Creek Hatchery egg-take, assuming average conversion and no mainstem harvest.</td>
</tr>
<tr>
<td>Snake River Fall (threatened) SRFI</td>
<td>55.0%</td>
<td>47.0%</td>
<td>40.0%</td>
<td>≤ 70.0% Of 1988-1993 base period exploitation rate for all ocean fisheries (NMFS ESA consultation standard).</td>
</tr>
<tr>
<td>Klamath River Fall</td>
<td>11,379</td>
<td>11,393</td>
<td>12,144</td>
<td>11,379 2017 minimum natural area adult escapement (FMP control rule).</td>
</tr>
<tr>
<td>Federally recognized tribal harvest</td>
<td>50.0%</td>
<td>50.0%</td>
<td>50.0%</td>
<td>50.0% Equals 0.8, 0.8, and 0.2 (thousand) adult fish for Yurok and Hoopa Valley tribal fisheries.</td>
</tr>
<tr>
<td>Spawner Reduction Rate</td>
<td>8.1%</td>
<td>8.0%</td>
<td>1.9%</td>
<td>≤ 8.1% FMP control rule.</td>
</tr>
<tr>
<td>Adult river mouth return</td>
<td>18.4</td>
<td>18.4</td>
<td>18.7</td>
<td>NA Total adults in thousands.</td>
</tr>
<tr>
<td>Age-4 ocean harvest rate</td>
<td>3.1%</td>
<td>3.2%</td>
<td>1.0%</td>
<td>≤ 16.0% NMFS ESA consultation standard for threatened California Coastal Chinook.</td>
</tr>
<tr>
<td>KMZ sport fishery share</td>
<td>15.3%</td>
<td>15.4%</td>
<td>49.6%</td>
<td>NA Equals 0.1, 0.1, and 0.00 (thousand) adult fish for recreational inriver fisheries.</td>
</tr>
<tr>
<td>River recreational fishery share</td>
<td>15.8%</td>
<td>15.0%</td>
<td>0.0%</td>
<td>≤ 15.8% Age-3 ocean impact rate in fisheries south of Pt. Arena. In addition, the following season restrictions apply: Recreational- Pt. Arena to Pigeon Pt. between the first Saturday in April and the second Sunday in November; Pigeon Pt. to the U.S./Mexico Border between the first Saturday in April and the first Sunday in October. Minimum size limit ≥ 20 inches total length. Commercial- Pt. Arena to the U.S./Mexico border between May 1 and September 30, except Pt. Reyes to Pt. San Pedro between October 1 and 15 (Monday-Friday). Minimum size limit ≥ 26 inches total length (NMFS 2017 ESA Guidance).</td>
</tr>
</tbody>
</table>
TABLE 5. Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean fishery Alternatives adopted by the Council (continued)
(Page 2 of 3)

<table>
<thead>
<tr>
<th>Key Stock/Criteria</th>
<th>Projected Ocean Escapement or Other Criteria (Council Area Impacts in Parentheses)</th>
<th>Spawner Objective or Other Comparative Standard as Noted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternative I</td>
<td>Alternative II</td>
</tr>
<tr>
<td>Sacramento River Fall</td>
<td>133.2</td>
<td>140.5</td>
</tr>
<tr>
<td>Sacramento Index exploitation rate</td>
<td>42.2%</td>
<td>39.1%</td>
</tr>
<tr>
<td>Ocean commercial impacts</td>
<td>50.4</td>
<td>44.4</td>
</tr>
<tr>
<td>Ocean recreational impacts</td>
<td>25.4</td>
<td>22.9</td>
</tr>
<tr>
<td>River recreational impacts</td>
<td>21.7</td>
<td>22.9</td>
</tr>
<tr>
<td>Hatchery spawner goal</td>
<td>Met</td>
<td>Met</td>
</tr>
</tbody>
</table>

COHO

<table>
<thead>
<tr>
<th></th>
<th>Alternative I</th>
<th>Alternative II</th>
<th>Alternative III</th>
<th>Spawner Objective or Other Comparative Standard as Noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Fraser (Thompson River)</td>
<td>7.6% (5.1%)</td>
<td>5.6% (3.1%)</td>
<td>4.4% (1.9%)</td>
<td>≤ 10.0% 2017 Southern U.S. exploitation rate ceiling; PSC coho agreement.</td>
</tr>
<tr>
<td>Skagit</td>
<td>10.2% (4.8%)</td>
<td>8.4% (2.9%)</td>
<td>7.3% (1.9%)</td>
<td>≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>de</sup></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>10.4% (3.4%)</td>
<td>9.2% (2.0%)</td>
<td>8.5% (1.3%)</td>
<td>≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>de</sup></td>
</tr>
<tr>
<td>Snohomish</td>
<td>9.9% (3.4%)</td>
<td>8.6% (2.1%)</td>
<td>7.9% (1.3%)</td>
<td>≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>de</sup></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>36.9% (5.0%)</td>
<td>35.6% (3.1%)</td>
<td>34.9% (2.1%)</td>
<td>≤ 65.0% 2017 total exploitation rate ceiling; FMP matrix<sup>de</sup></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>7.2% (4.3%)</td>
<td>5.2% (2.4%)</td>
<td>4.3% (1.5%)</td>
<td>≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>de</sup></td>
</tr>
<tr>
<td>Quillayute Fall</td>
<td>14.9</td>
<td>15.2</td>
<td>15.4</td>
<td>6.3 FMP MSY adult spawner estimate.<sup>dx</sup> Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Hoh</td>
<td>5.3</td>
<td>5.6</td>
<td>5.7</td>
<td>2.0 FMP MSY adult spawner estimate.<sup>dx</sup> Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Queets Natural</td>
<td>5.5</td>
<td>5.7</td>
<td>5.9</td>
<td>5.8 FMP MSY adult spawner estimate.<sup>dx</sup> Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Grays Harbor</td>
<td>46.3</td>
<td>47.4</td>
<td>48.1</td>
<td>35.4 FMP MSY adult spawner estimate.<sup>dx</sup> Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Willapa Bay Natural</td>
<td>33.1</td>
<td>34.3</td>
<td>35.1</td>
<td>17.2 FMP MSY adult spawner estimate. Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Lower Columbia River Natural (threatened)</td>
<td>12.6%</td>
<td>8.4%</td>
<td>5.1%</td>
<td>≤ 18.0% Total marine and mainstem Columbia R. fishery exploitation rate (2017 NMFS ESA guidance). Value depicted is ocean fishery exploitation rate. Bolded values identify ocean exploitation rates that, when combined with 2016 freshwater harvest rates, will exceed the total allowable exploitation rate.</td>
</tr>
<tr>
<td>Upper Columbia<sup>y</sup></td>
<td>>50%</td>
<td>>50%</td>
<td>>50%</td>
<td>≥ 50% Minimum percentage of the run to Bonneville Dam.</td>
</tr>
<tr>
<td>Columbia River Hatchery Early</td>
<td>165.5</td>
<td>179.5</td>
<td>203.9</td>
<td>77.2 Minimum ocean escapement to attain hatchery egg-take goal of 21.7 early adult coho, w ith average conversion and no mainstem or tributary fisheries.</td>
</tr>
<tr>
<td>Columbia River Hatchery Late</td>
<td>106.0</td>
<td>115.3</td>
<td>134.7</td>
<td>9.7 Minimum ocean escapement to attain hatchery egg-take goal of 6.4 late adult coho, w ith average conversion and no mainstem or tributary fisheries.</td>
</tr>
<tr>
<td>Oregon Coastal Natural</td>
<td>11.7%</td>
<td>5.3%</td>
<td>1.5%</td>
<td>≤ 30.0% Marine and freshwater fishery exploitation rate (NMFS ESA consultation standard). Value depicted is ocean fishery exploitation rate. When combined with anticipated freshwater impacts, exploitation rates will meet, but not exceed, NMFS guidance.</td>
</tr>
<tr>
<td>Southern Oregon/Northern California Coast (threatened)</td>
<td>3.6%</td>
<td>3.4%</td>
<td>0.5%</td>
<td>≤ 13.0% Marine fishery exploitation rate for RK hatchery coho (NMFS ESA consultation standard).</td>
</tr>
</tbody>
</table>
TABLE 5. Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean fishery Alternatives adopted by the Council. a/ (Page 3 of 3)

a/ Projections in the table assume 2016 post season fishing effort scalars for coho in Canadian fisheries. Model results for Chinook in this table used 2016 pre season catches and fishing effort scalers, and are updated with 2016 post season data if available. Assumptions for these fisheries will be changed prior to the April meeting as new information becomes available.

b/ Ocean escapement is the number of salmon escaping ocean fisheries and entering fresh water with the following clarifications. Ocean escapement for Puget Sound stocks is the estimated number of salmon entering Area 4B that are available to U.S. net fisheries in Puget Sound and spawner escapement after impacts from the Canadian, U.S. ocean, and Puget Sound troll and recreational fisheries have been deducted. Numbers in parentheses represent Council area exploitation rates for Puget Sound coho stocks. For Columbia River early and late coho stocks, ocean escapement represents the number of coho after the Buoy 10 fishery. Exploitation rates for LCN coho include all marine impacts and the Buoy 10 fishery. Exploitation rates for OCN coho represent marine impacts. Values reported for Klamath River fall Chinook are natural area adult spawners. Values reported for Sacramento River fall Chinook are hatchery and natural area adult spawners.

c/ Includes minor contributions from East Fork Lewis River and Sandy River.

d/ Annual management objectives may be different than FMP goals, and are subject to agreement between WDFW and the treaty tribes under U.S. District Court orders. Total exploitation rate includes Alaskan, Canadian, Council area, Puget Sound, and freshwater fisheries and is calculated as total fishing mortality divided by total fishing mortality plus spawner escapement. These total exploitation rates reflect the initial base package for inside fisheries developed by state and tribal co-managers. It is anticipated that total exploitation rates will be adjusted by state and tribal co-managers during the preseason planning process to comply with stock specific exploitation rate constraints.

e/ The co-managers will work throughout the North of Falcon/Pacific Fishery Management Council process to explore additional harvest opportunity for pink salmon, Chinook salmon, and other species as the current Chinook conservation constraints allow.

f/ Includes projected impacts of inriver fisheries that have not yet been shaped.
TABLE 6. Preliminary projections of Chinook and coho harvest impacts for 2017 ocean salmon fishery management Alternatives adopted by the Council. (Page 1 of 2)

<table>
<thead>
<tr>
<th>Area and Fishery</th>
<th>2017 Catch Projection</th>
<th>2017 Bycatch Mortality<sup>a/</sup> Projection</th>
<th>2017 Bycatch Projection<sup>b/</sup></th>
<th>Observed in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
</tr>
<tr>
<td>OCEAN FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian Ocean Troll</td>
<td>50.0</td>
<td>40.0</td>
<td>30.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Non-Indian Commercial Troll</td>
<td>50.0</td>
<td>45.0</td>
<td>40.0</td>
<td>27.9</td>
</tr>
<tr>
<td>Recreational</td>
<td>54.5</td>
<td>45.0</td>
<td>40.0</td>
<td>10.5</td>
</tr>
<tr>
<td>CAPE FALCON TO HUMBUG MT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>29.1</td>
<td>14.7</td>
<td>0.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Recreational</td>
<td>6.0</td>
<td>6.7</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>HUMBUG MT. TO HORSE MT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Recreational</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>SOUTH OF HORSE MT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>46.2</td>
<td>44.6</td>
<td>0.0</td>
<td>8.6</td>
</tr>
<tr>
<td>Recreational</td>
<td>35.0</td>
<td>31.4</td>
<td>6.1</td>
<td>2.2</td>
</tr>
<tr>
<td>TOTAL OCEAN FISHERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>175.6</td>
<td>144.6</td>
<td>71.0</td>
<td>47.2</td>
</tr>
<tr>
<td>Recreational</td>
<td>96.2</td>
<td>83.8</td>
<td>47.0</td>
<td>13.2</td>
</tr>
<tr>
<td>INSIDE FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buoy 10</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
TABLE 6. Preliminary projections of Chinook and coho harvest impacts for 2017 ocean salmon fishery management Alternatives adopted by the Council. (Page 2 of 2)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
</tr>
<tr>
<td>OCEAN FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian Ocean Troll</td>
<td>40.0</td>
<td>22.0</td>
<td>12.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Non-Indian Commercial Troll</td>
<td>5.6</td>
<td>9.6</td>
<td>-</td>
<td>7.2</td>
</tr>
<tr>
<td>Recreational</td>
<td>58.8</td>
<td>50.4</td>
<td>18.9</td>
<td>11.2</td>
</tr>
<tr>
<td>SOUTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.7</td>
</tr>
<tr>
<td>Recreational</td>
<td>40.0</td>
<td>20.0</td>
<td>-</td>
<td>10.2</td>
</tr>
<tr>
<td>TOTAL OCEAN FISHERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>45.6</td>
<td>31.6</td>
<td>12.5</td>
<td>15.1</td>
</tr>
<tr>
<td>Recreational</td>
<td>98.8</td>
<td>70.4</td>
<td>18.9</td>
<td>21.4</td>
</tr>
<tr>
<td>INSIDE FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buoy 10</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

The bycatch mortality reported in this table consists of drop-off mortality (includes predation on hooked fish) plus hook-and-release mortality of Chinook and coho salmon in Council-area fisheries. Drop-off mortality for both Chinook and coho is assumed to be equal to 5% of total encounters. The hook-and-release mortality (HRM) rates used for both Chinook and coho are:

- Commercial: 26%.
- Recreational, north of Pt. Arena: 14%.
- Recreational, south of Pt. Arena: 15% (based on the expected proportion of fish that will be caught using mooching versus trolling gear, and the HRMs of 42.2% and 14% for these two respective gear types).

Bycatch calculated as dropoff mortality plus fish released.

Includes Oregon territorial water, late season Chinook fisheries.

Based on reported released Chinook or coho.

For Alternative II, projected bycatch and bycatch mortality includes Chinook bycatch associated with a coho-only mark-selective fishery between Humbbug Mt. and the OR/CA border.

Includes fisheries that allow retention of all legal sized coho.

61

Environmental Assessment Part 2 (Preseason Report II)
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
April 2017
TABLE 7. Expected coastwide lower Columbia Natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho, and Lower Columbia River (LCR) natural tule Chinook exploitation rates by fishery for 2017 ocean fisheries management Alternatives adopted by the Council.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Exploitation Rate (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>SOUTHEAST ALASKA</td>
<td>0.0%</td>
</tr>
<tr>
<td>BRITISH COLUMBIA</td>
<td>0.1%</td>
</tr>
<tr>
<td>PUGET SOUND/STRAIT</td>
<td>0.1%</td>
</tr>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td>3.0%</td>
</tr>
<tr>
<td>Treaty Indian Ocean Troll</td>
<td>4.3%</td>
</tr>
<tr>
<td>Recreational</td>
<td>1.5%</td>
</tr>
<tr>
<td>Non-Indian Troll</td>
<td>0.0%</td>
</tr>
<tr>
<td>SOUTH OF CAPE FALCON</td>
<td>0.0%</td>
</tr>
<tr>
<td>Recreational</td>
<td>0.0%</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>3.0%</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA border (KMZ)</td>
<td>0.0%</td>
</tr>
<tr>
<td>OR/CA border to Horse Mt. (KMZ)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>0.0%</td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>0.0%</td>
</tr>
<tr>
<td>Troll</td>
<td>0.5%</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>0.0%</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA border (KMZ)</td>
<td>0.0%</td>
</tr>
<tr>
<td>OR/CA border to Horse Mt. (KMZ)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>0.0%</td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>0.1%</td>
</tr>
<tr>
<td>BUOY 10</td>
<td>0.9%</td>
</tr>
<tr>
<td>ESTUARY/FRESHWATER</td>
<td>N/A</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

\(a/\) Totals do not include estuary/freshwater for LCN, OCN and RK coho. Bolded values identify ocean exploitation rates that, when combined with 2016 freshwater harvest rates, will exceed the total allowable exploitation rate.
<table>
<thead>
<tr>
<th>Area</th>
<th>Fishery</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnstone Strait</td>
<td>Recreational</td>
<td>-</td>
<td>51%</td>
<td>56%</td>
<td>-</td>
</tr>
<tr>
<td>West Coast Vancouver Island</td>
<td>Recreational</td>
<td>42%</td>
<td>57%</td>
<td>60%</td>
<td>66%</td>
</tr>
<tr>
<td>North Georgia Strait</td>
<td>Recreational</td>
<td>59%</td>
<td>60%</td>
<td>60%</td>
<td>57%</td>
</tr>
<tr>
<td>South Georgia Strait</td>
<td>Recreational</td>
<td>34%</td>
<td>57%</td>
<td>45%</td>
<td>52%</td>
</tr>
<tr>
<td>Juan de Fuca Strait</td>
<td>Recreational</td>
<td>50%</td>
<td>49%</td>
<td>49%</td>
<td>52%</td>
</tr>
<tr>
<td>Johnstone Strait</td>
<td>Troll</td>
<td>69%</td>
<td>60%</td>
<td>54%</td>
<td>63%</td>
</tr>
<tr>
<td>NW Vancouver Island</td>
<td>Troll</td>
<td>51%</td>
<td>49%</td>
<td>50%</td>
<td>35%</td>
</tr>
<tr>
<td>SW Vancouver Island</td>
<td>Troll</td>
<td>54%</td>
<td>51%</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>Georgia Strait</td>
<td>Troll</td>
<td>65%</td>
<td>62%</td>
<td>62%</td>
<td>54%</td>
</tr>
<tr>
<td>Puget Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca (Area 5)</td>
<td>Recreational</td>
<td>55%</td>
<td>49%</td>
<td>48%</td>
<td>47%</td>
</tr>
<tr>
<td>Strait of Juan de Fuca (Area 6)</td>
<td>Recreational</td>
<td>54%</td>
<td>46%</td>
<td>45%</td>
<td>46%</td>
</tr>
<tr>
<td>San Juan Island (Area 7)</td>
<td>Recreational</td>
<td>59%</td>
<td>54%</td>
<td>60%</td>
<td>47%</td>
</tr>
<tr>
<td>North Puget Sound (Areas 6 & 7A)</td>
<td>Net</td>
<td>-</td>
<td>39%</td>
<td>56%</td>
<td>53%</td>
</tr>
<tr>
<td>Council Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neah Bay (Area 4/4B)</td>
<td>Recreational</td>
<td>49%</td>
<td>55%</td>
<td>51%</td>
<td>58%</td>
</tr>
<tr>
<td>LaPush (Area 3)</td>
<td>Recreational</td>
<td>67%</td>
<td>57%</td>
<td>62%</td>
<td>45%</td>
</tr>
<tr>
<td>Westport (Area 2)</td>
<td>Recreational</td>
<td>67%</td>
<td>65%</td>
<td>64%</td>
<td>62%</td>
</tr>
<tr>
<td>Columbia River (Area 1)</td>
<td>Recreational</td>
<td>75%</td>
<td>74%</td>
<td>70%</td>
<td>72%</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Recreational</td>
<td>67%</td>
<td>62%</td>
<td>57%</td>
<td>46%</td>
</tr>
<tr>
<td>New port</td>
<td>Recreational</td>
<td>62%</td>
<td>58%</td>
<td>55%</td>
<td>42%</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Recreational</td>
<td>54%</td>
<td>50%</td>
<td>40%</td>
<td>25%</td>
</tr>
<tr>
<td>Brookings</td>
<td>Recreational</td>
<td>48%</td>
<td>36%</td>
<td>33%</td>
<td>13%</td>
</tr>
<tr>
<td>Neah Bay (Area 4/4B)</td>
<td>Troll</td>
<td>53%</td>
<td>52%</td>
<td>53%</td>
<td>56%</td>
</tr>
<tr>
<td>LaPush (Area 3)</td>
<td>Troll</td>
<td>51%</td>
<td>56%</td>
<td>53%</td>
<td>56%</td>
</tr>
<tr>
<td>Westport (Area 2)</td>
<td>Troll</td>
<td>53%</td>
<td>59%</td>
<td>63%</td>
<td>59%</td>
</tr>
<tr>
<td>Columbia River (Area 1)</td>
<td>Troll</td>
<td>69%</td>
<td>68%</td>
<td>66%</td>
<td>65%</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Troll</td>
<td>61%</td>
<td>60%</td>
<td>61%</td>
<td>57%</td>
</tr>
<tr>
<td>New port</td>
<td>Troll</td>
<td>60%</td>
<td>58%</td>
<td>55%</td>
<td>54%</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Troll</td>
<td>53%</td>
<td>51%</td>
<td>45%</td>
<td>31%</td>
</tr>
<tr>
<td>Brookings</td>
<td>Troll</td>
<td>41%</td>
<td>43%</td>
<td>46%</td>
<td>60%</td>
</tr>
<tr>
<td>Columbia River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buoy 10</td>
<td>Recreational</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon I</td>
<td>I</td>
<td>4,686</td>
<td>1,797</td>
<td>+161%</td>
<td>3,273</td>
<td>+43%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4,258</td>
<td></td>
<td>+137%</td>
<td></td>
<td>+30%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3,708</td>
<td></td>
<td>+106%</td>
<td></td>
<td>+13%</td>
</tr>
<tr>
<td>North of Cape Falcon II</td>
<td>I</td>
<td>4,258</td>
<td></td>
<td>-13%</td>
<td></td>
<td>-7%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3,708</td>
<td></td>
<td>-106%</td>
<td></td>
<td>-13%</td>
</tr>
<tr>
<td>North of Cape Falcon III</td>
<td>I</td>
<td>3,708</td>
<td></td>
<td>-106%</td>
<td></td>
<td>-13%</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt. I</td>
<td>I</td>
<td>2,950</td>
<td>4,033</td>
<td>-27%</td>
<td>6,769</td>
<td>-56%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1,492</td>
<td></td>
<td>-63%</td>
<td></td>
<td>-78%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>71</td>
<td></td>
<td>-98%</td>
<td></td>
<td>-99%</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt. II</td>
<td>I</td>
<td>2,950</td>
<td>4,033</td>
<td>-27%</td>
<td>6,769</td>
<td>-56%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1,492</td>
<td></td>
<td>-63%</td>
<td></td>
<td>-78%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>71</td>
<td></td>
<td>-98%</td>
<td></td>
<td>-99%</td>
</tr>
<tr>
<td>Humbug Mt. to Horse Mt.</td>
<td>I</td>
<td>30</td>
<td>60</td>
<td>-49%</td>
<td>693</td>
<td>-96%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>30</td>
<td></td>
<td>-49%</td>
<td></td>
<td>-96%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>30</td>
<td></td>
<td>-49%</td>
<td></td>
<td>-96%</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>I</td>
<td>161</td>
<td>1,477</td>
<td>-89%</td>
<td>4,538</td>
<td>-96%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0</td>
<td></td>
<td>-100%</td>
<td></td>
<td>-100%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0</td>
<td></td>
<td>-100%</td>
<td></td>
<td>-100%</td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>I</td>
<td>4,294</td>
<td>3,805</td>
<td>+13%</td>
<td>8,356</td>
<td>-49%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4,294</td>
<td></td>
<td>+13%</td>
<td></td>
<td>-49%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0</td>
<td></td>
<td>-100%</td>
<td></td>
<td>-100%</td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>I</td>
<td>4,294</td>
<td>3,805</td>
<td>+13%</td>
<td>8,356</td>
<td>-49%</td>
</tr>
<tr>
<td>Total South of Cape Falcon</td>
<td>I</td>
<td>7,436</td>
<td>9,374</td>
<td>-21%</td>
<td>20,355</td>
<td>-63%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>5,817</td>
<td></td>
<td>-38%</td>
<td></td>
<td>-71%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>102</td>
<td></td>
<td>-99%</td>
<td></td>
<td>-100%</td>
</tr>
<tr>
<td>West Coast Total</td>
<td>I</td>
<td>12,121</td>
<td>11,171</td>
<td>+9%</td>
<td>23,628</td>
<td>-49%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>10,075</td>
<td></td>
<td>-10%</td>
<td></td>
<td>-57%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3,809</td>
<td></td>
<td>-66%</td>
<td></td>
<td>-84%</td>
</tr>
</tbody>
</table>

a/ Values are inflation-adjusted to 2016 dollars. Exvessel values are not comparable to the income impacts shown in Table 10.
b/ Projections are based on expected catches in the Council management area and estimated 2016 average weights and exvessel values.
c/ Commercial salmon fishing is closed in federal waters of this area in all Alternatives. Projected exvessel values solely reflect a potential Oregon state-waters-only late season fishery. Any resulting landings would be made in Oregon ports.
TABLE 10

Preliminary projected angler trips and coastal community income impacts generated under Council-adopted 2017 recreational ocean salmon fishery regulatory Alternatives compared to 2016 and the 2012-2016 average (in inflation-adjusted dollars).

<table>
<thead>
<tr>
<th>Management Area</th>
<th>Alternative</th>
<th>Angler Trips (thousands)</th>
<th>Community Income Impacts (thousands of dollars)¹<sup>0</sup></th>
<th>Percent Change in Income Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon<sup>b</sup></td>
<td>I</td>
<td>103.7</td>
<td>52.0</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>87.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>46.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>I</td>
<td>59.7</td>
<td>30.3</td>
<td>54.8</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>68.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humbug Mt. to Horse Mt.<sup>c</sup></td>
<td>I</td>
<td>3.8</td>
<td>13.1</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>10.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>I</td>
<td>6.0</td>
<td>9.6</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South of Pt. Arena</td>
<td>I</td>
<td>95.1</td>
<td>51.1</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>83.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>21.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total South of Cape Falcon</td>
<td>I</td>
<td>164.5</td>
<td>104.2</td>
<td>182.0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>169.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>26.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Coast Total</td>
<td>I</td>
<td>268.3</td>
<td>156.2</td>
<td>270.1</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>257.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>73.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹/ Income impacts are not comparable to the exvessel values shown in Table 9. All dollar values are expressed in inflation-adjusted 2016 dollars.

^b/ Does not include Buoy 10 fishery.
^c/ Chinook-directed recreational fishing is closed in federal waters of this area in all Alternatives. Projected angler trips and community income impacts reflect a potential Oregon state-waters-only late season fishery and, in Alternative II, a coho-only mark-selective fishery north of the OR/CA border.
FIGURE 1. Projected community income impacts associated with landings projected under the Council adopted 2017 commercial fishery Alternatives compared to 2016 and the 2012-2016 average (in inflation-adjusted dollars).
FIGURE 2. Projected community income impacts associated with angler effort projected under the Council adopted 2017 recreational fishery Alternatives compared to 2016 and the 2012-2016 average (in inflation-adjusted dollars).
APPENDIX A: PROJECTED IMPACTS FOR AGE-3 SACRAMENTO RIVER WINTER CHINOOK AND ADULT KLAMATH RIVER FALL CHINOOK

Table A-1. Sacramento River winter run Chinook age-3 ocean impact rate south of Pt. Arena by fishery and Alternative. The age-3 SRWC impact rate was projected for each of the proposed 2017 fishing season Alternatives. The impacts are displayed as a percent for each Alternative by fishery, port area, and month. Max rate: 15.8.

<table>
<thead>
<tr>
<th>Alternative I</th>
<th>Commercial</th>
<th>Recreational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Area</td>
<td>May</td>
<td>Jun</td>
</tr>
<tr>
<td>SF</td>
<td>0.36</td>
<td>0.05</td>
</tr>
<tr>
<td>MO</td>
<td>0.55</td>
<td>2.42</td>
</tr>
<tr>
<td>Total</td>
<td>0.55</td>
<td>2.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative II</th>
<th>Commercial</th>
<th>Recreational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Area</td>
<td>May</td>
<td>Jun</td>
</tr>
<tr>
<td>SF</td>
<td>0.37</td>
<td>0.06</td>
</tr>
<tr>
<td>MO</td>
<td>0.55</td>
<td>2.43</td>
</tr>
<tr>
<td>Total</td>
<td>0.55</td>
<td>2.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative III</th>
<th>Commercial</th>
<th>Recreational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Area</td>
<td>May</td>
<td>Jun</td>
</tr>
<tr>
<td>SF</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

SF Pt. Arena to Pigeon Pt. (San Francisco)
MO Pigeon Pt. to the U.S./Mexico Border (Monterey)

Environmental Assessment Part 2 (Preseason Report II) April 2017
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
Table A-2. Klamath River fall Chinook ocean impacts in numbers of fish by fishery and Alternative.

Alternative I
11,379 natural area spawners, 8.1% spawner reduction rate, 3.1% age-4 ocean harvest rate

<table>
<thead>
<tr>
<th>Port</th>
<th>Fall 2016</th>
<th>Summer 2017</th>
<th>Summer Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Sep Oct</td>
<td>Mar Apr May Jun Jul Aug</td>
<td>Total Total</td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternative II
11,393 natural area spawners, 8.0% spawner reduction rate, 3.2% age-4 ocean harvest rate

<table>
<thead>
<tr>
<th>Port</th>
<th>Fall 2016</th>
<th>Summer 2017</th>
<th>Summer Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Sep Oct</td>
<td>Mar Apr May Jun Jul Aug</td>
<td>Total Total</td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternative III
12,144 natural area spawners, 1.9% spawner reduction rate, 1.0% age-4 ocean harvest rate

<table>
<thead>
<tr>
<th>Port</th>
<th>Fall 2016</th>
<th>Summer 2017</th>
<th>Summer Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Sep Oct</td>
<td>Mar Apr May Jun Jul Aug</td>
<td>Total Total</td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NO: Cape Falcon to Florence S. Jetty
CO: Florence S. Jetty to Humbug Mt.
KO: Humbug Mt. to OR/CA Border (Oregon KMZ)
KC: OR/CA Border to Horse Mt. (California KMZ)
FB: Horse Mt. to Pt. Arena (Fort Bragg)
SF: Pt. Arena to Pigeon Pt. (San Francisco)
MO: Pigeon Pt. to U.S./Mexico Border (Monterey)

Fall 2016
Summer 2017
Fall 2016
Summer 2017
Fall 2016
Summer 2017
Fall 2016
Summer 2017
APPENDIX B: NEPA AND ESA ANALYSES INCORPORATED BY REFERENCE

Several documents supporting the analyses of effects to the environment from the Alternatives have been incorporated by reference. Those documents are described and passages relevant to analyses contained in this EA are excerpted below.

NMFS 2003: West Coast Salmon Harvest Programmatic EIS

This document evaluates how NMFS reviews annual salmon fishery plans in three jurisdictions, the North Pacific Fishery Management Council for Southeast Alaska; the Pacific Fishery Management Council for the Washington, Oregon, and California coast; and U.S. v. Oregon for the Columbia River Basin. In general, NMFS seeks to implement fisheries that are consistent with a variety of statutory and legal obligations related to resource conservation, socioeconomic benefits associated with resource use, and treaty trust obligations. Fishery plans are developed annually within the context of framework plans to meet the year-specific circumstances related to the status of stocks affected by the fisheries. This final PEIS evaluates different ways to balance these objectives and different strategies that can be used that may provide better solutions for meeting the obligations and objectives of the respective framework plans. The Alternatives considered in this final PEIS are programmatic in nature and are designed to provide an overview of fishery management methods and strategies that can be implemented as part of the annual planning processes.

This document includes the following statements relative to Council area salmon fisheries:

While the levels of salmon catch fluctuate from year to year, the amount of groundfish taken as incidental catch is very low so that changes in the salmon fishery do not substantially alter the projections for harvest-related mortality in the groundfish fishery.

Other Council managed species such as halibut, highly migratory species (draft FMP), and coastal pelagic species are also landed jointly with salmon. For all of these stocks, fish caught on the same trip with salmon are documented. Data on the commercial segment of these fisheries show the co-occurrence rates for salmon and these other Council managed species is low, as well as for non-Council-managed species. Changes in the salmon fishery are not expected to have a substantial impact on the directed fisheries for the non-salmon stocks

The commercial troll fishery off the coasts of Washington, Oregon, and California is classified as a Category III fishery, indicating a remote or no likelihood of known incidental mortality or serious injury of marine mammals. In general, recreational fishery uses the same gear and techniques as the commercial fisheries and can be assumed to have similar rates of encounters and results.

After excluding ESA listed marine mammals, only three species of marine mammals are defined as strategic under MMPA within the coverage area: short-finned pilot whales, mesoplodont beaked whales, and Minke whales (Barlow et al. 1997). This strategic classification denotes that projected human-caused mortality exceeds the species’ annual potential biological removal estimate under MMPA standards. As with ESA listed marine mammal species, there is no record of these three species being affected by the ocean salmon fisheries managed by the Council.

Steller sea lion interaction with the Pacific Coast salmon fisheries is rare and NMFS has determined mortality and serious injury incidental to commercial fishing operations would have a
negligible effect. Available information indicates that Pacific Coast salmon fisheries are not likely to jeopardize the existence of the Guadalupe fur seal. No sea turtles have been reported taken by the ocean salmon fisheries off Washington, Oregon, or California. NMFS has determined that commercial fishing by Pacific Coast fisheries would pose a negligible threat to the Pacific species.

Short-term effects on seabirds are minimal, if any. The types of vessels used in the fishery and the conduct of the vessels are not conducive to collisions or the introduction of rats other non-indigenous species to seabird breeding colonies. Anecdotal information suggests accidental bird encounters are a rare event for commercial and recreational ocean salmon fisheries (Council 1999a). Long-term effects on seabirds from the ocean salmon fisheries are also minimal.

The removal of adult salmon by the ocean fisheries is not considered to significantly affect the lower trophic levels or the overall marine ecosystem because salmon are not the only or primary predator in the marine environment.

PFMC 2006: EA for 2006 Ocean Salmon Management Measures

The 2006 regulations EA analyzes the environmental and socioeconomic impacts of proposed management measures for ocean salmon fisheries occurring off the coasts of Washington, Oregon, and California. The document evaluated the 2006 annual salmon ocean harvest management measures with respect to compliance with the terms of the Salmon FMP, obligations under the Pacific Salmon Treaty (PST), and the level of protection required by all consultation standards for salmon species listed under the ESA. The range of alternatives analyzed in the 2006 Regulations EA included the effects of three levels of de minimis fishing strategies on KRFC when the stock was projected to fall below the 35,000 natural spawner floor for the third consecutive year. The escapement floor for naturally spawning KRFC was projected to not be attained even with complete closure of ocean salmon fisheries between Cape Falcon, Oregon, and Point Sur, California; therefore, the management measures required implementation by emergency rule. The NMFS-recommended 2006 salmon fishery management measures did not completely close fisheries between Cape Falcon and Point Sur, but limited fisheries to provide a minimum of 21,100 natural spawning adult KRFC in 2006. The 2006 EA supported NMFS’ Finding of No Significant Impacts (FONSI) for the 2006 ocean salmon regulations.

Appendix A of Amendment 18 (EFH Appendix A) describes salmon EFH and fishing and non-fishing impacts to this habitat. It found no evidence of direct gear effects on this habitat from Council-managed salmon fisheries. ... Because EFH impacts are extensively described and analyzed in EFH Appendix A, and this analysis demonstrates the fishery has no significant impacts, EFH will not be considered further in this environmental assessment.

Fisheries management can affect safety if, for example, season openings make it more likely that fishermen will have to go out in bad weather because fishing opportunities are limited. The EA incorporated into Amendment 8 to the Salmon FMP analyzed alternatives to adjust management measures if unsafe weather affected fishery access. The range of management measures considered for the proposed action would be within the range described in that EA. Since these types of potential impacts have been previously analyzed and found not to be significant, they are not discussed in this EA.

NMFS 2008: Biological Opinion on 2008 Ocean Fisheries Effects on Southern Resident Killer Whales

1 The eastern DPS of Steller sea lions was delisted under the ESA on November 4, 2013 (78 FR 66140).
This document constitutes the National Marine Fisheries Service’s (NMFS) biological opinion regarding the effects of the 2008-2009 Pacific coast salmon fisheries on the Southern Resident killer whale distinct population segment. The fisheries assessed by this Opinion are fisheries are managed under the jurisdiction of the Pacific Fisheries Management Council (PFMC) and target primarily Chinook and coho salmon, and pink salmon.

After reviewing the current status of the endangered population of Southern Resident killer whales and their critical habitat, the environmental baseline for the action area, the effects of the proposed actions, and cumulative effects, it is NMFS’s biological opinion that the proposed action is not likely to jeopardize the continued existence of the Southern Resident killer whales or adversely modify critical habitat.
Page Intentionally Left Blank
This map is for reference only and is not intended for use in navigation or fishery regulation.
ACKNOWLEDGMENTS

SALMON TECHNICAL TEAM

DR. ROBERT KOPE, CHAIR
National Marine Fisheries Service, Seattle, Washington

DR. MICHAEL O’FARRELL, VICE-CHAIR
National Marine Fisheries Service, Santa Cruz, California

MS. WENDY BEEGHLLEY
Washington Department of Fish and Wildlife, Montesano, Washington

MR. CRAIG FOSTER
Oregon Department of Fish and Wildlife, Clackamas, Oregon

DR. STEVE HAESEKER
U.S. Fish and Wildlife Service, Vancouver, Washington

MR. LARRIE LAVOY
National Marine Fisheries Service, Seattle, Washington

MR. ALEX LETVIN
California Department of Fish and Wildlife (Alternate), Santa Rosa, California

PACIFIC FISHERY MANAGEMENT COUNCIL STAFF

MS. ROBIN EHLKE
MS. RENEE DORVAL
MS. KIM AMBERT
MR. KRIS KLEINSCHMIDT

The Salmon Technical Team and the Council staff express their thanks for the expert assistance provided by Ms. Vanessa Gusman, Ms. Melodie Palmer-Zwahlen, and Ms. Jennifer Simon, California Department of Fish and Wildlife; Mr. Eric Schindler, Oregon Department of Fish and Wildlife; Mr. Kyle Van de Graaf, Washington Department of Fish and Wildlife; Mr. Henry Yuen, U.S. Fish and Wildlife Service (retired); Ms. Sandy Zeiner of the Northwest Indian Fisheries Commission; and numerous other agency and tribal personnel in completing this report.

This document may be cited in the following manner:

A report of the Pacific Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award Number FNA15NMF4410016.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF ACRONYMS AND ABBREVIATIONS</td>
<td>iii</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 SELECTION OF FINAL MANAGEMENT MEASURES</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Inseason Management</td>
<td>2</td>
</tr>
<tr>
<td>2.2 State Waters Fisheries</td>
<td>3</td>
</tr>
<tr>
<td>3.0 SALMON FISHERY MANAGEMENT PLAN REQUIREMENTS</td>
<td>3</td>
</tr>
<tr>
<td>4.0 SPECIES LISTED UNDER THE ENDANGERED SPECIES ACT</td>
<td>6</td>
</tr>
<tr>
<td>5.0 OBLIGATIONS UNDER THE PACIFIC SALMON TREATY</td>
<td>7</td>
</tr>
<tr>
<td>5.1 Chinook Salmon Management</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Coho Salmon Management</td>
<td>8</td>
</tr>
<tr>
<td>6.0 CHINOOK SALMON MANAGEMENT</td>
<td>10</td>
</tr>
<tr>
<td>6.1 North of Cape Falcon</td>
<td>10</td>
</tr>
<tr>
<td>6.1.1 Objectives</td>
<td>10</td>
</tr>
<tr>
<td>6.1.2 Achievement of Objectives</td>
<td>10</td>
</tr>
<tr>
<td>6.2 South of Cape Falcon</td>
<td>11</td>
</tr>
<tr>
<td>6.2.1 Objectives</td>
<td>11</td>
</tr>
<tr>
<td>6.2.2 Achievement of Objectives</td>
<td>12</td>
</tr>
<tr>
<td>7.0 COHO SALMON MANAGEMENT</td>
<td>13</td>
</tr>
<tr>
<td>7.1 Objectives</td>
<td>13</td>
</tr>
<tr>
<td>7.2 Achievement of Objectives</td>
<td>13</td>
</tr>
<tr>
<td>8.0 PINK SALMON MANAGEMENT</td>
<td>14</td>
</tr>
<tr>
<td>9.0 IMPORTANT FEATURES OF THE ADOPTED MANAGEMENT MEASURES</td>
<td>14</td>
</tr>
<tr>
<td>9.1 Commercial</td>
<td>15</td>
</tr>
<tr>
<td>9.2 Recreational</td>
<td>15</td>
</tr>
<tr>
<td>9.3 Treaty Indian</td>
<td>16</td>
</tr>
<tr>
<td>10.0 SOCIOECONOMIC IMPACTS OF THE ADOPTED MANAGEMENT MEASURES</td>
<td>16</td>
</tr>
<tr>
<td>10.1 Economic Impacts</td>
<td>16</td>
</tr>
<tr>
<td>10.2 Community Impacts</td>
<td>18</td>
</tr>
<tr>
<td>10.3 Social Impacts</td>
<td>18</td>
</tr>
<tr>
<td>11.0 Environmental Effects of the Proposed Action</td>
<td>19</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>2017 Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted.</td>
<td>20</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted.</td>
<td>27</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>2017 Treaty Indian ocean troll management measures for ocean salmon fisheries - Council adopted.</td>
<td>33</td>
</tr>
<tr>
<td>TABLE 4</td>
<td>Chinook and coho harvest quotas and guidelines for 2017 ocean salmon fishery management measures - Council adopted.</td>
<td>34</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean salmon fishery management measures - Council adopted.</td>
<td>35</td>
</tr>
<tr>
<td>TABLE 6</td>
<td>Preliminary projections of Chinook and coho harvest impacts for 2017 ocean salmon fishery management measures - Council adopted.</td>
<td>39</td>
</tr>
<tr>
<td>TABLE 7</td>
<td>Expected coastwide lower Columbia Natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho, and Lower Columbia River (LCR) natural tule Chinook exploitation rates by fishery for 2017 ocean salmon fisheries - Council adopted.</td>
<td>41</td>
</tr>
<tr>
<td>TABLE 8</td>
<td>2017 projected coho mark rates for mark-selective fisheries under Council adopted management measures (percent marked).</td>
<td>42</td>
</tr>
<tr>
<td>TABLE 9</td>
<td>Preliminary projected exvessel value by catch area under Council-adopted 2017 non-Indian commercial troll management measures compared with 2016 and the 2012-2016 average (inflation-adjusted 2016 dollars).</td>
<td>43</td>
</tr>
<tr>
<td>TABLE 10</td>
<td>Preliminary projected angler trips and associated state level personal income impacts under Council-adopted 2017 recreational ocean salmon fishery management measures compared to estimated 2016 and the 2012-2016 average.</td>
<td>44</td>
</tr>
<tr>
<td>TABLE 11</td>
<td>Environmental effects of the Proposed Action relative to criteria and Alternatives analyzed in Preseason Reports I and II.</td>
<td>45</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Council-adopted non-Indian commercial salmon seasons for 2017.</td>
<td>26</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>Council-adopted recreational salmon seasons for 2017.</td>
<td>32</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Projected coastal community personal income impacts associated with the 2017 commercial troll fishery under Council-adopted management measures compared to estimated 2017 and the 2012-2016 inflation-adjusted average (in 2016 dollars).</td>
<td>47</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>Projected coastal community personal income impacts associated with the 2017 recreational fishery under Council-adopted management measures compared to estimated 2016 and the 2012-2016 inflation-adjusted average (in 2016 dollars).</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABM</td>
<td>Aggregate Abundance Based Management</td>
</tr>
<tr>
<td>AEQ</td>
<td>adult equivalent</td>
</tr>
<tr>
<td>BO</td>
<td>biological opinion</td>
</tr>
<tr>
<td>CDFW</td>
<td>California Department of Fish and Wildlife</td>
</tr>
<tr>
<td>Council</td>
<td>Pacific Fishery Management Council</td>
</tr>
<tr>
<td>CPUE</td>
<td>catch per unit effort</td>
</tr>
<tr>
<td>EEZ</td>
<td>Economic Exclusive Zone</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>ESU</td>
<td>Evolutionarily Significant Unit</td>
</tr>
<tr>
<td>FMP</td>
<td>fishery management plan</td>
</tr>
<tr>
<td>FONSI</td>
<td>finding of no significant impact</td>
</tr>
<tr>
<td>FRAM</td>
<td>Fishery Regulation Assessment Model</td>
</tr>
<tr>
<td>GSI</td>
<td>genetic stock identification</td>
</tr>
<tr>
<td>IPHC</td>
<td>International Pacific Halibut Commission</td>
</tr>
<tr>
<td>ISBM</td>
<td>Individual Stock Based Management</td>
</tr>
<tr>
<td>KMZ</td>
<td>Klamath Management Zone</td>
</tr>
<tr>
<td>KRFC</td>
<td>Klamath River fall Chinook</td>
</tr>
<tr>
<td>LCN</td>
<td>lower Columbia River natural (coho)</td>
</tr>
<tr>
<td>LCR</td>
<td>lower Columbia River (natural tule Chinook)</td>
</tr>
<tr>
<td>LRH</td>
<td>lower river hatchery (tule fall Chinook returning to hatcheries below Bonneville Dam)</td>
</tr>
<tr>
<td>LRW</td>
<td>lower river wild (Columbia River fall Chinook, primarily from the North Lewis River)</td>
</tr>
<tr>
<td>MSY</td>
<td>maximum sustainable yield</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>ODFW</td>
<td>Oregon Department of Fish and Wildlife</td>
</tr>
<tr>
<td>OCN</td>
<td>Oregon coastal natural (coho)</td>
</tr>
<tr>
<td>OPI</td>
<td>Oregon Production Index</td>
</tr>
<tr>
<td>PSC</td>
<td>Pacific Salmon Commission</td>
</tr>
<tr>
<td>PST</td>
<td>Pacific Salmon Treaty</td>
</tr>
<tr>
<td>RER</td>
<td>rebuilding exploitation rate</td>
</tr>
<tr>
<td>RMP</td>
<td>Resource Management Plan</td>
</tr>
<tr>
<td>RK</td>
<td>Rogue/Klamath (hatchery coho)</td>
</tr>
<tr>
<td>SAS</td>
<td>Salmon Advisory Subpanel</td>
</tr>
<tr>
<td>SCH</td>
<td>Spring Creek Hatchery (tule fall Chinook returning to Spring Creek Hatchery)</td>
</tr>
<tr>
<td>SI</td>
<td>Sacramento index</td>
</tr>
<tr>
<td>SONCC</td>
<td>Southern Oregon/Northern California Coast (coho)</td>
</tr>
<tr>
<td>SRFC</td>
<td>Sacramento River fall Chinook</td>
</tr>
<tr>
<td>SRFI</td>
<td>Snake River fall (Chinook) index</td>
</tr>
<tr>
<td>SRW</td>
<td>Snake River wild fall Chinook</td>
</tr>
<tr>
<td>SRWC</td>
<td>Sacramento River winter Chinook</td>
</tr>
<tr>
<td>STT</td>
<td>Salmon Technical Team</td>
</tr>
<tr>
<td>SWO</td>
<td>State Waters Only (fisheries off Oregon south of Cape Falcon)</td>
</tr>
<tr>
<td>WCVI</td>
<td>West Coast Vancouver Island</td>
</tr>
<tr>
<td>WDFW</td>
<td>Washington Department of Fish and Wildlife</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION
This is the last in a series of three preseason reports prepared by the Pacific Fishery Management Council's (Council) Salmon Technical Team (STT) and staff. The reports document and help guide salmon fishery management in the exclusive economic zone (EEZ) from 3 to 200 nautical miles off the coasts of Washington, Oregon, and California, and within state territorial waters. This report summarizes the STT analysis of the 2017 ocean salmon fishery management measures adopted by the Council for submission to the U.S. Secretary of Commerce and characterizes their expected impacts on ocean salmon fisheries and the stocks which support them.

This report also constitutes the third and final part of an Environmental Assessment (EA) to comply with National Environmental Policy Act (NEPA) requirements for the 2017 ocean salmon regulations and includes a description and analysis of a Proposed Action. An EA is used to determine whether an action being considered by a Federal agency has significant environmental impacts. The second part of the EA (Preseason Report II; PFMC 2017c) presented a statement of the purpose and need, a description of the affected environment, a description of 2017 ocean salmon regulation Alternatives being considered, and an analysis of the effects of those Alternatives on the affected environment. The first part of the EA (Preseason Report I; PFMC 2017b) included a description of the No-Action Alternative and an analysis of the effects of the No-Action Alternative on salmon stocks managed under the Pacific Coast Salmon Fishery Management Plan (FMP), which is one component of the affected environment. Along with the description and analysis of the Proposed Action in this report, these three parts of the EA will provide the necessary components to determine if a finding of no significant impact (FONSI) or Environmental Impact Statement (EIS) is warranted.

The Council's recommendations for the 2017 ocean salmon fishery regulations meet all objectives of the FMP (Section 3), including Annual Catch Limits (ACLs) set according to the FMP and described in Preseason Report I; the level of protection required by all consultation standards for salmon species listed under the Endangered Species Act (ESA) (Section 4), and; the obligations under the Pacific Salmon Treaty (PST) (Section 5) except as described below.

Under the Council’s recommended salmon fisheries, salmon stocks originating from the Columbia River, Oregon, and California meet all of the applicable conservation objectives in the FMP. North of these areas, the conservation objective in the FMP for Queets River wild coho could not be met with 2017 ocean fishery alternatives when combined with in-river Treaty fisheries, although relatively healthy harvestable Columbia River and coastal coho stocks are available. To address this situation, the Council's recommendations depart from the letter of the FMP and thus require adoption by emergency rule. The Council recommends deviating from the coho allocation schedule between recreational and commercial fisheries north of Cape Falcon to allow a greater portion of the very limited coho harvest to be taken by the recreational fishery which is highly dependent on coho.

The projected spawning escapement for Queets River coho is below the FMP objective of 5,800 natural spawners. Under court orders for Washington coastal and Puget Sound stocks, the treaty tribes and WDFW may agree to annual spawner targets that differ from the FMP objective. In 2017, the tribal and WDFW co-managers agreed to an escapement objective of 5,130. This reduced escapement results in an expected exploitation rate of 22 percent.

The forecast abundance for Queets River wild coho places this stock in the ‘low’ category under the PST, which limits the exploitation rate to 20 percent. The Pacific Salmon Commission’s Southern Panel concurred with an exception to this limit under Chapter 5, Paragraph 11(c) of the PST. The result is that the proposed action is in compliance with provisions of both the FMP and the PST.
2.0 SELECTION OF FINAL MANAGEMENT MEASURES

The following figures and tables describe the Council-adopted management measures covering the period from May 1, 2017, to April 30, 2018:

- Table 1 - Non-Indian commercial ocean salmon management measures;
- Figure 1 - Geographic outline of commercial troll (non-Indian) ocean salmon seasons;
- Table 2 - Recreational ocean salmon management measures;
- Figure 2 - Geographic outline of recreational ocean salmon seasons;
- Table 3 - Treaty Indian commercial ocean management measures; and
- Table 4 - Allowable catch quotas for Chinook and coho.

In addition, Tables 5, 6, and 7 provide information on the biological impacts and landing estimates for the Council’s management recommendations. Table 8 displays the expected mark (healed adipose fin-clip) rate for coho encountered in Council adopted mark-selective fisheries. Tables 9 and 10, and Figures 3 and 4, provide information on the economic impacts of the proposed fisheries. Table 11 summarizes environmental effects of the Proposed Action and Alternatives.

The 2017 seasons are constrained primarily by: (1) Klamath River fall Chinook (KRFC) south of Cape Falcon, (2) endangered Sacramento River winter Chinook (SRWC) south of Point Arena, (3) Queets River coho north of the OR/CA border, and (4) Queets River coho, Puget Sound coho, and Puget Sound Chinook north of Cape Falcon.

Regulations and expected fishing patterns for the treaty Indian ocean fisheries were developed by the Hoh, S'Klallam, Makah, Quileute, and Quinault tribes for their respective fisheries.

2.1 Inseason Management

Inseason changes are made to meet the preseason intent of the management measures described in this document, but must also meet the Council's FMP goals, especially in regard to conservation and allocation goals, Federally-recognized Indian fishing rights, consultation standards for ESA-listed salmon stocks, and obligations under the PST.

Inseason actions that are anticipated for the 2017-2018 management season include, but are not limited to, the following possibilities:

1. Adjustments in landing limits and days open for non-Indian commercial fisheries.
2. Changing the days or number of days of fishing allowed per calendar week for recreational fisheries.
3. Transfer of coho quotas among recreational port areas north of Cape Falcon.
4. Trading portions of Chinook and coho quotas between recreational and non-Indian commercial sectors north of Cape Falcon.
5. Routine openings and closings, and other management measures associated with quota management, including modifying open areas, bag limits, species retention limits, and mark-selective retention restrictions.
6. Transferring unused or exceeded quota to subsequent fisheries on an impact neutral, fishery equivalent basis.
7. Closing Oregon recreational and commercial fisheries scheduled to open March 15, 2018 if necessary to meet 2018 management objectives.
8. Closing California recreational fisheries scheduled to open April 7, 2018, or commercial fisheries scheduled to open April 16, 2018, if necessary to meet 2018 management objectives.
9. Adjustments to incidental Pacific halibut catch regulations in commercial fisheries, including landing and possession ratios and landing and possession limits per trip.
Inseason action will generally be accomplished through NMFS sponsored conference calls attended by representatives of affected state and tribal management agencies, the Council, the Salmon Advisory Subpanel (SAS), and the STT. The Council may also make recommendations for inseason actions at any of its regularly scheduled meetings.

2.2 State Waters Fisheries

In addition to the seasons shown in Tables 1 and 2, the Oregon Department of Fish and Wildlife (ODFW) may permit fall fisheries for salmon in certain areas within state marine waters. Potential seasons off the Oregon coast include commercial and recreational fisheries at the mouths of the Chetco, Elk, and other rivers. Washington may also establish limited recreational salmon fisheries in state marine waters if additional impacts on critical coho and/or Chinook stocks can be accommodated within management constraints. California will not establish any additional state marine water salmon fisheries in 2017.

3.0 SALMON FISHERY MANAGEMENT PLAN REQUIREMENTS

The Council’s FMP includes objectives for setting annual management measures to regulate ocean salmon fisheries between the U.S./Canada border and the U.S./Mexico border. The objectives include biological, administrative, and allocation requirements. In recommending final management measures, the Council attempts to meet all objectives in a fair and balanced manner, while maintaining established priorities.

Biological objectives for stocks originating in the three west coast states and impacted by Council area ocean fisheries are listed in Table 3-1 of the FMP. The objectives generally consist of meeting spawning escapement numbers associated with maximum sustainable yield (SMSY), overfishing limits (OFL), acceptable biological catch (ABC), and annual catch limits (ACL), or exploitation rate limits designed to support recovery of depressed stocks or to rebuild overfished stocks, while encompassing a long-term average harvest approximating MSY. Impacts on these stocks relative to the applicable objectives are described in Table 5.

Administrative objectives are requirements for meeting other applicable law outside of the FMP. These requirements include ESA consultation standards, international treaties, and tribal trust responsibilities. The FMP defers to NMFS consultation standards for salmon stocks listed under the ESA in regards to biological conservation objectives. Section 4.0 of this document provides greater detail on ESA-listed stocks, while impacts of the Council-adopted salmon management measures on ESA-listed stocks are included in Table 5.

The FMP requires compliance with relevant terms of the PST. Section 5.0 of this document provides greater detail on PST provisions and stocks, while impacts of the Council-adopted salmon management measures on those stocks are included in Table 5.

The FMP also requires compliance with treaty fishing rights as described in Court orders in the U.S. v. Washington (Puget Sound), Hoh v. Baldrige (Washington coast), and U.S. v. Oregon (Columbia River) cases, and the Solicitor General opinion (Klamath River) governing allocation and management of shared salmon resources. Much of the North of Falcon forum is dedicated to annual negotiations establishing allocation among the tribes, non-Indian fishing sectors, and ocean and inside interests. The results of these negotiations inform the Council’s adoption of final management measure recommendations while meeting its biological, administrative, and allocation objectives.

The Columbia River treaty tribes establish periodic management agreements with the state comanagers and Federal agencies. These agreements are approved pursuant to provisions of U.S. v. Oregon procedures.
Recent agreements have included an entitlement for the treaty tribes of 50 percent of the coho return destined for areas upstream from Bonneville Dam. Council area fisheries are shaped in order to meet this requirement in some years.

The Yurok and Hoopa Valley tribes are entitled to 50 percent of the total KRFC harvest, which is calculated as a harvest of KRFC equal to that taken in all non-tribal fisheries. The Council must account for all harvest impacts when assessing the achievement of KRFC conservation objectives.

In addition to the allocation objectives associated with sharing between treaty Indian and non-Indian sectors, the Salmon FMP includes formulas for sharing Chinook and coho quotas north of Cape Falcon between commercial and recreational sectors, and among recreational port subareas, and for coho south of Cape Falcon between commercial and recreational sectors. The 2017 salmon management measures adopted by the Council meet the allocation requirements for fisheries north of Cape Falcon in the Salmon FMP, except that that the proportion of the coho TAC (total allowable catch) allocated to the recreational fishery is higher than prescribed by the Salmon FMP and the allocation to the non-Indian commercial troll fishery is lower than prescribed. This departure from the allocation formula in the FMP is necessary to protect coastal and Puget Sound coho stocks projected to return in very low numbers while providing opportunity for recreational fisheries dependent on coho retention.

In support of the adoption of the 2017 salmon management measures, the Council reviewed the criteria used to evaluate requests for emergency action by the Secretary from Council Operating Procedure 10 (*italics below*) and provided the following preliminary rationale for considering a deviation from the FMP harvest allocation guidelines and escapement objectives:

1. *The issue was not anticipated or addressed in the salmon plan, or an error was made.*
 The issue does not appear to be caused by an error. Rather, the relatively healthy abundance of Chinook and the low abundance of especially Queets River wild coho presented circumstances that were not anticipated in the FMP to the extent encountered this year.
 Regarding the allocation of coho between the recreational and commercial fisheries: The recreational fishery is much more dependent on coho to achieve the FMP objectives than the non-Indian commercial troll fishery, which depends more heavily on Chinook harvest. Therefore, the Council considered and adopted an alternative that varies from the coho harvest allocation guidelines. The result is the preferred alternative that recognizes those differences and allocates a greater portion of the small number of harvestable coho to the recreational fishery while relying on the ability of the commercial fishery to access harvestable Chinook to achieve the management objectives in the FMP.

2. *Waiting for a plan amendment to be implemented would have substantial adverse biological or economic consequences.*
 In the event that regulations that include a deviation in coho allocation from the FMP were not able to move forward, there would be significant economic consequences to the ports and communities of the Columbia River, Westport, La Push and Neah Bay. The Alternatives should optimize the harvest of harvestable stocks while meeting conservation objectives to the best of our ability. A plan amendment could not be completed in time given that fisheries commence on May 1.

3. *In the case of allocation issues, the affected user representatives support the proposed emergency action.*
 The commercial troll and recreational fishery representatives involved in the North of Falcon process supported the Alternatives that went out for public review, including those that deviated from strict adherence to the FMP, as well as the Council’s final preferred management measures.

4. *The action is necessary to meet FMP objectives.*
The structure of the final management measures and the potential deviation from the strict terms of the FMP have the potential to better optimize harvest and conservation and thereby more fully meet FMP objectives. The final management measures allow some fishing targeting relatively healthy stocks while minimizing impacts on stocks suffering from low abundance.

5. *If the action is taken, long-term yield from the stock complex will not be decreased.*
 It is not anticipated that any aspect of the final management measures would decrease long-term yield. The potential deviation from the FMP allocation guidelines is intended to have the opposite effect by providing modest harvest opportunity where appropriate while minimizing impacts on stocks of concern. The final management measures have relatively low impacts on Queets River wild coho, impacting a few hundred fish in Council area fisheries. The co-managers considered past escapement levels and resulting performance for the affected stocks in developing fisheries with impacts at these levels, and concluded that these impacts would not affect the long-term yield from the stocks.
4.0 SPECIES LISTED UNDER THE ENDANGERED SPECIES ACT

Since 1989, NMFS listed 17 Evolutionarily Significant Units (ESUs) of salmon under the ESA:

<table>
<thead>
<tr>
<th>ESU</th>
<th>Status</th>
<th>Federal Register Notice</th>
<th>Original Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake River Fall</td>
<td>Threatened</td>
<td>76 FR 50448 8/15/2011</td>
<td>4/22/1992</td>
</tr>
<tr>
<td>Puget Sound</td>
<td>Threatened</td>
<td>76 FR 50448 8/15/2011</td>
<td>3/24/1999</td>
</tr>
<tr>
<td>Lower Columbia River</td>
<td>Threatened</td>
<td>76 FR 50448 8/15/2011</td>
<td>3/24/1999</td>
</tr>
<tr>
<td>Upper Willamette River</td>
<td>Threatened</td>
<td>76 FR 50448 8/15/2011</td>
<td>3/24/1999</td>
</tr>
<tr>
<td>Upper Columbia River Spring</td>
<td>Endangered</td>
<td>76 FR 50448 8/15/2011</td>
<td>3/24/1999</td>
</tr>
<tr>
<td>Central Valley Spring</td>
<td>Threatened</td>
<td>76 FR 50447 8/15/2011</td>
<td>9/16/1999</td>
</tr>
<tr>
<td>California Coastal</td>
<td>Threatened</td>
<td>76 FR 50447 8/15/2011</td>
<td>9/16/1999</td>
</tr>
<tr>
<td>Chum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River</td>
<td>Threatened</td>
<td>76 FR 50448 8/15/2011</td>
<td>3/25/1999</td>
</tr>
<tr>
<td>Coho</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central California Coastal</td>
<td>Endangered</td>
<td>76 FR 50447 8/15/2011</td>
<td>10/31/1996</td>
</tr>
<tr>
<td>Sockeye</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As the listings have occurred, NMFS has initiated formal consultations and issued biological opinions (BOs) that consider the impacts resulting from implementation of the FMP, or from annual management measures, to listed salmonid species. NMFS has also reinitiated consultation on certain ESUs when new information has become available on the status of the stocks or on the impacts of the FMP on the stocks. The consultation standards referred to in this document include (1) reasonable and prudent alternatives, (2) conservation objectives for which NMFS conducted Section 7 consultations and arrived at a no-jeopardy conclusion, and (3) NMFS requirements under Section 4(d) determinations. A list of current BOs in effect, the species they apply to, and their duration follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Evolutionarily Significant Unit covered and effective period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8/1996</td>
<td>Snake River spring/summer and fall Chinook and sockeye (until reinitiated)</td>
</tr>
<tr>
<td>4/28/1999</td>
<td>Oregon Coastal natural coho, Southern Oregon/ Northern California coastal coho, Central California coastal coho (until reinitiated)</td>
</tr>
<tr>
<td>4/28/2000</td>
<td>Central Valley spring Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/27/2001</td>
<td>Hood Canal summer chum 4(d) limit (until reinitiated)</td>
</tr>
<tr>
<td>4/30/2001</td>
<td>Upper Willamette Chinook, Upper Columbia spring Chinook, Lake Ozette sockeye, Columbia River chum, and 10 steelhead ESUs (until reinitiated)</td>
</tr>
<tr>
<td>4/30/2004</td>
<td>Puget Sound Chinook (until reinitiated)</td>
</tr>
<tr>
<td>6/13/2005</td>
<td>California coastal Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/30/2010</td>
<td>Sacramento River winter Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/26/2012</td>
<td>Lower Columbia River Chinook (until reinitiated)</td>
</tr>
<tr>
<td>4/9/2015</td>
<td>Lower Columbia River natural coho (until reinitiated)</td>
</tr>
</tbody>
</table>

Amendment 12 to the FMP added the generic category “species listed under the ESA” to the list of stocks in the salmon management unit and modified respective escapement goals to include “manage consistent with NMFS jeopardy standards or recovery plans to meet immediate conservation needs and long-term
recovery of the species.” Amendment 14 specified those listed ESUs and clarified which stocks in the FMP management unit were representative of the ESUs.

In a letter received by the Council on March 3, 2017, NMFS provided guidance on protective measures for species listed under the ESA during the 2017 fishing season. The letter summarized the requirements of NMFS’ BOs on the effects of potential actions under the salmon FMP on listed salmon and described the consultation standards of the BOs in preparation for the 2017 management season, as well as further guidance and recommendations for the 2017 management season.

The ESA consultation standards, exploitation rates, and other criteria in place for the 2017 management season are presented in Table 5. Some listed stocks are either rarely caught in Council fisheries (e.g., spring Chinook from the upper Columbia River) or already receive sufficient protection from other FMP and ESA standards for other stocks (e.g., Central Valley spring Chinook). NMFS has determined that management actions designed to limit catch from these ESUs, beyond what will be provided by harvest constraints for other stocks, are not necessary.

Of the ESA-listed Chinook and coho, Council-managed fisheries have substantive impacts on SRWC, Central Valley spring Chinook, California coastal Chinook, Snake River wild (SRW) fall Chinook, LCR fall Chinook, and all of the coho stocks. Additional listed salmonid ESUs found within the Council area, but not substantively impacted by Council-managed fisheries, include:

<table>
<thead>
<tr>
<th>Chinook</th>
<th>Sockeye</th>
<th>Chum</th>
<th>Steelhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snake River spring/summer (threatened)</td>
<td>Snake River (endangered)</td>
<td>Columbia River (threatened)</td>
<td>Southern California (endangered)</td>
</tr>
<tr>
<td>Upper Willamette (threatened)</td>
<td>Ozette Lake Sockeye (threatened)</td>
<td>Hood Canal summer (threatened)</td>
<td>South-central California coast (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper Columbia River (endangered)</td>
</tr>
<tr>
<td>Puget Sound (threatened)</td>
<td>Upper Columbia River spring (endangered)</td>
<td>Central Valley, California (threatened)</td>
<td>Central California coast (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper Willamette River (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Middle Columbia River (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Snake River Basin (threatened)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Puget Sound (threatened)</td>
</tr>
</tbody>
</table>

5.0 OBLIGATIONS UNDER THE PACIFIC SALMON TREATY

In 1985, the PST was signed, setting long-term goals for the benefit of the shared salmon resources of the United States and Canada. The Pacific Salmon Commission (PSC) is the body formed by the governments of Canada and the United States to implement the PST.

5.1 Chinook Salmon Management

The current Chinook agreement under the PST was negotiated in 2008 and formally accepted by both the U.S. and Canada in December of 2008. This agreement took effect on January 1, 2009, and included a 30 percent reduction in the catch ceilings for aggregate abundance based management (AABM) fisheries off West Coast Vancouver Island (WCVI) and a 15 percent reduction in the catch ceilings for AABM fisheries in Southeast Alaska relative to the catch ceilings in effect for these fisheries since 1999. Under the terms of the 2009 PST Agreement, Council fisheries for Chinook salmon continue to be subject to the individual
stock based management (ISBM) provisions of Annex 4, Chapter 3, adopted in 1999. These provisions require the adult equivalent (AEQ) exploitation rate by all U.S. fisheries south of the U.S./Canada border be reduced by 40 percent from the 1979-1982 base period for Chinook indicator stocks identified in Attachment V of the PST that fail to achieve their management objectives.

Many Chinook stocks of concern to the Council are affected by fisheries off Canada and Alaska. Maximum allowable catches by AABM fishery complexes off WCVI, Northern British Columbia, and Southeast Alaska are determined through the annual calibration of the PSC Chinook Model. Canadian fisheries that are not included in AABM complexes are managed under ISBM constraints, which require a 36.5 percent reduction in AEQ exploitation rates relative to the 1979-1982 base period on Chinook indicator stocks identified in Attachment IV of the PST that fail to achieve their management objectives. Expectations for Canadian and Alaskan fisheries harvest and stock abundance forecasts are incorporated into the Chinook Fishery Regulation Assessment Model (FRAM) to estimate total exploitation rate impacts from all marine fisheries (Table 5).

Key considerations for Canadian domestic fishery management for Chinook in 2017 include, (1) meeting domestic conservation obligations for Strait of Georgia and Fraser River stream-type stocks; (2) Chinook harvests by First Nations fisheries; and (3) incidental impacts during commercial and First Nations fisheries directed at sockeye, pink, and chum salmon. The fishery regulatory package off WCVI was driven by levels of allowable impact on WCVI and Lower Strait of Georgia Chinook and Interior Fraser (Thompson River) coho.

5.2 Coho Salmon Management

In 2002, the PSC adopted a management plan for coho salmon originating in Washington and Southern British Columbia river systems. The plan is directed at the conservation of key management units, four from Southern British Columbia (Interior Fraser, Lower Fraser, Strait of Georgia Mainland, and Strait of Georgia Vancouver Island) and nine from Washington (Skagit, Stillaguamish, Snohomish, Hood Canal, Strait of Juan de Fuca, Quillayute, Hoh, Queets, and Grays Harbor). Exploitation rate limits for intercepting fisheries are established for individual management units through formulas specified in the 2002 PST Southern Coho Management Plan, and are based on abundance of the management units.

The categorical status of U.S. coho management units is reported to comply with obligations pursuant to the 2002 PST Southern Coho Management Plan. Categorical status is employed by the PSC under the 2002 PST Southern Coho Management Plan to indicate general ranges of allowable total exploitation rates for U.S. and Canadian coho management units. Three categories are employed: low (total exploitation rate less than 20 percent), moderate (total exploitation rate 20 percent to 40 percent), and abundant (total exploitation rate greater than 40 percent). For the Puget Sound management units, the 2002 PST Southern Coho Management Plan uses the thresholds and stepped exploitation rate goals from the Comprehensive Coho Agreement, developed by Washington and the Puget Sound tribes, and adopted by the Council as FMP conservation objectives in November 2009. For Washington coastal coho management units, the categorical status is determined from the forecast abundance and breakpoints calculated from the lower bounds of the escapement goal range.

Actual exploitation rate constraints for Canadian fisheries on U.S. coho management units are determined by formulas that specify sharing of allowable exploitation rates and a “composite rule.” The composite rule adjusts constraints for Canadian fishery exploitation rates based on the number of U.S. management units which fall in a given category. For example, if only one Washington coastal coho management unit is in low status, Canadian fisheries are constrained to a total exploitation rate on that unit of 12 percent; if two or more Washington coastal management units are in low status, the constraint becomes 10 percent.
Under these rules, the most restrictive constraints for Canadian fisheries on U.S. coho management units in 2017 are 11 percent for Skagit and Stillaguamish coho, and 12 percent for Queets coho.

For 2017, Puget Sound and Washington coast coho constraints are as follows:

<table>
<thead>
<tr>
<th>FMP Stock</th>
<th>Total Exploitation Rate Constraint</th>
<th>Categorical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skagit</td>
<td>20%</td>
<td>Critical</td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>20%</td>
<td>Critical</td>
</tr>
<tr>
<td>Snohomish</td>
<td>40%</td>
<td>Low</td>
</tr>
<tr>
<td>Hood Canal</td>
<td>65%</td>
<td>Normal</td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>40%</td>
<td>Low</td>
</tr>
<tr>
<td>Quillayute Fall</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td>Hoh</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Queets</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor</td>
<td>65%</td>
<td></td>
</tr>
</tbody>
</table>

PST Southern Coho Management Plan

<table>
<thead>
<tr>
<th>U.S. Management Unit</th>
<th>Total Exploitation Rate Constraint</th>
<th>Categorical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skagit</td>
<td>20%</td>
<td>Low</td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>20%</td>
<td>Low</td>
</tr>
<tr>
<td>Snohomish</td>
<td>40%</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hood Canal</td>
<td>65%</td>
<td>Abundant</td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>40%</td>
<td>Moderate</td>
</tr>
<tr>
<td>Quillayute Fallc/</td>
<td>60%</td>
<td>Abundant</td>
</tr>
<tr>
<td>Hohc/</td>
<td>66%</td>
<td>Abundant</td>
</tr>
<tr>
<td>Queetsc/</td>
<td>20%</td>
<td>Low</td>
</tr>
<tr>
<td>Grays Harborc/</td>
<td>29%</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

a/ Preliminary. For Puget Sound stocks, the exploitation rate constraints and categorical status (Normal, Low, Critical) reflect application of Comprehensive Coho Agreement rules, as adopted in the FMP. For Washington Coast stocks, exploitation rate constraints represent MFMT. Note that under U.S. v. Washington and Hoh v. Baldrige case law, the management objectives can differ from FMP objectives provided there is an annual agreement among the state and tribal comanagers; therefore, the exploitation rates used to report categorical status do not necessarily represent maximum allowable rates for these stocks.

b/ Preliminary. For Puget Sound and Washington Coast management units, the exploitation rate constraints reflect application of the 2002 PST Southern Coho Management Plan.

c/ Categories (Abundant, Moderate, Low) correspond to the general exploitation rate ranges depicted in paragraph 3(a) of the 2002 PST Southern Coho Management Plan. For Washington Coast stocks, categorical status is determined by the exploitation rate associated with meeting the escapement goal (or the lower end of the escapement goal range). This also becomes the maximum allowable rate unless the stock is in the “Low” status. In that case an ER of up to 20% is allowed.

Key considerations for Canadian fishery management for coho in 2017 are expected to include, (1) meeting domestic conservation obligations for Interior Fraser (including Thompson River) coho; (2) coho harvests by First Nations fisheries; (3) incidental impacts during commercial and First Nations fisheries directed at Chinook, sockeye, pink and chum salmon; and (4) the desire to provide increased opportunity for sport fisheries through mark-selective retention regulations. The Canadian fishery regimes affecting coho will be driven by Canadian domestic allowable impacts on the Thompson River component of the Interior Fraser management unit. With the exception of 2014, in recent years Canadian fisheries have been managed so as not to exceed a three percent maximum exploitation rate and are expected to do so again in 2017.

The projected status of Canadian coho management units in 2017 indicates continuing concerns for the condition of Interior Fraser coho. The Interior Fraser coho management unit remains in low status, constraining the total mortality fishery exploitation rate for 2017 Southern U.S. fisheries to a maximum of 10.0 percent.
6.0 CHINOOK SALMON MANAGEMENT

6.1 North of Cape Falcon
Abundance projections important to Chinook harvest management north of Cape Falcon in 2017 are:

- Columbia River hatchery tules. Combined production of Lower River Hatchery (LRH) and Spring Creek Hatchery (SCH) stocks returning to the Columbia River is predicted to be 250,800, which is slightly higher than the 2016 preseason expectation of 223,300. The 2017 LRH forecast abundance is 92,400, lower than the forecast of 133,700 in 2016. The 2017 SCH forecast abundance is 158,400, which is higher than last year’s forecast of 89,600.

6.1.1 Objectives
Key Chinook salmon management objectives shaping management measures north of Cape Falcon are:

- NMFS consultation standards and annual guidance for ESA-listed stocks as provided in Section 4.0 above. Relevant stocks for the area north of Cape Falcon include LCR natural tule Chinook, Columbia Lower River Wild (LRW) fall Chinook, SRW fall Chinook, and Puget Sound Chinook.

6.1.2 Achievement of Objectives
Fishery quotas under the adopted management measures are presented in Table 4. Stock-specific management criteria and their forecast values are provided in Table 5. Projected fishery landings, bycatch, and bycatch mortality estimates are summarized in Table 6. Table 7 provides a breakdown of impacts by fishery and area for LCR tule Chinook.

- LCR natural tule fall Chinook. The projected exploitation rate in the adopted management measures is 36.9 percent, below the 41.0 percent maximum for 2017. LCR natural tule fall Chinook will not constrain ocean fisheries north of Cape Falcon in 2017.

- LRW fall Chinook: The adopted management measures have a projected ocean escapement of 13,600 adults, which is more than enough to meet the ESA consultation standard of an adult spawning escapement of at least 5,700 in the North Fork Lewis River. LRW Chinook will not constrain ocean fisheries north of Cape Falcon in 2017.

- SRW fall Chinook. The adopted management measures have an ocean exploitation rate of 48.0 percent of the base period exploitation rate, which is less than the ESA consultation standard of no more than 70 percent of the 1988-1993 base period exploitation rate for all ocean fisheries. SRW Chinook will not constrain ocean fisheries north of Cape Falcon in 2017.

- Puget Sound Chinook: The State of Washington and the Puget Sound treaty tribes reached agreement on a package of fisheries to be modeled prior to the Council’s final adoption of the proposed action. The impacts of Council-area fisheries on Puget Sound stocks, combined with this package of inside fisheries, meet all the requirements for ESA-listed Puget Sound Chinook described in the March 3, 2017 letter from NMFS and the applicable Biological Opinion.

The adopted management measures for Council-area Chinook fisheries north of Cape Falcon satisfy NMFS ESA consultation standards and guidance, FMP conservation objectives, and all other objectives for relevant Chinook stocks (Table 5).
6.2 South of Cape Falcon

Status of Chinook stocks important to 2017 Chinook harvest management south of Cape Falcon are:

- **KRFC.** The forecast for this stock is 42,000 age-3, 10,600 age-4, and 1,700 age-5 fish. Last year’s preseason forecast was 93,400 age-3, 45,100 age-4, and 3,700 age-5 fish.
- **SRWC.** No abundance forecast is made for this stock. The geometric mean of the most recent three years of escapement is 2,521 fish which represents a decrease in this quantity relative to last year.
- **SRFC.** The SI forecast is 230,700, which is lower than last year’s preseason forecast of 299,600.

6.2.1 Objectives

Key Chinook salmon management objectives shaping management measures south of Cape Falcon are:

- A KRFC natural area spawner escapement of at least 11,379 adults, which is produced, in expectation, by a maximum exploitation rate of 8.1 percent (FMP control rule).
- NMFS consultation standards and annual guidance for ESA-listed stocks as provided in Section 4.0 above. Relevant stocks for the area south of Cape Falcon include SRWC, California coastal Chinook, SRW fall Chinook, and LCR natural tule Chinook.

In 2017, invoking *de minimis* fishing rates that were adopted under FMP Amendment 16 will be necessary because KRFC potential spawner abundance is projected to be less than 54,267 natural-area adults, the abundance at which the harvest control rule allows for a projected natural-area adult escapement of less than SMSY. The FMP includes the following guidance with regard to *de minimis* exploitation rates: “When recommending an allowable *de minimis* exploitation rate in a given year, the Council shall also consider the following circumstances:

- The potential for critically low natural spawner abundance, including considerations for substocks that may fall below crucial genetic thresholds;
- Spawner abundance levels in recent years;
- The status of co-mingled stocks;
- Indicators of marine and freshwater environmental conditions;
- Minimal needs for tribal fisheries;
- Whether the stock is currently in an approaching overfished condition;
- Whether the stock is currently overfished;
- Other considerations as appropriate”.

At the March 2017 PFMC meeting, each of the circumstances above were discussed by the Council and its advisors during the development of the three Alternatives for south of Cape Falcon fisheries (except tribal needs which were not determined). The risk for substocks to fall below crucial genetic thresholds in 2017 was expected to be substantial (> 80 percent) under either a no-fishing scenario or fishing at the *de minimis* level. In 2016, although forecasted to be much higher, the actual KRFC spawner escapement was well below the SMSY and minimum stock size threshold specified in the FMP. Regarding the status of co-mingled stocks, the STT reported that the primary stocks that co-mingle with KRFC have relatively low forecast abundance for 2017. NMFS’ Northwest and Southwest Fisheries Science Centers presented information indicating that the broods that will contribute to 2017 harvest and escapement encountered poor ocean conditions in the California Current Ecosystem. KRFC meet the FMP criteria for approaching an overfished condition in Preseason Report I (PFMC 2017b), although NMFS has not yet made a formal determination. Finally, KRFC are not considered to be overfished at this time.
At the April 2017 PFMC meeting, these concerns were again discussed by the Council. It was agreed that the KRFC harvest control rule was being implemented as intended, which has led to the highly limited seasons south of Cape Falcon that employ restrictive time/area closures. These include closures of both the commercial and recreational salmon fisheries in the Oregon and California portions of the KMZ and the commercial fishery off central Oregon south of Florence South Jetty. Commercial and recreational fishing opportunity is limited in the Fort Bragg area to times when catch and effort are typically low, and commercial fisheries south of Point Arena are limited in scope as well.

6.2.2 Achievement of Objectives

Fishery quotas under the adopted management measures are presented in Table 4. Stock-specific management criteria and their forecast values under the adopted management measures are provided in Table 5. Projected fishery landings, bycatch, and bycatch mortality estimates are summarized in Table 6. Table 7 provides a breakdown of impacts by fishery and area for LCR tule Chinook. Descriptions pertaining to the achievement of key objectives for Chinook salmon management south of Cape Falcon are found below.

- **KRFC.** The control rule-defined minimum of 11,379 natural area adult spawners is met by the adopted management measures.
- **SRWC.** The ESA consultation standard that (1) limits the age-3 impact rate in 2017 fisheries south of Point Arena to a maximum of 15.8 percent and (2) specifies time/area closures and minimum size limit constraints south of Point Arena, is met by the adopted management measures.
- **SRFC.** The control rule-defined minimum of 122,000 hatchery and natural area adult spawners is met by the adopted management measures.
- **California coastal Chinook.** The ESA consultation standard that limits the forecast KRFC age-4 ocean harvest rate to a maximum of 16.0 percent is met by the adopted management measures.
- **LCR natural tule fall Chinook.** The 2017 maximum exploitation rate of 41.0 percent is met by the adopted management measures.
- **SRW fall Chinook.** SRW Chinook will not constrain ocean fisheries south of Cape Falcon in 2017.

The adopted management measures for Chinook fisheries south of Cape Falcon satisfy NMFS ESA consultation standards and guidance, FMP conservation objectives, and all other objectives for relevant Chinook stocks (Table 5).
7.0 COHO SALMON MANAGEMENT

Abundance projections relevant to coho harvest management in Council area fisheries are:

- **OPI Hatchery coho.** The 2017 forecast for hatchery coho from the Columbia River and the coast south of Cape Falcon of 394,300 is lower than the 2016 forecast of 396,500. The Columbia River early coho forecast is 231,700 compared to the 2016 forecast of 153,700 and the Columbia River late coho forecast is 154,600, compared to the 2016 forecast of 226,900.

- **OCN coho.** The 2017 OCN forecast is 101,900 compared to the 2016 forecast of 152,700.

- **LCN coho.** The 2017 LCN forecast is 30,100 compared to the 2016 forecast of 40,000.

- **Washington coastal coho.** Queets wild coho are forecast to be in the low abundance category under the PST in 2017 and will constrain ocean fisheries.

- **Puget Sound coho.** Among Puget Sound natural stocks, Skagit and Stillaguamish are in the critical category in 2017 under the FMP (low category under the PST).

- **Interior Fraser (Thompson River) coho.** This Canadian stock continues to be depressed, but is unlikely to constrain 2017 ocean coho fisheries north of Cape Falcon.

7.1 Objectives

Key coho management objectives shaping management measures in 2017 Council area fisheries are:

- NMFS consultation standards and annual guidance for ESA-listed stocks are provided in Section 4.0. Relevant stocks include Central California Coast coho (south of the Oregon/California border), Southern Oregon/Northern California Coastal (SONCC) coho, OCN coho, and LCN coho. Based on this guidance, the maximum allowable exploitation rates for 2017 are: a combined marine/freshwater exploitation rate not to exceed 30.0 percent for OCN coho, a combined exploitation rate in marine-area and mainstem Columbia River fisheries not to exceed 18.0 percent for LCN coho, and a marine exploitation rate not to exceed 13.0 percent for Rogue/Klamath (RK) hatchery coho, used as a surrogate for the SONCC coho ESU. Furthermore, coho retention is prohibited in all California ocean fisheries.

- FMP conservation objectives and obligations under Section 5.2. of the PST Southern Coho Management Plan for stocks originating along the Washington coast, Puget Sound, and British Columbia. In 2017, Queets wild coho is the key management stock for ocean fisheries north of Cape Falcon. Tribal and WDFW comanagers agreed to a 2017 escapement objective of 5,130 Queets wild coho as allowed under section 3.2 of the FMP, which resulted in an exploitation rate of 22 percent. The 2017 allowable exploitation rate for wild Queets coho under the PST Southern Coho Management Plan is 20 percent. The PSC southern panel was consulted and agreed to allow for a 22 percent exploitation rate in 2017.

7.2 Achievement of Objectives

Fishery quotas under the adopted management measures are presented in Table 4. Stock-specific management criteria and their forecast values are provided in Table 5. Projected fishery landings, bycatch, and bycatch mortality are summarized in Table 6. Table 7 provides a breakdown of impacts by fishery and area for LCN, OCN, and RK coho. Table 8 provides expected coho mark rates for west coast fisheries by month.
• **LCN coho.** The adopted management measures satisfy the maximum 18.0 percent exploitation rate for combined marine and mainstem Columbia River fisheries, with a marine exploitation rate of 7.9 percent and a mainstem Columbia River exploitation rate of 3.5 percent.

• **OCN coho.** The adopted management measures satisfy the maximum 30.0 percent exploitation rate for combined marine and freshwater fisheries, with a marine exploitation rate of 8.0 percent and a freshwater exploitation rate of 1.4 percent.

• **Washington coastal wild coho.** The adopted management measures provide ocean escapement numbers of 47,900, 5,800, 5,700, and 15,300 for Grays Harbor, Queets, Hoh, and Quillayute natural coho respectively. These ocean escapement levels meet FMP management objectives for Grays Harbor, Hoh, and Quillayute, or objectives agreed to by WDFW and the treaty tribes for Queets.

• **Interior Fraser coho.** The Southern U.S. exploitation rates in the adopted management measures total 7.6 percent, which complies with the 10.0 percent maximum required by the PST Southern Coho Management Plan.

As noted above, the projected escapement of Queets wild coho is below the FMP escapement objective. Thus, the adopted management measures do not meet the FMP management objective. In addition, the forecast abundance for Queets wild coho places it in the low abundance category under the PST, which places a maximum allowable exploitation rate of 20% on this management unit. However, the FMP allows co-managers to agree to manage for a lower objective under unusual circumstances. This year the co-managers agreed to manage for a spawning escapement of 5,130. This results in a total exploitation rate of 22 percent, which exceeds the allowable rate for management units in the low abundance category under the PST. The Pacific Salmon Commission’s Southern Panel concurred with an exception to this limit under Chapter 5, Paragraph 11(c) of the PST. The result is that proposed action is in compliance with provisions of both the FMP and the PST.

The adopted management measures for coho fisheries satisfy NMFS ESA consultation standards and guidance, FMP objectives (including those temporarily modified for 2017 by emergency rule), and all other objectives for relevant coho stocks other than and including those listed in Table 5.

8.0 PINK SALMON MANAGEMENT

Pink salmon are sufficiently abundant to merit management consideration in 2017. Impacts on Chinook and coho in pink-directed fisheries were part of negotiations to reach a final agreement in North of Cape Falcon ocean and Puget Sound fisheries.

9.0 IMPORTANT FEATURES OF THE ADOPTED MANAGEMENT MEASURES

Significant changes from recent seasons are highlighted below, but this section is not intended to be a comprehensive description of the adopted management measures. For detailed information on the adopted ocean salmon seasons see Table 1 (non-Indian commercial), Table 2 (recreational), and Table 3 (treaty Indian).

Adopted management measures in the area north of Cape Falcon address expected low natural coho returns to the Queets and some Puget Sound rivers. The 2017 Chinook TAC is increased relative to 2016 due to a higher abundance of Columbia River Spring Creek Hatchery fall Chinook and lower expected impacts in northern fisheries. Coho fisheries are limited to minimize impacts on stocks of concern.

Fisheries south of Cape Falcon are primarily constrained by KRFC, where an extremely low abundance forecast results in a maximum allowable exploitation rate of 8.1 percent per *de minimis* fishing criteria in...
the FMP. Fisheries south of Point Arena, and particularly south of Pigeon Point, are also constrained due to conservation concerns for ESA-listed SRWC. In response to these concerns, CDFW recommended additional time/area closures beyond what is required by the ESA consultation standard for SRWC (see agenda item E.3.a, Supplemental CDFW Report, March 2017 PFMC meeting).

9.1 Commercial

North of Cape Falcon, sixty percent of the non-Indian troll Chinook quota is assigned to the May-June fishery, which opens seven days per week May 1 through June 30. A landing and possession limit of 60 Chinook per vessel per calendar week (Monday through Sunday) in the area between the U.S./Canada border and the Queets River is in effect; no coho retention is allowed. Chinook sub-quotas were applied to the area between the U.S./Canada border and the Queets River and to the area between Leadbetter Point and Cape Falcon during the spring fishery. The summer fishery in the area north of Cape Falcon opens for all salmon July 1 through 4, then five days per week July 7 through September 19. Landing and possession limits of 60 Chinook and 10 coho per vessel per open period in the area between the U.S./Canada border and the Queets River or 75 Chinook and 10 coho per vessel per open period in the area between the Queets River and Cape Falcon are in effect. A Chinook sub-quota was applied to the area between the U.S./Canada border and the Queets River during the summer fishery.

For the northern Oregon coast between Cape Falcon and Florence South Jetty, Chinook fisheries opened on April 15 and will run continuously through May. The fishery will be open most of June and July, and the entire months of September and October. Weekly landing and possession limits will be in place for September and October. The September and October fishery will be restricted to inside the 40 fathom regulatory line.

Commercial fisheries from Florence South Jetty, Oregon, to Horse Mountain, California, will be closed in 2017. This includes the central Oregon management area, and both the Oregon and California portions of the KMZ.

Fishing opportunity in the Fort Bragg area will be limited to a 3,000 Chinook quota in September. This quota fishery will be open Friday through Tuesday with open period landing and possession limits in place.

The San Francisco area will be open for most of August and all of September. The Monday through Friday fall area target zone fishery between Point Reyes and Point San Pedro will occur during the first half of October.

Fisheries south of Pigeon Point will open on May 1 and run continuously until June 30.

9.2 Recreational

The recreational fishery north of Cape Falcon opens for all salmon on June 24 in most areas (July 1 in the area between the Queets River and Leadbetter Point) through September 4 or when Chinook or coho quotas are attained. The recreational Chinook quota of 45,000 is increased compared to 35,000 Chinook in 2016. The recreational quota of 42,000 coho is an increase over the 2016 quota of 18,900, and coho retention is allowed in all areas north of Cape Falcon in 2017.

For the north and central Oregon coast south of Cape Falcon, the Chinook fishery opened March 15 and will run uninterrupted through October. Coho fisheries consist of a mark-selective coho quota fishery beginning in late June for the area from Cape Falcon to Humbug Mountain and a non-mark-selective coho quota fishery beginning on September 2 in the same area.

Fisheries in both the Oregon and California portions of the KMZ will be closed in 2017.
For all areas south of the KMZ, the season began on April 1. Minimum size limits range from 20 to 24 inches, with higher size limits in the south to protect SRWC, which tend to be smaller compared to other Chinook stocks.

The Fort Bragg area will be open for the months of April and May, and then will close for much of the summer. The fishery will reopen on August 15 and run until November 12.

In the San Francisco area, the fishery will be open through the end of October, with a two week closure during the first half of May.

The Monterey north area will remain open uninterrupted through July 15, while the area south of Point Sur will close on May 31.

9.3 Treaty Indian
The adopted management measures for Chinook fisheries are generally similar in structure to recent years, and coho retention is allowed in the summer season. The Treaty Indian troll fishery opens on May 1 with a Chinook only fishery and runs through June 30 with a 20,000 sub-quota. The summer fishery opens on July 1 and runs through September 15 with a sub-quota of 20,000 Chinook and 12,500 coho. The Treaty Indian fishery management areas are located between the U.S./Canada border and Pt. Chehalis, Washington (Table 3, C.1).

10.0 SOCIOECONOMIC IMPACTS OF THE ADOPTED MANAGEMENT MEASURES
10.1 Economic Impacts
The short-term economic effects of the Council-adopted management measures for non-Indian fisheries are shown in Tables 9 and 10. Table 9 shows projected commercial troll impacts by catch area expressed in terms of estimated potential exvessel value. Table 10 shows projected recreational fisheries impacts by management area in terms of the number of projected angler-trips and community personal income impacts generated by those activities. Note that exvessel revenue values shown for the commercial troll fishery in Table 9 and income impact values shown for the recreational fishery in Table 10 are not directly comparable. More directly comparable measures of short-term economic impacts from commercial and recreational salmon fisheries appear in Figures 3 and 4, which show estimated community income impacts under the Council-adopted commercial troll and recreational fishery management measures, respectively, compared to historic levels in real (inflation-adjusted) dollars. Income impacts indicate the amount of income generated by the economic linkages associated with commercial and recreational fishing. While reductions in income impacts associated with an activity may not necessarily reflect net losses, they are likely to indicate losses to businesses and individuals in a community that depends on that activity for livelihood.

Note that the management areas listed in Tables 9 and 10 and Figures 3 and 4 differ slightly from the areas shown in Tables 9 and 10 and Figures 1 and 2 of this year’s Preseason Report II and the regulatory documents for prior years’ ocean salmon fisheries. Specifically, the KMZ region “Humbug Mt. to Horse Mt.” has been split into an Oregon KMZ portion (Humbug Mt. to the OR/CA Border) and a California KMZ portion (OR/CA Border to Horse Mt.); and the region South of Pt. Arena has been split into “Pt. Arena to Pigeon Pt.” (mirroring the San Francisco ocean management area) and “South of Pigeon Pt.” (mirroring the Monterey ocean management area). While this change tends to make certain kinds of comparisons between historic values and values projected under the Preseason II Alternatives somewhat less straightforward, it was done to highlight the economic effects of differential salmon fishery
management measures between the regions. It is anticipated that these new, less highly aggregated regions will be used to display and compare economic impacts in future years’ salmon fishery regulatory documents.

Total economic effects may vary from what is indicated by the short-term impacts from ocean fisheries activities reported in Tables 9 and 10 and Figures 3 and 4. Salmon that remain unharvested in the ocean do not necessarily represent an economic loss, as they may augment inside harvests or provide additional spawning escapement that contribute to ocean abundance in subsequent years. Restricting ocean harvests may increase opportunities for inside harvesters (e.g., higher commercial revenue or more angler trips) or contribute to higher inside catch per unit effort (CPUE) representing lower costs for commercial harvesters and/or higher success rates for recreational fishers. Salmon that remain unharvested by both ocean fisheries and inside fisheries may impact future production, although the magnitude of this effect varies depending on the biology of the affected stocks, habitat, and environmental factors.

Exvessel revenues in Table 9 are based on estimated harvest by catch area while commercial income impacts in Figure 1 are based on projected deliveries by landing area. Historically there has been a divergence between these two measures. The difference is due to salmon caught in certain catch areas being delivered to ports in neighboring catch areas. This pattern is particularly true for areas between Humbug Mountain in Oregon and Point Arena in California. In an attempt to account for this effect and assign income impacts to the “correct” landing area, adjustments are made based on historical patterns. The patterns are typically inferred from the most recent year’s catch and landings data. For example, in 2016 there were deliveries of salmon caught between Cape Falcon and Humbug Mountain to landing ports in the Oregon KMZ region; and deliveries of salmon caught south of Horse Mountain to landing ports in the California KMZ region. There were also transfers of harvest between other catch areas and landing ports, but these were relatively small by comparison.

The expected harvest levels used to model commercial fishery impacts are taken from Table 6. Estimated harvests include relatively small amounts occurring in state waters only (SWO) fisheries off central and southern Oregon. These total harvest estimates combined with the prior year’s average Chinook weights per fish and exvessel prices per pound were assumed to be the best indicators of expected revenues in the coming season. Coastwide average Chinook weight per fish in 2016, although slightly higher than the prior year, was relatively low compared with recent history; however coastwide average Chinook exvessel prices in 2016 were the highest in inflation-adjusted terms since 1977. If this year’s actual average weight per fish or exvessel prices diverge significantly from what was observed in 2016, then salmon exvessel revenues and resulting commercial fisheries income impacts projected in this document may prove to be correspondingly biased. Unless otherwise noted, the economic effects of the commercial and recreational fisheries summarized below are compared in terms of estimated community income impacts.

Fishing effort estimates for the recreational fishery south of Cape Falcon are based on measures developed by the STT for modeling biological impacts. STT estimates for south of Cape Falcon use multi-year averages to predict effort for the coming year. Consequently, if the multi-year average for a particular time period and area happens to be higher than last year’s effort level, then the model may forecast an increase in effort for the coming year even though management measures may actually be relatively more constraining, or vice-versa. Estimated effort includes relatively small amounts occurring in SWO fisheries off central and southern Oregon.

Recreational fishery effort north of Cape Falcon was estimated using historical CPUE estimates (“success rates”) applied to salmon quotas and expected harvest levels. Coho quotas north of Cape Falcon for the summer mark-selective coho fishery increased compared to 2016, but remain below the recent average. Quotas for Chinook, while still restrictive compared with the recent past, also increased from last year.
Projections of recreational catch north of Cape Falcon were made by applying the historic ratios of recorded catch to the actual quotas multiplied by the proposed quotas for the two species. Effort and economic impacts were then estimated by applying recent year weighted average coho and Chinook angler success rates to the north of Cape Falcon coho and Chinook catch projections.

10.2 Community Impacts

Projected income impacts under the Proposed Action in coastal communities adjacent to commercial and recreational salmon fisheries’ management areas are shown in Figure 3 and Figure 4, and comparisons of impacts under the Proposed Action with impacts under the other Alternatives are summarized in Table 11. Projected coastwide income impacts from commercial salmon landings and processing under the Proposed Action are within the range analyzed under the Alternatives, and overall are about 9 percent higher than estimated total coastwide commercial fisheries income impacts last year (Table 11). Regionally the picture is mixed, with commercial fisheries income impacts under the Proposed Action projected to be below last year’s levels and the 2012-2016 inflation-adjusted averages in all management areas except north of Cape Falcon and south of Pigeon Point. In those two areas, commercial fisheries income impacts under the Proposed Action are projected to be above their 2016 levels (Figure 3). In the Oregon KMZ, California KMZ and the area from Horse Mountain to Point Arena, income impacts from commercial fisheries are projected to be potentially the lowest since 2010.¹

Projected income impacts from expenditures by recreational salmon anglers under the Proposed Action are within the range analyzed under the Alternatives, and overall are about 58 percent above the estimated total coastwide recreational fisheries income impact from last year (Table 11). This coastwide result obscures some regional variation, with recreational fisheries income impacts projected to be lower under the Proposed Action than last year’s levels in the area from Horse Mountain to Point Arena, and zero in the California KMZ, but higher than last year’s estimated values in all other management areas. Compared with the 2012-2016 inflation-adjusted average, recreational fisheries income impacts are projected to be at least somewhat lower under the Proposed Action in every management area except the areas from Point Arena to Pigeon Point (SF) and South of Pigeon Point (MO) (Figure 4).

10.3 Social Impacts

The effect of the Proposed Action on other indicators of community social welfare (e.g., poverty, divorce rates, graduation/dropout rates, incidents of domestic violence, etc.) cannot be directly measured. Change in personal income in communities may be used as a rough proxy for other socioeconomic effects to the degree change in these indicators correlates with potential change in income. However, changes in the broader regional economy (“cumulative effects”) and long-term trends in fishery-related employment are more likely to drive these indicators of social wellbeing than the short-term economic effects of the Proposed Action.

To the extent practicable, social impacts were considered when non-tribal commercial and recreational salmon seasons were shaped. To minimize regulatory complexity in recreational fisheries, season dates and regulations were kept as consistent as possible within major management areas. Minimum size limits either remain consistent throughout the season or decrease during the season, which, in addition to biological benefits, tend to increase regulatory compliance. Efforts were made to accommodate important cultural events such as the Independence Day and Labor Day holidays as well as traditional fishing derby events. Commercial fisheries often include vessel limits per trip or per open period in an effort to stretch

¹ Projected income impacts in the Oregon KMZ are from assumed Oregon state-waters-only fisheries, while income impacts in the California KMZ derive from deliveries of salmon caught in the areas further south to ports in the California KMZ region.
quota attainment over a greater period of time. Doing so can provide greater access for smaller vessels, increase safety at sea by making it easier to avoid inclement weather, improve marketing opportunities, and extend the period during which consumers have access to fresh, wild caught salmon. Notification mechanisms by phone or email allow commercial vessels greater flexibility in choosing a port of landing to take advantage of better markets or to access better infrastructure.

Salmon are an important part of tribal culture and have been since time immemorial. Salmon provide economic, cultural, ceremonial, and subsistence benefits to west coast tribal communities. Under the Proposed Action, based on the adopted Chinook and coho quotas, Washington coastal treaty tribes are projected to have greater ocean salmon fishery opportunities compared with 2016 (Table 6). The Klamath River tribal share under the Proposed Action is 814 adult KRFC, a substantial decrease from the 2016 allocation of 7,404, primarily due to the lower expected abundance of KRFC in 2017.

11.0 ENVIRONMENTAL EFFECTS OF THE PROPOSED ACTION

The Proposed Action, adoption of the 2017 ocean salmon regulations, was assessed relative to the environmental components and criteria established in Preseason Report II (Part 2 of this EA). The impacts of the Proposed Action on most target stocks and ESA-listed salmon fall within the range of impacts analyzed for the Alternatives in Preseason Report II. For stocks where the impacts of the Proposed Action fall outside the range of impacts under the Alternatives in Preseason Report II (Skagit coho, Snohomish coho, and Hood Canal coho), such impacts differ only in small amounts from those of the Alternatives and result from shaping fisheries within Puget Sound, and are within the impact limitations of the FMP, ESA consultation standards, and PST (Table 11). Economic impacts of the Proposed Action fall within the range of impacts projected for the Alternatives in Preseason Report II as summarized in Table 11.

Under No Action, the seasons would be the same as in 2016. The No Action Alternative would result in several stocks not meeting conservation objectives, and thus would not meet the purpose and need of the Proposed Action. Although not true for all regions, relative to No Action (as represented by the 2016 values) the Proposed Action would provide greater coastwide income impacts from recreational fishing and also greater coastwide income impacts from commercial fishing (Table 11).

As stated in Preseason Report II, it was not possible to discern differences in the effects of the Alternatives or Proposed Action on other components of the environment (non-target fish species, marine mammals, other ESA-listed species, sea birds, biodiversity and ecosystem function, and public health and safety), and the effects were not expected to be significant.
A. SEASON DESCRIPTIONS

North of Cape Falcon

Supplemental Management Information

1. Overall non-Indian TAC: 90,000 Chinook and 47,600 coho marked with a healed adipose fin clip (marked).
2. Non-Indian commercial troll TAC: 45,000 Chinook and 5,600 marked coho.
3. Trade: May be considered during the April council meeting.
4. Overall Chinook and/or coho TACs may need to be reduced or fisheries adjusted to meet NMFS ESA guidance, FMP requirements, upon conclusion of negotiations in the North of Falcon forum, or upon receipt of preseason catch and abundance expectations for Canadian and Alaskan fisheries.

Model #: Coho-1731, Chinook 2017

U.S./Canada Border to Cape Falcon

- May 1 through the earlier of June 30 or 27,000 Chinook, no more than 8,900 of which may be caught in the area between the U.S./Canada border and the Queets River and no more than 9,000 of which may be caught in the area between Leadbetter Pt. and Cape Falcon (C.8).

In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 60 Chinook per vessel per calendar week (Monday through Sunday) will be in place.

Seven days per week (C.1). All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B).

Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border and the Queets River, or approximately 75% of the Chinook subarea guideline has been landed in the area between Leadbetter Pt. and Cape Falcon, inseason action will be considered to ensure the guideline is not exceeded. See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

U.S./Canada Border to Cape Falcon

- July 1-4, July 7-September 19 or 18,000 Chinook or 5,600 coho whichever comes first; no more than 7,200 Chinook may be caught in the area between the U.S./Canada border and the Queets River (C.8).

Open five days per week, Friday through Tuesday. In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 60 Chinook and 10 coho per vessel per open period will be in place (C.1, C.6). In the area from the Queets River to Cape Falcon, a landing and possession limit of 75 Chinook and 10 coho per vessel per open period will be in place (C.1, C.6).

Chinook minimum size limit of 28 inches total length. Coho minimum size limit of 16 inches total length (B, C.1). All coho must be marked with a healed adipose fin clip (C.8.c). No chum retention north of Cape Alava, Washington in August and September (C.4, C.7). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border to the Queets River, inseason action will be considered to ensure the guideline is not exceeded.

For all commercial troll fisheries north of Cape Falcon: Mandatory Yelloweye Rockfish Conservation Area, Cape Flattery and Columbia Control Zones, and beginning August 14, Grays Harbor Control Zone closed (C.5). Vessels must land and deliver their fish within 24 hours of any closure of this fishery. Vessels fishing or in possession of salmon while fishing north of Leadbetter Point must land and deliver their fish within the area and north of Leadbetter Point. Vessels fishing or in possession of salmon while fishing south of Leadbetter Point must land and deliver their fish within the area and south of Leadbetter Point, except that Oregon permitted vessels may also land their fish in Garibaldi, Oregon. Under state law, vessels must report their catch on a state fish receiving ticket. Oregon State regulations require all fishers landing salmon into Oregon from any fishery between Leadbetter Point, Washington and Cape Falcon, Oregon must notify ODFW within one hour of delivery or prior to transport away from the port of landing by either calling 541-867-0300 ext. 271 or sending notification via e-mail to nfalcon.trollreport@state.or.us. Notification shall include vessel name and number, number of salmon by species, port of landing and location of delivery, and estimated time of delivery. Inseason actions may modify harvest guidelines in later fisheries to achieve or prevent exceeding the overall allowable troll harvest impacts (C.8).
Table 1. 2017 Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted.

<table>
<thead>
<tr>
<th>Season Descriptions</th>
<th>South of Cape Falcon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplemental Management Information</td>
<td></td>
</tr>
<tr>
<td>1. Sacramento River fall Chinook spawning escapement of 133,242 hatchery and natural area adults.</td>
<td></td>
</tr>
<tr>
<td>2. Sacramento Index exploitation rate of 42.2%.</td>
<td></td>
</tr>
<tr>
<td>5. OR/CA share of Klamath River fall Chinook commercial ocean harvest: 59%/41%.</td>
<td></td>
</tr>
<tr>
<td>6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the California Fish and Game Commission.</td>
<td></td>
</tr>
</tbody>
</table>

Cape Falcon to Florence South Jetty
- April 15-May 31;
- June 7-12, June 15-30, July 8-31;
- September 1-30, October 1-31 (C.9.a).

Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B, C.1). All vessels fishing in the area must land their fish in the State of Oregon. See gear restrictions and definitions (C.2, C.3) and Oregon State regulations for a description of special regulations at the mouth of Tillamook Bay.

Beginning September 1 no more than 45 Chinook per vessel per landing week (Thurs.-Wed.); and only open shoreward of the 40 fathom regulatory line (C.5.f).

In 2018, the season will open March 15 for all salmon except coho. Chinook minimum size limit of 28 inches total length (B, C.1). Gear restrictions same as in 2017 (C.2, C.3, C.4, C.6, C.7, C.8). This opening could be modified following Council review at its March 2018 meeting.

Florence South Jetty to Humbug Mt.
- Closed (C.9a).

In 2018, the season will open March 15 for all salmon except coho. Chinook minimum size limit of 28 inches total length (B, C.1). Gear restrictions same as in 2017 (C.2, C.3, C.4, C.6, C.7, C.8). This opening could be modified following Council review at its March 2018 meeting.

Humbug Mt. to OR/CA Border (Oregon KMZ)
- Closed (C.9.a).

In 2018, the season will open March 15 for all salmon except coho. Chinook minimum size limit of 28 inches total length (B, C.1). Gear restrictions same as in 2017 (C.2, C.3, C.4, C.6, C.7, C.8). This opening could be modified following Council review at its March 2018 meeting.

OR/CA Border to Humboldt South Jetty (California KMZ)
- Closed (C.9.b).

Humboldt South Jetty to Horse Mt.
- Closed.

When the fishery is closed between the OR/CA border and Humbug Mountain and open to the south, vessels with fish on board caught in the open area off California may seek temporary mooring in Brookings, Oregon prior to landing in California only if such vessels first notify the Chetco River Coast Guard Station via VHF channel 22A between the hours of 0500 and 2200 and provide the vessel name, number of fish on board, and estimated time of arrival (C.6).
TABLE 1. Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted.

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North of Cape Falcon</td>
<td>28 (27)</td>
<td>21.5 (20.5)</td>
<td>-</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>28 (27)</td>
<td>21.5 (20.5)</td>
<td>-</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OR/CA Border to Humboldt S. Jetty</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>27</td>
<td>20.5</td>
<td>-</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. < Sept. 1</td>
<td>27</td>
<td>20.5</td>
<td>-</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. ≥ Sept. 1</td>
<td>26</td>
<td>19.5</td>
<td>-</td>
</tr>
<tr>
<td>Pigeon Pt. to U.S./Mexico Border</td>
<td>27</td>
<td>20.5</td>
<td>-</td>
</tr>
</tbody>
</table>

A. SEASON DESCRIPTIONS

Horse Mt. to Point Arena (Fort Bragg)
September 1 through the earlier of September 30, or a 3,000 Chinook quota (C.9.b).

Five days per week, Friday through Tuesday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). Landing and possession limit of 60 Chinook per vessel per open period (C.8.e). All fish caught in this area must be landed between the OR/CA border and Point Arena (C.6). All fish must be offloaded within 24 hours of any closure of the fishery and prior to fishing outside the area (C.1). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

In 2018, the season will open April 16-30 for all salmon except coho, with a 27 inch Chinook minimum size limit and the same gear restrictions as in 2017. All fish caught in the area must be landed in the area. This opening could be modified following Council review at its March 2018 meeting.

Point Arena to Pigeon Point (San Francisco)
August 1-29; September 1-30 (C.9.b).

Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length prior to September 1, 26 inches thereafter (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). In September, all fish must be landed south of Point Arena until the quota in the Fort Bragg fishery is met and the fishery has closed for 24 hours (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

Point Reyes to Point San Pedro (Fall Area Target Zone)
October 2-6 and 9-13.

Five days per week, Monday through Friday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 26 inches total length (B, C.1). All fish caught in this area must be landed between Point Arena and Pigeon Point (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

Pigeon Point to U.S./Mexico Border (Monterey)
May 1-31; June 1-30 (C.9.b).

Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state (California Fish and Game Code §8226).
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size or Other Special Restrictions: All salmon on board a vessel must meet the minimum size, landing/possession limit, or other special requirements for the area being fished and the area in which they are landed if the area is open or has been closed less than 48 hours for that species of salmon. Salmon may be landed in an area that has been closed for a species of salmon more than 48 hours only if they meet the minimum size, landing/possession limit, or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Any person who is required to report a salmon landing by applicable state law must include on the state landing receipt for that landing both the number and weight of salmon landed by species. States may require fish landing/receiving tickets be kept on board the vessel for 90 days or more after landing to account for all previous salmon landings.

C.2. Gear Restrictions:
 a. Salmon may be taken only by hook and line using single point, single shank, barbless hooks.
 b. Cape Falcon, Oregon, to the OR/CA border: No more than 4 spreads are allowed per line.
 c. OR/CA border to U.S./Mexico border: No more than 6 lines are allowed per vessel, and barbless circle hooks are required when fishing with bait by any means other than trolling.

C.3. Gear Definitions:
 a. Troll fishing gear defined: One or more lines that drag hooks behind a moving fishing vessel. In that portion of the fishery management area off Oregon and Washington, the line or lines must be affixed to the vessel and must not be intentionally disengaged from the vessel at any time during the fishing operation.
 b. Spread defined: A single leader connected to an individual lure and/or bait.
 c. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90º angle.

C.4. Vessel Operation in Closed Areas with Salmon on Board:
 a. Except as provided under C.4.b below, it is unlawful for a vessel to have troll or recreational gear in the water while in any area closed to fishing for a certain species of salmon, while possessing that species of salmon; however, fishing for species other than salmon is not prohibited if the area is open for such species, and no salmon are in possession.
 b. When Genetic Stock Identification (GSI) samples will be collected in an area closed to commercial salmon fishing, the scientific research permit holder shall notify NOAA OLE, USCG, CDFW, WDFW, ODFW and OSP at least 24 hours prior to sampling and provide the following information: the vessel name, date, location and time collection activities will be done. Any vessel collecting GSI samples in a closed area shall not possess any salmon other than those from which GSI samples are being collected. Salmon caught for collection of GSI samples must be immediately released in good condition after collection of samples.

C.5. Control Zone Definitions:
 a. Cape Flattery Control Zone - The area from Cape Flattery (48º23'00" N. lat.) to the northern boundary of the U.S. EEZ; and the area from Cape Flattery south to Cape Alava (48º10'00" N. lat.) and east of 125º05'00" W. long.
 b. Mandatory Yelloweye Rockfish Conservation Area – The area in Washington Marine Catch Area 3 from 48º00'00" N. lat.; 125º14'00" W. long. to 48º02'00" N. lat.; 125º14'00" W. long. to 48º02'00" N. lat.; 125º16.50' W. long. to 48º00'00" N. lat.; 125º15'00" W. long. and connecting back to 48º00'00" N. lat.; 125º14'00" W. long.
 c. Grays Harbor north jetty (46º 55'36" N. lat., 124º10'51" W. long.).
 d. Columbia Control Zone - An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy #4 (46º13'35" N. lat., 124º06'50" W. long.) and the green lighted Buoy #7 (46º15'09" N. lat., 124º06'16" W. long.); on the east, by the Buoy #10 line which bears north/south at 357º true from the south jetty at 46º14'00" N. lat., 124º03'07" W. long. to its intersection with the north jetty; on the north, by a line running northeast/southwest between the green lighted Buoy #7 to the tip of the north jetty; on the north, by a line running northeast/southwest between the red lighted Buoy #4 and tip of the south jetty (46º14'03" N. lat., 124º04'05" W. long.), and then along the south jetty to the point of intersection with the Buoy #10 line.
 e. Klamath Control Zone - The ocean area at the Klamath River mouth bounded on the north by 41º38'48" N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124º23'00" W. long. (approximately 12 nautical miles off shore); and on the south by 41º26'48" N. lat. (approximately 6 nautical miles south of the Klamath River mouth).

TABLE 1. 2017 Commercial troll management Alternatives for non-Indian ocean salmon fisheries - Council adopted.
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

f. Waypoints for the 40 fathom regulatory line from Cape Falcon to Humbug Mt. (50 CFR 660.71 (k) (12)-(70).

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°46.00' N. lat., 124°04.49' W. long.;</td>
<td>44°08.38’ N. lat., 124°16.79’ W. long.;</td>
</tr>
<tr>
<td>45°44.34’ N. lat., 124°05.09’ W. long.;</td>
<td>44°08.30’ N. lat., 124°16.75’ W. long.;</td>
</tr>
<tr>
<td>45°40.64’ N. lat., 124°04.90’ W. long.;</td>
<td>44°01.18’ N. lat., 124°15.42’ W. long.;</td>
</tr>
<tr>
<td>45°33.00’ N. lat., 124°04.46’ W. long.;</td>
<td>43°51.61’ N. lat., 124°14.68’ W. long.;</td>
</tr>
<tr>
<td>45°32.27’ N. lat., 124°04.74’ W. long.;</td>
<td>43°42.66’ N. lat., 124°15.46’ W. long.;</td>
</tr>
<tr>
<td>45°29.26’ N. lat., 124°04.22’ W. long.;</td>
<td>43°40.49’ N. lat., 124°15.74’ W. long.;</td>
</tr>
<tr>
<td>45°20.25’ N. lat., 124°04.67’ W. long.;</td>
<td>43°38.77’ N. lat., 124°15.64’ W. long.;</td>
</tr>
<tr>
<td>45°19.99’ N. lat., 124°04.62’ W. long.;</td>
<td>43°34.52’ N. lat., 124°16.73’ W. long.;</td>
</tr>
<tr>
<td>45°17.50’ N. lat., 124°04.91’ W. long.;</td>
<td>43°28.82’ N. lat., 124°19.52’ W. long.;</td>
</tr>
<tr>
<td>45°11.29’ N. lat., 124°05.20’ W. long.;</td>
<td>43°23.91’ N. lat., 124°24.28’ W. long.;</td>
</tr>
<tr>
<td>45°05.80’ N. lat., 124°05.40’ W. long.;</td>
<td>43°20.83’ N. lat., 124°26.63’ W. long.;</td>
</tr>
<tr>
<td>45°05.08’ N. lat., 124°05.93’ W. long.;</td>
<td>43°17.96’ N. lat., 124°28.81’ W. long.;</td>
</tr>
<tr>
<td>45°03.83’ N. lat., 124°06.47’ W. long.;</td>
<td>43°16.75’ N. lat., 124°28.42’ W. long.;</td>
</tr>
<tr>
<td>45°01.70’ N. lat., 124°06.53’ W. long.;</td>
<td>43°13.97’ N. lat., 124°31.99’ W. long.;</td>
</tr>
<tr>
<td>44°58.75’ N. lat., 124°07.14’ W. long.;</td>
<td>43°13.72’ N. lat., 124°33.25’ W. long.;</td>
</tr>
<tr>
<td>44°51.28’ N. lat., 124°10.21’ W. long.;</td>
<td>43°12.26’ N. lat., 124°34.16’ W. long.;</td>
</tr>
<tr>
<td>44°49.49’ N. lat., 124°10.90’ W. long.;</td>
<td>43°10.96’ N. lat., 124°32.33’ W. long.;</td>
</tr>
<tr>
<td>44°44.96’ N. lat., 124°14.39’ W. long.;</td>
<td>43°05.65’ N. lat., 124°31.52’ W. long.;</td>
</tr>
<tr>
<td>44°43.44’ N. lat., 124°14.78’ W. long.;</td>
<td>42°59.66’ N. lat., 124°32.58’ W. long.;</td>
</tr>
<tr>
<td>44°42.26’ N. lat., 124°13.81’ W. long.;</td>
<td>42°54.97’ N. lat., 124°36.99’ W. long.;</td>
</tr>
<tr>
<td>44°41.68’ N. lat., 124°15.38’ W. long.;</td>
<td>42°53.81’ N. lat., 124°38.57’ W. long.;</td>
</tr>
<tr>
<td>44°34.87’ N. lat., 124°15.80’ W. long.;</td>
<td>42°50.00’ N. lat., 124°39.68’ W. long.;</td>
</tr>
<tr>
<td>44°33.74’ N. lat., 124°14.44’ W. long.;</td>
<td>42°49.13’ N. lat., 124°39.70’ W. long.;</td>
</tr>
<tr>
<td>44°27.66’ N. lat., 124°16.99’ W. long.;</td>
<td>42°46.47’ N. lat., 124°38.89’ W. long.;</td>
</tr>
<tr>
<td>44°19.13’ N. lat., 124°19.22’ W. long.;</td>
<td>42°45.74’ N. lat., 124°38.86’ W. long.;</td>
</tr>
<tr>
<td>44°15.35’ N. lat., 124°17.38’ W. long.;</td>
<td>42°44.79’ N. lat., 124°37.96’ W. long.;</td>
</tr>
<tr>
<td>44°14.38’ N. lat., 124°17.78’ W. long.;</td>
<td>42°45.01’ N. lat., 124°36.39’ W. long.;</td>
</tr>
<tr>
<td>44°12.80’ N. lat., 124°17.18’ W. long.;</td>
<td>42°44.14’ N. lat., 124°35.17’ W. long.;</td>
</tr>
<tr>
<td>44°09.23’ N. lat., 124°15.96’ W. long.;</td>
<td>42°42.14’ N. lat., 124°32.82’ W. long.;</td>
</tr>
<tr>
<td>44°07.54’ N. lat., 124°15.50’ W. long.;</td>
<td>42°40.50’ N. lat., 124°31.98’ W. long.;</td>
</tr>
</tbody>
</table>

C.6. Notification When Unsafe Conditions Prevent Compliance with Regulations:

If prevented by unsafe weather conditions or mechanical problems from meeting special management area landing restrictions, vessels must notify the U.S. Coast Guard and receive acknowledgment of such notification prior to leaving the area. This notification shall include the name of the vessel, port where delivery will be made, approximate amount of salmon (by species) on board, the estimated time of arrival, and the specific reason the vessel is not able to meet special management area landing restrictions.

In addition to contacting the U.S. Coast Guard, vessels fishing south of the Oregon/California border must notify CDFW within one hour of leaving the management area by calling 800-889-8346 and providing the same information as reported to the U.S. Coast Guard. All salmon must be offloaded within 24 hours of reaching port.

C.7. Incidental Halibut Harvest:

During authorized periods, the operator of a vessel that has been issued an incidental halibut harvest license may retain Pacific halibut caught incidentally in Area 2A while trolling for salmon. Halibut retained must be no less than 32 inches in total length, measured from the tip of the lower jaw with the mouth closed to the extreme end of the middle of the tail, and must be landed with the head on. When halibut are caught and landed incidental to commercial salmon fishing by an IPHC license holder, any person who is required to report the salmon landing by applicable state law must include on the state landing receipt for that landing both the number of halibut landed, and the total dressed, head-on weight of halibut landed, in pounds, as well as the number and species of salmon landed.

License applications for incidental harvest must be obtained from the International Pacific Halibut Commission (phone: 206-634-1838). Applicants must apply prior to mid-March 2018 for 2018 permits (exact date to be set by the IPHC in early 2018). Incidental harvest is authorized only during April, May, and June of the 2017 troll seasons and after June 30 in 2017 if quota remains and if announced on the NMFS hotline (phone: 800-662-9825 or 206-526-6667). WDFW, ODFW, and CDFW will monitor landings. If the landings are projected to exceed the IPHC’s preseason allocation or the total Area 2A non-Indian commercial halibut allocation, NMFS will take inseason action to prohibit retention of halibut in the non-Indian salmon troll fishery.
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

May 1, 2017 through December 31, 2017, and April 1-30, 2018, license holders may land or possess no more than one Pacific halibut per each two Chinook, except one Pacific halibut may be possessed or landed without meeting the ratio requirement, and no more than 35 halibut may be possessed or landed per trip. Pacific halibut retained must be no less than 32 inches in total length (with head on).

Incidental Pacific halibut catch regulations in the commercial salmon troll fishery adopted for 2017, prior to any 2017 inseason action, will be in effect when incidental Pacific halibut retention opens on April 1, 2018 unless otherwise modified by inseason action at the March 2018 Council meeting.

a. "C-shaped" yelloweye rockfish conservation area is an area to be voluntarily avoided for salmon trolling. NMFS and the Council request salmon trollers voluntarily avoid this area in order to protect yelloweye rockfish. The area is defined in the Pacific Council Halibut Catch Sharing Plan in the North Coast subarea (Washington marine area 3), with the following coordinates in the order listed:

48°18' N. lat.; 125°18' W. long.;
48°18' N. lat.; 124°59' W. long.;
48°11' N. lat.; 124°59' W. long.;
48°11' N. lat.; 125°11' W. long.;
48°04' N. lat.; 125°11' W. long.;
48°04' N. lat.; 124°59' W. long.;
48°00' N. lat.; 124°59' W. long.;
48°00' N. lat.; 125°18' W. long.;
and connecting back to 48°18' N. lat.; 125°18' W. long.

C.8. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:

a. Chinook remaining from the May through June non-Indian commercial troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline if the transfer would not result in exceeding preseason impact expectations on any stocks.

b. NMFS may transfer fish between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the areas’ representatives on the Salmon Advisory Subpanel (SAS), and if the transfer would not result in exceeding preseason impact expectations on any stocks.

c. At the March 2018 meeting, the Council will consider inseason recommendations for special regulations for any experimental fisheries (proposals must meet Council protocol and be received in November 2017).

d. If retention of unmarked coho is permitted by inseason action, the allowable coho quota will be adjusted to ensure preseason projected impacts on all stocks is not exceeded.

e. Landing limits may be modified inseason to sustain season length and keep harvest within overall quotas.

C.9. State Waters Fisheries: Consistent with Council management objectives:

a. The State of Oregon may establish additional late-season fisheries in state waters.

b. The State of California may establish limited fisheries in selected state waters. Check state regulations for details.

C.10. KMZ Area described: For the purposes of California Fish and Game Code, Section 8232.5, the definition of the Klamath Management Zone (KMZ) for the ocean salmon season shall be that area from Humbug Mountain, Oregon, to Horse Mountain, California.
TABLE 2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted.

(Page 1 of 5)

A. SEASON DESCRIPTIONS

North of Cape Falcon

Supplemental Management Information

1. Overall non-Indian TAC: 90,000 Chinook and 47,600 coho marked with a healed adipose fin clip (marked).
2. Recreational TAC: 45,000 Chinook and 42,000 marked coho; all retained coho must be marked.
3. No Area 4B add-on fishery.
4. Buoy 10 fishery opens August 1 with an expected landed catch of 15,000 marked coho in August and September.
5. Overall Chinook and/or coho TACs may need to be reduced or fisheries adjusted to meet NMFS ESA guidance, FMP requirements, upon conclusion of negotiations in the North of Falcon forum, or upon receipt of preseason catch and abundance expectations for Canadian and Alaskan fisheries.

U.S./Canada Border to Cape Alava (Neah Bay Subarea)

- June 24 through earlier of September 4 or 4,370 marked coho subarea quota with a subarea guideline of 7,900 Chinook (C.5). Seven days per week. All salmon, except no chum beginning August 1; two fish per day. All coho must be marked with a healed adipose fin clip (C.1). Beginning August 1, Chinook non-retention east of the Bonilla-Tatoosh line (C.4.a) during Council managed ocean fishery. See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Cape Alava to Queets River (La Push Subarea)

- June 24 through earlier of September 4 or 1,080 marked coho subarea quota with a subarea guideline of 2,500 Chinook (C.5). Seven days per week. All salmon, two fish per day. All coho must be marked with a healed adipose fin clip. See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Queets River to Leadbetter Point (Westport Subarea)

- July 1 through earlier of September 4 or 15,540 marked coho subarea quota with a subarea guideline of 21,400 Chinook (C.5). Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook. All coho must be marked with a healed adipose fin clip (C.1). See gear restrictions and definitions (C.2, C.3). Grays Harbor Control Zone closed beginning August 14 (C.4.b). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Leadbetter Point to Cape Falcon (Columbia River Subarea)

- June 24 through earlier of September 4 or 21,000 marked coho subarea quota with a subarea guideline of 13,200 Chinook (C.5). Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook. All coho must be marked with a healed adipose fin clip (C.1). See gear restrictions and definitions (C.2, C.3). Columbia Control Zone closed (C.4.c). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).
TABLE 2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted.

A. SEASON DESCRIPTIONS

South of Cape Falcon

<table>
<thead>
<tr>
<th>Supplemental Management Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sacramento River fall Chinook spawning escapement of 133,242 hatchery and natural area adults.</td>
</tr>
<tr>
<td>2. Sacramento Index exploitation rate of 42.2%.</td>
</tr>
<tr>
<td>5. Overall recreational coho TAC: 18,000 coho marked with a healed adipose fin clip (marked), and 6,000 coho in the non-mark-selective coho fishery.</td>
</tr>
<tr>
<td>6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the CFGC.</td>
</tr>
</tbody>
</table>

Cape Falcon to Humbug Mt.

- March 15-October 31 (C.6), except as provided below during the all-salmon mark-selective and September non-mark-selective coho fisheries.

 - Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

 - Non-mark-selective coho fishery: September 2 through the earlier of September 30 or a landed catch of 6,000 coho (C.5). Seven days per week. All salmon, two fish per day (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 16 inches total length (B). See gear restrictions and definitions (C.2, C.3).

 The all salmon except coho season reopens the earlier of October 1 or attainment of the coho quota (C.5). During October the fishery is only open shoreward of the 40 fathom regulatory line (C.4.f).

In 2018, the season between Cape Falcon and Humbug Mountain will open March 15 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Fishing in the Stonewall Bank yelloweye rockfish conservation area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

Cape Falcon to Humbug Mt.

- All-salmon mark-selective coho fishery: June 24 through the earlier of July 31 or a landed catch of 18,000 marked coho (C.5).

 - Seven days per week. All salmon, two fish per day. All retained coho must be marked with a healed adipose fin clip (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 16 inches total length (B). See gear restrictions and definitions (C.2, C.3). Any remainder of the mark-selective quota may be transferred on an impact neutral basis to the September non-mark-selective quota from Cape Falcon to Humbug Mountain. The all salmon except coho season reopens the earlier of August 1 or attainment of the coho quota (C.5.e).

Fishing in the Stonewall Bank Yelloweye Rockfish Conservation Area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

Humbug Mt. to OR/CA Border (Oregon KMZ)

- Closed (C.6).

OR/CA Border to Horse Mt. (California KMZ)

- Closed (C.6).
TABLE 2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted. (Page 3 of 5)

A. SEASON DESCRIPTIONS

Horse Mt. to Point Arena (Fort Bragg)
- April 1-May 31;
- August 15-November 12 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Point Arena to Pigeon Point (San Francisco)
- April 1-30;
- May 15-October 31 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length through April 30, 20 inches thereafter (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Pigeon Point to Point Sur (Monterey North)
- April 1-July 15 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Point Sur to U.S./Mexico Border (Monterey South)
- April 1-May 31 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state. (California Code of Regulations Title 14 Section 1.73)

B. MINIMUM SIZE (Inches) (See C.1)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook</th>
<th>Coho</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>24</td>
<td>16</td>
<td>None</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>24</td>
<td>16</td>
<td>None</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. ≤ April 30</td>
<td>20</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. > April 30</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Pigeon Pt. to Pt. Sur</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Pt. Sur to U.S./Mexico Border</td>
<td>24</td>
<td>-</td>
<td>24</td>
</tr>
</tbody>
</table>
C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size and Other Special Restrictions: All salmon on board a vessel must meet the minimum size or other special requirements for the area being fished and the area in which they are landed if that area is open. Salmon may not be landed in an area that is closed only if they meet the minimum size or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Ocean Boat Limits: Off the coast of Washington, Oregon, and California, each fisher aboard a vessel may continue to use angling gear until the combined daily limits of Chinook and coho salmon for all licensed and juvenile anglers aboard have been attained (additional state restrictions may apply).

C.2. Gear Restrictions: Salmon may be taken only by hook and line using barbless hooks. All persons fishing for salmon, and all persons fishing from a boat with salmon on board, must meet the gear restrictions listed below for specific areas or seasons.

a. U.S./Canada Border to Pt. Conception, California: No more than one rod may be used per angler, and no more than two single point, single shank barbless hooks are required for all fishing gear. [Note: ODFW regulations in the state-water fishery off Tillamook Bay may allow the use of barbed hooks to be consistent with inside regulations.]

b. Horse Mt., California, to Pt. Conception, California: Single point, single shank, barbless circle hooks (see gear definitions below) are required when fishing with bait by any means other than trolling, and no more than two such hooks shall be used. When angling with two hooks, the distance between the hooks must not exceed five inches when measured from the top of the eye of the top hook to the inner base of the curve of the lower hook, and both hooks must be permanently tied in place (hard tied). Circle hooks are not required when artificial lures are used without bait.

c. Trolling defined: Angling from a boat or floating device that is making way by means of a source of power, other than drifting by means of the prevailing water current or weather conditions.

d. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90° angle.

C.3. Gear Definitions:

a. Recreational fishing gear defined: Off Oregon and Washington, angling tackle consists of a single line that must be attached to a rod and reel held by hand or closely attended; the rod and reel must be held by hand while playing a hooked fish. No person may use more than one rod and line while fishing off Oregon or Washington. Off California, the line must be attached to a rod and reel held by hand or closely attended; weights directly attached to a line may not exceed four pounds (1.8 kg). While fishing off California north of Pt. Conception, no person fishing for salmon, and no person fishing from a boat with salmon on board, may use more than one rod and line. Fishing includes any activity which can reasonably be expected to result in the catching, taking, or harvesting of fish.

b. Trolling defined: Angling from a boat or floating device that is making way by means of the prevailing water current or weather conditions.

c. Recreational fishing gear defined: Off Oregon and Washington, angling tackle consists of a single line that must be attached to a rod and reel held by hand or closely attended; the rod and reel must be held by hand while playing a hooked fish. No person may use more than one rod and line while fishing off Oregon or Washington. Off California, the line must be attached to a rod and reel held by hand or closely attended; weights directly attached to a line may not exceed four pounds (1.8 kg). While fishing off California north of Pt. Conception, no person fishing for salmon, and no person fishing from a boat with salmon on board, may use more than one rod and line. Fishing includes any activity which can reasonably be expected to result in the catching, taking, or harvesting of fish.

d. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90° angle.

C.4. Control Zone Definitions:

a. The Bonilla-Tatoosh Line: A line running from the western end of Cape Flattery to Tatoosh Island Lighthouse (48°23′30″ N. lat., 124°44′12″ W. long.) to the buoy adjacent to Duntze Rock (48°24′37″ N. lat., 124°44′37″ W. long.), then in a straight line to Bonilla Pt. (48°35′39″ N. lat., 124°42′58″ W. long.) on Vancouver Island, British Columbia;

b. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse (46°53′18″ N. lat., 124°07′01″ W. long.) to Buoy #2 (46°52′42″ N. lat., 124°12′42″ W. long.) to Buoy #3 (46°55′00″ N. lat., 124°14′48″ W. long.) to the Grays Harbor north jetty (46°55′36″ N. lat., 124°10′51″ W. long.);

c. Columbia Control Zone: An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy #4 (46°13′35″ N. lat., 124°06′50″ W. long.) and the green lighted Buoy #7 (46°15′09″ N. lat., 124°06′16″ W. long.); on the east, by the Buoy #10 line which bears north/south at 357° true from the south jetty at 46°14′00″ N. lat., 124°03′07″ W. long. to its intersection with the north jetty; on the north, by a line running northeast/southwest between the green lighted Buoy #7 to the tip of the north jetty (46°15′48″ N. lat., 124°05′20″ W. long.) and then along the north jetty to the point of intersection with the Buoy #10 line; and on the south, by a line running northeast/southwest between the red lighted Buoy #4 and tip of the south jetty (46°14′03″ N. lat., 124°04′05″ W. long.) and then along the south jetty to the point of intersection with the Buoy #10 line.

d. Stonewall Bank Yelloweye Rockfish Conservation Area: The area defined by the following coordinates in the order listed: 44°37′46″ N. lat.; 124°24′92″ W. long.; 44°37′46″ N. lat.; 124°23′63″ W. long.; 44°28′71″ N. lat.; 124°21′80″ W. long.; 44°28′71″ N. lat.; 124°24′10″ W. long.; 44°31′42″ N. lat.; 124°25′47″ W. long. and connecting back to 44°37′46″ N. lat.; 124°24′92″ W. long.

e. Klamath Control Zone: The ocean area at the Klamath River mouth bounded on the north by 41°38′48″ N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by 124°23′00″ W. long. (approximately 12 nautical miles off shore); and, on the south by 41°26′48″ N. lat. (approximately 6 nautical miles south of the Klamath River mouth).
f. Waypoints for the 40 fathom regulatory line from Cape Falcon to Humbug Mt. (50 CFR 660.71 (k) (12)-(70).

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°46.00′ N. lat., 124°04.49′ W. long.;</td>
<td>44°08.38′ N. lat., 124°16.79′ W. long.;</td>
</tr>
<tr>
<td>45°44.34′ N. lat., 124°05.09′ W. long.;</td>
<td>44°08.30′ N. lat., 124°16.75′ W. long.;</td>
</tr>
<tr>
<td>45°40.64′ N. lat., 124°04.90′ W. long.;</td>
<td>44°01.18′ N. lat., 124°15.42′ W. long.;</td>
</tr>
<tr>
<td>45°33.00′ N. lat., 124°04.46′ W. long.;</td>
<td>43°51.61′ N. lat., 124°14.68′ W. long.;</td>
</tr>
<tr>
<td>45°32.27′ N. lat., 124°04.74′ W. long.;</td>
<td>43°42.66′ N. lat., 124°15.46′ W. long.;</td>
</tr>
<tr>
<td>45°29.26′ N. lat., 124°04.22′ W. long.;</td>
<td>43°40.49′ N. lat., 124°15.74′ W. long.;</td>
</tr>
<tr>
<td>45°20.25′ N. lat., 124°04.67′ W. long.;</td>
<td>43°38.77′ N. lat., 124°15.64′ W. long.;</td>
</tr>
<tr>
<td>45°19.99′ N. lat., 124°04.62′ W. long.;</td>
<td>43°34.52′ N. lat., 124°16.73′ W. long.;</td>
</tr>
<tr>
<td>45°17.50′ N. lat., 124°04.91′ W. long.;</td>
<td>43°28.82′ N. lat., 124°19.52′ W. long.;</td>
</tr>
<tr>
<td>45°11.29′ N. lat., 124°05.20′ W. long.;</td>
<td>43°23.91′ N. lat., 124°24.28′ W. long.;</td>
</tr>
<tr>
<td>45°05.80′ N. lat., 124°05.40′ W. long.;</td>
<td>43°20.83′ N. lat., 124°26.63′ W. long.;</td>
</tr>
<tr>
<td>45°05.08′ N. lat., 124°05.93′ W. long.;</td>
<td>43°17.96′ N. lat., 124°28.81′ W. long.;</td>
</tr>
<tr>
<td>45°03.88′ N. lat., 124°06.47′ W. long.;</td>
<td>43°16.75′ N. lat., 124°28.42′ W. long.;</td>
</tr>
<tr>
<td>45°01.70′ N. lat., 124°06.53′ W. long.;</td>
<td>43°13.97′ N. lat., 124°31.92′ W. long.;</td>
</tr>
<tr>
<td>44°58.75′ N. lat., 124°07.14′ W. long.;</td>
<td>43°13.72′ N. lat., 124°33.25′ W. long.;</td>
</tr>
<tr>
<td>44°51.28′ N. lat., 124°10.21′ W. long.;</td>
<td>43°12.26′ N. lat., 124°34.16′ W. long.;</td>
</tr>
<tr>
<td>44°49.49′ N. lat., 124°10.90′ W. long.;</td>
<td>43°10.96′ N. lat., 124°32.33′ W. long.;</td>
</tr>
<tr>
<td>44°44.96′ N. lat., 124°14.39′ W. long.;</td>
<td>43°05.65′ N. lat., 124°31.52′ W. long.;</td>
</tr>
<tr>
<td>44°43.44′ N. lat., 124°14.78′ W. long.;</td>
<td>42°59.66′ N. lat., 124°32.58′ W. long.;</td>
</tr>
<tr>
<td>44°42.26′ N. lat., 124°13.81′ W. long.;</td>
<td>42°54.97′ N. lat., 124°36.99′ W. long.;</td>
</tr>
<tr>
<td>44°41.68′ N. lat., 124°15.38′ W. long.;</td>
<td>42°53.81′ N. lat., 124°38.57′ W. long.;</td>
</tr>
<tr>
<td>44°34.87′ N. lat., 124°15.80′ W. long.;</td>
<td>42°50.00′ N. lat., 124°39.68′ W. long.;</td>
</tr>
<tr>
<td>44°33.74′ N. lat., 124°14.44′ W. long.;</td>
<td>42°49.13′ N. lat., 124°39.70′ W. long.;</td>
</tr>
<tr>
<td>44°27.66′ N. lat., 124°16.99′ W. long.;</td>
<td>42°46.47′ N. lat., 124°38.89′ W. long.;</td>
</tr>
<tr>
<td>44°19.13′ N. lat., 124°19.22′ W. long.;</td>
<td>42°45.74′ N. lat., 124°38.86′ W. long.;</td>
</tr>
<tr>
<td>44°15.35′ N. lat., 124°17.38′ W. long.;</td>
<td>42°44.79′ N. lat., 124°37.96′ W. long.;</td>
</tr>
<tr>
<td>44°14.38′ N. lat., 124°17.78′ W. long.;</td>
<td>42°45.01′ N. lat., 124°36.39′ W. long.;</td>
</tr>
<tr>
<td>44°12.80′ N. lat., 124°17.18′ W. long.;</td>
<td>42°44.14′ N. lat., 124°35.17′ W. long.;</td>
</tr>
<tr>
<td>44°09.23′ N. lat., 124°15.96′ W. long.;</td>
<td>42°42.14′ N. lat., 124°32.82′ W. long.;</td>
</tr>
<tr>
<td>44°08.38′ N. lat., 124°16.79′ W. long.;</td>
<td>42°40.50′ N. lat., 124°31.98′ W. long.;</td>
</tr>
</tbody>
</table>

C.5. Inseason Management: Regulatory modifications may become necessary inseason to meet preseason management objectives such as quotas, harvest guidelines, and season duration. In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:

a. Actions could include modifications to bag limits, or days open to fishing, and extensions or reductions in areas open to fishing.

b. Coho may be transferred inseason among recreational subareas north of Cape Falcon to help meet the recreational season duration objectives (for each subarea) after conferring with representatives of the affected ports and the Council’s SAS recreational representatives north of Cape Falcon, and if the transfer would not result in exceeding preseason impact expectations on any stocks.

c. Chinook and coho may be transferred between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the representatives of the SAS, and if the transfer would not result in exceeding preseason impact expectations on any stocks.

d. Fishery managers may consider inseason action modifying regulations restricting retention of unmarked coho. To remain consistent with preseason expectations, any inseason action shall consider, if significant, the difference between observed and preseason forecasted mark rates. Such a consideration may also include a change in bag limit of two salmon, no more than one of which may be a coho.

e. Marked coho remaining from the Cape Falcon to Humbug Mt. recreational mark-selective coho quota may be transferred inseason to the Cape Falcon to Humbug Mt. non-mark-selective recreational fishery if the transfer would not result in exceeding preseason impact expectations on any stocks.

C.6. Additional Seasons in State Territorial Waters: Consistent with Council management objectives, the States of Washington, Oregon, and California may establish limited seasons in state waters. Check state regulations for details.
TABLE 3. 2017 Treaty Indian ocean troll management measures for ocean salmon fisheries - Council adopted. (Page 1 of 1)

A. SEASON DESCRIPTIONS

Supplemental Management Information

1. Overall Treaty-Indian TAC: 40,000 Chinook and 12,500 coho.

 - May 1 through the earlier of June 30 or 20,000 Chinook quota.
 All salmon except coho. If the Chinook quota for the May-June fishery is not fully utilized, the excess fish may be transferred into the later all-salmon season (C.5.a). If the Chinook quota is exceeded, the excess will be deducted from the later all-salmon season (C.5). See size limit (B) and other restrictions (C).

 - July 1 through the earlier of September 15, or 20,000 Chinook quota (C.5), or 12,500 coho quota.
 All Salmon. See size limit (B) and other restrictions (C).

B. MINIMUM SIZE (Inches)

<table>
<thead>
<tr>
<th>Area (when open)</th>
<th>Chinook Total Length</th>
<th>Head-off</th>
<th>Coho Total Length</th>
<th>Head-off</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>24.0 (61.0 cm)</td>
<td>18.0 (45.7 cm)</td>
<td>16.0 (40.6 cm)</td>
<td>12.0 (30.5 cm)</td>
<td>None</td>
</tr>
</tbody>
</table>

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Tribe and Area Boundaries. All boundaries may be changed to include such other areas as may hereafter be authorized by a Federal court for that tribe's treaty fishery.

 MAKAH - Washington State Statistical Area 4B and that portion of the FMA north of 48°02'15" N. lat. (Norwegian Memorial) and east of 125°44'00" W. long.
 QUILEUTE - That portion of the FMA between 48°10'00" N. lat. (Cape Alava.) and 47°31'42" N. lat. (Queets River) and east of 125°44'00" W. long.
 HOH - That portion of the FMA between 47°54'18" N. lat. (Quillayute River) and 47°21'00" N. lat. (Quinault River) and east of 125°44'00" W. long.
 QUINAULT - That portion of the FMA between 47°40'06" N. lat. (Destruction Island) and 46°53'18"N. lat. (Point Chehalis) and east of 125°08'30"W. long.

C.2. Gear restrictions
a. Single point, single shank, barbless hooks are required in all fisheries.
b. No more than eight fixed lines per boat.
c. No more than four hand held lines per person in the Makah area fishery (Washington State Statistical Area 4B and that portion of the FMA north of 48°02'15" N. lat. (Norwegian Memorial) and east of 125°44'00" W. long.)

C.3. Quotas
a. The quotas include troll catches by the S'Klallam and Makah tribes in Washington State Statistical Area 4B from May 1 through September 15.
b. The Quileute Tribe will continue a ceremonial and subsistence fishery during the time frame of September 15 through October 15 in the same manner as in 2004-2015. Fish taken during this fishery are to be counted against treaty troll quotas established for the 2017 season (estimated harvest during the September-October ceremonial and subsistence fishery: 20 Chinook; 40 coho).

C.4. Area Closures
a. The area within a six nautical mile radius of the mouths of the Queets River (47°31'42" N. lat.) and the Hoh River (47°45'12" N. lat.) will be closed to commercial fishing.
b. A closure within two nautical miles of the mouth of the Quinault River (47°21'00" N. lat.) may be enacted by the Quinault Nation and/or the State of Washington and will not adversely affect the Secretary of Commerce’s management regime.

C.5. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:
a. Chinook remaining from the May through June treaty-Indian ocean troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline on a fishery impact equivalent basis.
TABLE 4. Chinook and coho harvest quotas and guidelines for 2017 ocean salmon fishery management measures - Council adopted.

<table>
<thead>
<tr>
<th>Fishery or Quota Designation</th>
<th>Chinook</th>
<th>Coho</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian Ocean Troll[a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Except Coho)</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Species)</td>
<td>20,000</td>
<td>12,500</td>
</tr>
<tr>
<td>Subtotal Treaty Indian Ocean Troll</td>
<td>40,000</td>
<td>12,500</td>
</tr>
<tr>
<td>Non-Indian Commercial Troll[b]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Except Coho)</td>
<td>27,000</td>
<td>-</td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Falcon (All Species)</td>
<td>18,000</td>
<td>5,600</td>
</tr>
<tr>
<td>Subtotal Non-Indian Commercial Troll</td>
<td>45,000</td>
<td>5,600</td>
</tr>
<tr>
<td>Recreational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S./Canada Border to Cape Alava[b]</td>
<td>7,900</td>
<td>4,370</td>
</tr>
<tr>
<td>Cape Alava to Queets River[b]</td>
<td>2,500</td>
<td>1,090</td>
</tr>
<tr>
<td>Queets River to Leadbetter Pt.[b,c]</td>
<td>21,400</td>
<td>15,540</td>
</tr>
<tr>
<td>Leadbetter Pt. to Cape Falcon[b,c]</td>
<td>13,200</td>
<td>21,000</td>
</tr>
<tr>
<td>Subtotal Recreational</td>
<td>45,000</td>
<td>42,000</td>
</tr>
<tr>
<td>Total North of Cape Falcon</td>
<td>130,000</td>
<td>60,100</td>
</tr>
<tr>
<td>SOUTH OF CAPE FALCON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll[a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OR/CA Border to Humboldt South Jetty</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena</td>
<td>3,000</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal Troll</td>
<td>3,000</td>
<td>-</td>
</tr>
<tr>
<td>Recreational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to OR/CA Border</td>
<td>-</td>
<td>24,000</td>
</tr>
<tr>
<td>Total South of Cape Falcon</td>
<td>3,000</td>
<td>24,000</td>
</tr>
</tbody>
</table>

*a/ Quotas are non-mark selective for both Chinook and coho.

*b/ Quotas are non-mark-selective for Chinook and mark-selective for coho.

*c/ Does not include Buoy 10 fishery. Expected catch of 22,100 Chinook and 15,000 marked coho.

*d/ The quota consists of both mark-selective and non-mark-selective quotas of 18,000 and 6,000, respectively.
TABLE 5. Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean salmon fishery management measures - Council adopted.b (Page 1 of 4)

<table>
<thead>
<tr>
<th>Key Stock/Criteria</th>
<th>Spawning Objective or Other Comparative Standard as Notedb</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUGET SOUND:</td>
<td></td>
</tr>
<tr>
<td>Elwha Summer/Fall</td>
<td>6.30% ≤ 10.0% Southern U.S. Rebuilding Exploitation Rate (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>Dungeness Spring</td>
<td>6.00% ≤ 6.0% Southern U.S. CERC (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>Mid-Hood Canal Summer/Fall</td>
<td>11.1% ≤ 12.0% Preterminal Southern U.S. (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>Skokomish Summer/Fall</td>
<td>47.5% ≤ 50.0% Total Rebuilding Exploitation Rate (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>Nooksack Spring</td>
<td>32.0% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>Skagit Summer/Fall</td>
<td>36.3% ≤ 50.0% Total Rebuilding Exploitation Rate (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>Skagit Spring</td>
<td>59.0% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>Stillaguamish Summer/Fall</td>
<td>22.9% ≤ 38.0% Total Rebuilding Exploitation Rate (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>Snohomish Summer/Fall</td>
<td>57.0% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>Lake Washington Summer/Fall</td>
<td>11.9% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>Green River Summer/Fall</td>
<td>16.0% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>White River Spring</td>
<td>20.0% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>Puyallup Summer/Fall</td>
<td>47.0% ≤ 60.0% ISBM Index (PSC General Obligation) compliance assessed postseason</td>
</tr>
<tr>
<td>Nisqually River Summer/Fall</td>
<td>9.9% ≤ 12.0% Preterminal Southern U.S. CERC (NMFS ESA consultation standard)</td>
</tr>
<tr>
<td>WASHINGTON COAST:</td>
<td></td>
</tr>
<tr>
<td>Hoko Fall</td>
<td>1.2 ≤ 1.800 Natural spawning escapement (Low Abundance Threshold)</td>
</tr>
<tr>
<td>Quillayute Fall</td>
<td>113.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Hoh Fall</td>
<td>>1.2 ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Queets Fall</td>
<td>>2.5 ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Grays Harbor Fall</td>
<td>>13.5 ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
</tbody>
</table>
TABLE 5. Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean fishery management measures - Council adopted. [1](Page 2 of 4)

<table>
<thead>
<tr>
<th>Key Stock/Criteria</th>
<th>Spawner Objective or Other Comparative Standard as Noted b/</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMBIA RIVER:</td>
<td></td>
</tr>
<tr>
<td>Columbia Upriver Brights</td>
<td>275.1 74.0 Minimum ocean escapement to attain 40.0 adults over McNary Dam, with normal distribution and no mainstem harvest. 104.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Deschutes Upriver Brights</td>
<td>97.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Mid-Columbia Brights</td>
<td>48.3 14.9 Minimum ocean escapement to attain 7.9 for Little White Salmon egg-take, assuming average conversion and no mainstem harvest.</td>
</tr>
<tr>
<td>Columbia Lower River Hatchery Tules c/</td>
<td>98.8 25.0 Minimum ocean escapement to attain 14.8 adults for hatchery egg-take, with average conversion and no lower river mainstem or tributary harvest.</td>
</tr>
<tr>
<td>Columbia Lower River Natural Tules (threatened)</td>
<td>36.9% ≤ 41.0% Total adult equivalent fishery exploitation rate (2017 NMFS ESA guidance). Value depicted uses preliminary 2017 inriver harvest rates.</td>
</tr>
<tr>
<td>Columbia Lower River Wild c/ (threatened)</td>
<td>13.6 6.9 Minimum ocean escapement to attain MSY spawner goal of 5.7 for N. Lewis River fall Chinook (NMFS ESA consultation standard).</td>
</tr>
<tr>
<td>Spring Creek Hatchery Tules</td>
<td>164.4 8.2 Minimum ocean escapement to attain 6.0 adults for Spring Creek Hatchery egg-take, assuming average conversion and no mainstem harvest.</td>
</tr>
<tr>
<td>Snake River Fall (threatened) SRFI</td>
<td>48.0% ≤ 70.0% Of 1988-1993 base period exploitation rate for all ocean fisheries (NMFS ESA consultation standard).</td>
</tr>
<tr>
<td>Columbia Upriver Summers</td>
<td>64.8 29.0 Minimum ocean escapement to attain 12.1 adults over Rock Island Dam. 150.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>OREGON COAST:</td>
<td></td>
</tr>
<tr>
<td>Nehalem Fall</td>
<td>142.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Siletz Fall</td>
<td>158.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
<tr>
<td>Siuslaw Fall</td>
<td>138.0% ≤ 60.0% ISBM Index (PSC general obligation) not applicable because PSC escapement goal met</td>
</tr>
</tbody>
</table>
TABLE 5. Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean fishery management measures - Council adopted.\(a/\) (Page 3 of 4)

<table>
<thead>
<tr>
<th>Key Stock/Criteria</th>
<th>Spawner Objective or Other Comparative Standard as Noted(b/)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIFORNIA:</td>
<td></td>
</tr>
<tr>
<td>Klamath River Fall</td>
<td></td>
</tr>
<tr>
<td>Federally recognized tribal harvest</td>
<td>50.0% 2017 minimum natural area adult escapement (FMP control rule).</td>
</tr>
<tr>
<td>Exploitation (spawner reduction) rate</td>
<td>8.1% ≤ 8.1% FMP control rule.</td>
</tr>
<tr>
<td>Adult river mouth return</td>
<td>18.4 NA Total adults in thousands.</td>
</tr>
<tr>
<td>Age-4 ocean harvest rate</td>
<td>3.1% ≤ 16.0% NMFS ESA consultation standard for threatened California Coastal Chinook.</td>
</tr>
<tr>
<td>KMZ sport fishery share</td>
<td>15.3% NA Equals 0.1 (thousand) adult fish impacted in the KMZ sport fishery during fall (Sept-Dec) 2016.</td>
</tr>
<tr>
<td>River recreational fishery share</td>
<td>15.9% NA Equals 0.1 (thousand) adult fish for recreational inriver fisheries.</td>
</tr>
<tr>
<td>Sacramento River Winter (endangered)</td>
<td>12.2% ≤ 15.8% Age-3 ocean impact rate in fisheries south of Pt. Arena. In addition, the following season restrictions apply: Recreational: Pt. Arena to Pigeon Pt. between the first Saturday in April and the second Sunday in November; Pigeon Pt. to the U.S./Mexico border between the first Saturday in April and the first Sunday in October. Minimum size limit ≥ 20 inches total length. Commercial: Pt. Arena to the U.S./Mexico border between May 1 and September 30, except Pt. Reyes to Pt. San Pedro between October 1 and 15 (Monday-Friday). Minimum size limit ≥ 26 inches total length (NMFS 2017 ESA Guidance).</td>
</tr>
<tr>
<td>Sacramento River Fall</td>
<td>133.2 ≥ 122.0 2017 minimum hatchery and natural area adult escapement (FMP control rule).</td>
</tr>
<tr>
<td>Sacramento Index Exploitation Rate</td>
<td>42.2% ≤ 47.1% FMP control rule.</td>
</tr>
<tr>
<td>Ocean commercial impacts</td>
<td>50.4 Includes fall (Sept-Dec) 2016 impacts (8.6 thousand SRFC).</td>
</tr>
<tr>
<td>Ocean recreational impacts</td>
<td>25.4 Includes fall 2016 impacts (5.1 thousand SRFC).</td>
</tr>
<tr>
<td>River recreational impacts</td>
<td>21.7 NA Equals 22.3% of the total harvest.</td>
</tr>
<tr>
<td>Hatchery spawner goal</td>
<td>Met 22.0 Aggregate number of adults to achieve egg take goals at Coleman, Feather River, and Nimbus hatcheries.</td>
</tr>
</tbody>
</table>

Environmental Assessment Part 3 (Preseason Report III) 2017 Ocean Salmon Fisheries Management Measures (0648-BG59) April 2017
TABLE 5. Projected key stock escapements (thousands of fish) or management criteria for 2017 ocean fishery management measures - Council adopted.^{a/} (Page 4 of 4)

<table>
<thead>
<tr>
<th>Key Stock/Criteria</th>
<th>Spawner Objective or Other Comparative Standard as Noted<sup>b/</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>COHO</td>
<td></td>
</tr>
<tr>
<td>Interior Fraser (Thompson River)</td>
<td>7.6%(1.9%) ≤ 10.0% 2017 Southern U.S. exploitation rate ceiling; PSC coho agreement.</td>
</tr>
<tr>
<td>Skagit</td>
<td>11.1%(1.9%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>8.5%(1.4%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Snohomish</td>
<td>15.2%(1.4%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>40.4%(2.1%) ≤ 65.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>4.9%(1.8%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Skagit</td>
<td>11.1%(1.9%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>8.5%(1.4%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Snohomish</td>
<td>15.2%(1.4%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>40.4%(2.1%) ≤ 65.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>4.9%(1.8%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Skagit</td>
<td>11.1%(1.9%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Stillaguamish</td>
<td>8.5%(1.4%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Snohomish</td>
<td>15.2%(1.4%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Hood Canal</td>
<td>40.4%(2.1%) ≤ 65.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td>4.9%(1.8%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix<sup>d/</sup></td>
</tr>
</tbody>
</table>

Notes:

- **a/** Reflects 2017 fisheries and abundance estimates.
- **b/** Ocean escapement is the number of salmon escaping ocean fisheries and entering freshwaters with the following clarifications. Numbers in parentheses represent Council area exploitation rates. For Columbia River early and late coho stocks, ocean escapement represents the number of coho after the Buoy 10 fishery. Exploitation rates for OCN coho include impacts of freshwater fisheries. Values reported for Klamath River fall Chinook are natural area adult spawners. Values reported for Sacramento River fall Chinook are hatchery and natural area adult spawners.
- **c/** Includes minor contributions from East Fork Lewis River and Sandy River.
- **d/** Annual management objectives may be different than FMP goals, and are subject to agreement between WDFW and the treaty tribes under U.S. District Court orders. It is anticipated that fishery management will be adjusted by state and tribal co-managers during the preseason planning process to comply with stock management objectives.
- **e/** Includes projected impacts of inriver fisheries that have not yet been shaped.

Environmental Assessment Part 3 (Preseason Report III)
2017 Ocean Salmon Fisheries Management Measures (0648-BG59)
April 2017
<table>
<thead>
<tr>
<th>Area and Fishery</th>
<th>Catch</th>
<th>Bycatch</th>
<th>Bycatch</th>
<th>Mortality</th>
<th>Mortality</th>
<th>Observed in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projection</td>
<td>Mortality</td>
<td>Projection</td>
<td>Mortality</td>
<td>Catch</td>
<td>Bycatch</td>
</tr>
<tr>
<td>OCEAN FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian Ocean Troll</td>
<td>40.0</td>
<td>4.1</td>
<td>10.3</td>
<td>22.8</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Non-Indian Commercial Troll</td>
<td>45.0</td>
<td>23.5</td>
<td>85.5</td>
<td>19.4</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>45.0</td>
<td>7.6</td>
<td>40.4</td>
<td>17.9</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>CAPE FALCON TO HUMBUG MT:c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>29.1</td>
<td>5.4</td>
<td>14.9</td>
<td>39.8</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>6.0</td>
<td>0.4</td>
<td>0.7</td>
<td>2.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>HUMBUG MT. TO OR/CA BORDERd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5^a</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>0.7</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0^a</td>
<td></td>
</tr>
<tr>
<td>OR/CA BORDER TO HORSE MT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2^a</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.4^a</td>
<td></td>
</tr>
<tr>
<td>HORSE MT. TO PT. ARENA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>3.0</td>
<td>0.6</td>
<td>1.5</td>
<td>15.4</td>
<td>4.0^a</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>1.7</td>
<td>0.1</td>
<td>0.2</td>
<td>5.0</td>
<td>0.4^a</td>
<td></td>
</tr>
<tr>
<td>PT. ARENA TO PIGEON PT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>19.4</td>
<td>3.6</td>
<td>9.9</td>
<td>26.3</td>
<td>4.9^a</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>26.4</td>
<td>1.7</td>
<td>3.1</td>
<td>26.3</td>
<td>1.6^a</td>
<td></td>
</tr>
<tr>
<td>SOUTH OF PIGEON PT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>25.1</td>
<td>4.7</td>
<td>12.8</td>
<td>13.2</td>
<td>1.1^a</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>6.9</td>
<td>0.4</td>
<td>0.8</td>
<td>1.3</td>
<td>0.1^a</td>
<td></td>
</tr>
<tr>
<td>TOTAL OCEAN FISHERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>161.9</td>
<td>42.0</td>
<td>135.1</td>
<td>137.5</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td>86.7</td>
<td>10.2</td>
<td>45.3</td>
<td>58.6</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>INSIDE FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Buoy 10</td>
<td>21.7</td>
<td>0.4</td>
<td>2.0</td>
<td>17.8</td>
<td>1.5^a</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6. Preliminary projections of Chinook and coho harvest impacts for 2017 ocean salmon fishery management measures adopted by the Council. (Page 2 of 2)

<table>
<thead>
<tr>
<th>Area and Fishery</th>
<th>Catch Projection</th>
<th>Bycatch Mortality<sup>a</sup> Projection</th>
<th>Bycatch Mortality<sup>b</sup> Projection</th>
<th>Observed in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEAN FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian Ocean Troll</td>
<td>12.5</td>
<td>1.5</td>
<td>4.2</td>
<td>-</td>
</tr>
<tr>
<td>Non-Indian Commercial Troll</td>
<td>5.6</td>
<td>6.1</td>
<td>22.2</td>
<td>-</td>
</tr>
<tr>
<td>Recreational</td>
<td>42.0</td>
<td>7.4</td>
<td>31.4</td>
<td>18.7</td>
</tr>
<tr>
<td>SOUTH OF CAPE FALCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>-</td>
<td>5.2</td>
<td>20.0</td>
<td>-</td>
</tr>
<tr>
<td>Recreational<sup>d</sup></td>
<td>24.0</td>
<td>7.1</td>
<td>35.9</td>
<td>5.7</td>
</tr>
<tr>
<td>TOTAL OCEAN FISHERIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Troll</td>
<td>18.1</td>
<td>12.9</td>
<td>46.5</td>
<td>-</td>
</tr>
<tr>
<td>Recreational</td>
<td>66.0</td>
<td>14.5</td>
<td>67.3</td>
<td>24.4</td>
</tr>
<tr>
<td>INSIDE FISHERIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buoy 10</td>
<td>15.0</td>
<td>2.5</td>
<td>9.1</td>
<td>9.2</td>
</tr>
</tbody>
</table>

^a The bycatch mortality reported in this table consists of drop-off mortality (includes predation on hooked fish) plus hook-and-release mortality of Chinook and coho salmon in Council-area fisheries. Drop-off mortality for both Chinook and coho is assumed to be equal to 5% of total encounters. The hook-and-release mortality (HRM) rates used for both Chinook and coho are:
- Commercial: 26%.
- Recreational, north of Pt. Arena: 14%.
- Recreational, south of Pt. Arena: 15% (based on the expected proportion of fish that will be caught using mooching versus trolling gear, and the HRMs of 42.2% and 14% for these two respective gear types).
^b Bycatch calculated as dropoff mortality plus fish released.
^c Includes Oregon territorial water, late season Chinook fisheries.
^d Based on reported released Chinook or coho.
^e Includes fisheries that allow retention of all legal sized coho.
TABLE 7. Expected coastwide lower Columbia Natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho, and Lower Columbia River (LCR) natural tule Chinook exploitation rates by fishery for 2017 ocean salmon fisheries - Council adopted.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>LCN Coho</th>
<th>OCN Coho</th>
<th>RK Coho</th>
<th>LCR Tule</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUTHEAST ALASKA</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.1%</td>
</tr>
<tr>
<td>BRITISH COLUMBIA</td>
<td>0.1%</td>
<td>0.4%</td>
<td>0.3%</td>
<td>12.8%</td>
</tr>
<tr>
<td>PUGET SOUND/STRAIT/BAY</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

NORTH OF CAPE FALCON

Treaty Indian Ocean Troll	0.9%	0.2%	0.0%	1.8%
Recreational	2.9%	0.5%	0.0%	4.5%
Non-Indian Troll	1.3%	0.2%	0.0%	5.2%

SOUTH OF CAPE FALCON

Recreational: 0.1%

- Cape Falcon to Humbug Mt.: 1.8% 5.0% 0.3%
- Humbug Mt. to OR/CA border (KMZ): 0.0% 0.0% 0.0%
- OR/CA border to Horse Mt. (KMZ): 0.0% 0.0% 0.0%
- Fort Bragg: 0.0% 0.1% 1.1%
- South of Pt. Arena: 0.0% 0.4% 1.1%

Troll:

- Cape Falcon to Humbug Mt.: 0.6% 0.5% 0.0%
- Humbug Mt. OR/CA border (KMZ): 0.0% 0.0% 0.0%
- OR/CA border to Horse Mt. (KMZ): 0.0% 0.0% 0.0%
- Fort Bragg: 0.0% 0.0% 0.2%
- South of Pt. Arena: 0.1% 0.5% 0.2%

BUOY 10

- 0.9% 0.1% 0.0% 9.1%

ESTUARY/FRESHWATER

- 2.7% 1.4% a’ 0.2% a’

TOTAL

- 11.4% 9.3% 3.5% 36.9%

*a/ Includes adult mortalities associated with PSC funded Chinook escapement monitoring studies in Oregon.
TABLE 8. 2017 projected coho mark rates for mark-selective fisheries under Council adopted management measures (percent marked).

<table>
<thead>
<tr>
<th>Area</th>
<th>Fishery</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnstone Strait</td>
<td>Recreational</td>
<td>-</td>
<td>51%</td>
<td>56%</td>
<td>-</td>
</tr>
<tr>
<td>West Coast Vancouver Island</td>
<td>Recreational</td>
<td>42%</td>
<td>57%</td>
<td>60%</td>
<td>66%</td>
</tr>
<tr>
<td>North Georgia Strait</td>
<td>Recreational</td>
<td>59%</td>
<td>60%</td>
<td>60%</td>
<td>57%</td>
</tr>
<tr>
<td>South Georgia Strait</td>
<td>Recreational</td>
<td>34%</td>
<td>57%</td>
<td>45%</td>
<td>52%</td>
</tr>
<tr>
<td>Juan de Fuca Strait</td>
<td>Recreational</td>
<td>50%</td>
<td>49%</td>
<td>49%</td>
<td>52%</td>
</tr>
<tr>
<td>Johnstone Strait</td>
<td>Troll</td>
<td>69%</td>
<td>60%</td>
<td>54%</td>
<td>63%</td>
</tr>
<tr>
<td>NW Vancouver Island</td>
<td>Troll</td>
<td>51%</td>
<td>49%</td>
<td>50%</td>
<td>35%</td>
</tr>
<tr>
<td>SW Vancouver Island</td>
<td>Troll</td>
<td>54%</td>
<td>51%</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>Georgia Strait</td>
<td>Troll</td>
<td>65%</td>
<td>62%</td>
<td>62%</td>
<td>54%</td>
</tr>
<tr>
<td>Puget Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strait of Juan de Fuca (Area 5)</td>
<td>Recreational</td>
<td>55%</td>
<td>49%</td>
<td>48%</td>
<td>47%</td>
</tr>
<tr>
<td>Strait of Juan de Fuca (Area 6)</td>
<td>Recreational</td>
<td>54%</td>
<td>46%</td>
<td>45%</td>
<td>46%</td>
</tr>
<tr>
<td>San Juan Island (Area 7)</td>
<td>Recreational</td>
<td>59%</td>
<td>54%</td>
<td>60%</td>
<td>47%</td>
</tr>
<tr>
<td>North Puget Sound (Areas 6 & 7A)</td>
<td>Net</td>
<td>-</td>
<td>39%</td>
<td>56%</td>
<td>53%</td>
</tr>
<tr>
<td>Council Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neah Bay (Area 4/4B)</td>
<td>Recreational</td>
<td>49%</td>
<td>55%</td>
<td>51%</td>
<td>58%</td>
</tr>
<tr>
<td>LaPush (Area 3)</td>
<td>Recreational</td>
<td>67%</td>
<td>57%</td>
<td>62%</td>
<td>45%</td>
</tr>
<tr>
<td>Westport (Area 2)</td>
<td>Recreational</td>
<td>67%</td>
<td>65%</td>
<td>64%</td>
<td>62%</td>
</tr>
<tr>
<td>Columbia River (Area 1)</td>
<td>Recreational</td>
<td>75%</td>
<td>74%</td>
<td>70%</td>
<td>72%</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Recreational</td>
<td>67%</td>
<td>62%</td>
<td>57%</td>
<td>46%</td>
</tr>
<tr>
<td>Newport</td>
<td>Recreational</td>
<td>62%</td>
<td>58%</td>
<td>55%</td>
<td>42%</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Recreational</td>
<td>54%</td>
<td>50%</td>
<td>40%</td>
<td>25%</td>
</tr>
<tr>
<td>Brookings</td>
<td>Recreational</td>
<td>48%</td>
<td>36%</td>
<td>33%</td>
<td>13%</td>
</tr>
<tr>
<td>Neah Bay (Area 4/4B)</td>
<td>Troll</td>
<td>53%</td>
<td>52%</td>
<td>53%</td>
<td>56%</td>
</tr>
<tr>
<td>LaPush (Area 3)</td>
<td>Troll</td>
<td>51%</td>
<td>56%</td>
<td>53%</td>
<td>56%</td>
</tr>
<tr>
<td>Westport (Area 2)</td>
<td>Troll</td>
<td>53%</td>
<td>59%</td>
<td>63%</td>
<td>59%</td>
</tr>
<tr>
<td>Columbia River (Area 1)</td>
<td>Troll</td>
<td>69%</td>
<td>68%</td>
<td>66%</td>
<td>65%</td>
</tr>
<tr>
<td>Tillamook</td>
<td>Troll</td>
<td>61%</td>
<td>60%</td>
<td>61%</td>
<td>57%</td>
</tr>
<tr>
<td>Newport</td>
<td>Troll</td>
<td>60%</td>
<td>58%</td>
<td>55%</td>
<td>54%</td>
</tr>
<tr>
<td>Coos Bay</td>
<td>Troll</td>
<td>53%</td>
<td>51%</td>
<td>45%</td>
<td>31%</td>
</tr>
<tr>
<td>Brookings</td>
<td>Troll</td>
<td>41%</td>
<td>43%</td>
<td>46%</td>
<td>60%</td>
</tr>
<tr>
<td>Columbia River</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buoy 10</td>
<td>Recreational</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Area</th>
<th>2017 Projected<sup>a</sup></th>
<th>2016</th>
<th>2012-2016 Average</th>
<th>From 2016 Modeled</th>
<th>From 2012-2016 Average</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>4,222</td>
<td>1,797</td>
<td>3,273</td>
<td>+135%</td>
<td>+29%</td>
<td></td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>2,697</td>
<td>4,033</td>
<td>6,769</td>
<td>-33%</td>
<td>-60%</td>
<td></td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border (OR KMZ)</td>
<td>28</td>
<td>41</td>
<td>479</td>
<td>-32%</td>
<td>-94%</td>
<td></td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt. (CA KMZ)</td>
<td>0</td>
<td>19</td>
<td>214</td>
<td>-100%</td>
<td>-100%</td>
<td></td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena (Ft Bragg)</td>
<td>278</td>
<td>1,477</td>
<td>4,538</td>
<td>-81%</td>
<td>-94%</td>
<td></td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. (SF)</td>
<td>1,798</td>
<td>2,583</td>
<td>6,452</td>
<td>-30%</td>
<td>-72%</td>
<td></td>
</tr>
<tr>
<td>South of Pigeon Pt. (MO)</td>
<td>2,327</td>
<td>1,221</td>
<td>1,904</td>
<td>+91%</td>
<td>+22%</td>
<td></td>
</tr>
<tr>
<td>Total South of Cape Falcon</td>
<td>7,128</td>
<td>9,374</td>
<td>20,355</td>
<td>-24%</td>
<td>-65%</td>
<td></td>
</tr>
<tr>
<td>West Coast Total</td>
<td>11,351</td>
<td>11,171</td>
<td>23,628</td>
<td>+2%</td>
<td>-52%</td>
<td></td>
</tr>
</tbody>
</table>

^a Exvessel value estimates are not comparable to the community income impacts shown in Table 10.

^b 2017 projections are based on expected catches in the Council management areas, 2016 exvessel prices and 2016 average weight per fish.
TABLE 10. Preliminary projected angler trips and associated state level personal income impacts under Council-adopted 2017 recreational ocean salmon fishery management measures compared to estimated 2016 and the 2012-2016 average.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Cape Falcon</td>
<td>77.6</td>
<td>52.0</td>
<td>88.1</td>
<td>13,845</td>
<td>9,270</td>
<td>16,889</td>
<td>+49%</td>
<td>-18%</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>59.7</td>
<td>30.3</td>
<td>54.8</td>
<td>5,055</td>
<td>2,571</td>
<td>5,231</td>
<td>+97%</td>
<td>-3%</td>
</tr>
<tr>
<td>Humbug Mt. to OR/CA Border (OR KMZ)</td>
<td>3.8</td>
<td>4.2</td>
<td>13.8</td>
<td>551</td>
<td>344</td>
<td>1,194</td>
<td>+60%</td>
<td>-54%</td>
</tr>
<tr>
<td>OR/CA Border to Horse Mt. (CA KMZ)</td>
<td>0.0</td>
<td>9.0</td>
<td>19.9</td>
<td>0</td>
<td>1,585</td>
<td>3,516</td>
<td>-100%</td>
<td>-100%</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena (Fort Bragg)</td>
<td>6.0</td>
<td>9.6</td>
<td>14.2</td>
<td>1,208</td>
<td>1,919</td>
<td>3,034</td>
<td>-37%</td>
<td>-60%</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. (SF)</td>
<td>63.3</td>
<td>43.4</td>
<td>54.2</td>
<td>18,744</td>
<td>13,805</td>
<td>17,745</td>
<td>+36%</td>
<td>+6%</td>
</tr>
<tr>
<td>South of Pigeon Pt. (MO)</td>
<td>31.8</td>
<td>7.8</td>
<td>25.1</td>
<td>9,422</td>
<td>1,340</td>
<td>4,718</td>
<td>+603%</td>
<td>+100%</td>
</tr>
<tr>
<td>Total South of Cape Falcon</td>
<td>164.5</td>
<td>104.2</td>
<td>182.0</td>
<td>34,980</td>
<td>21,564</td>
<td>35,438</td>
<td>+62%</td>
<td>-1%</td>
</tr>
<tr>
<td>West Coast Total</td>
<td>242.2</td>
<td>156.2</td>
<td>270.1</td>
<td>48,825</td>
<td>30,835</td>
<td>52,327</td>
<td>+58%</td>
<td>-7%</td>
</tr>
</tbody>
</table>

a/ Income impacts are not comparable to exvessel values shown in Table 9.
b/ Dollar amounts are in inflation-adjusted 2016 values.
TABLE 11. Environmental effects of the Proposed Action relative to criteria and Alternatives analyzed in Preseason Reports I and II.a (Page 1 of 2)

<table>
<thead>
<tr>
<th>Environmental Component</th>
<th>No-Action Alternative</th>
<th>Alternative I</th>
<th>Alternative II</th>
<th>Alternative III</th>
<th>Proposed Action</th>
<th>2017 Criteria or Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRFC Spawning Escapement</td>
<td></td>
<td>9,397</td>
<td>11,379</td>
<td>11,393</td>
<td>12,144</td>
<td>11,379 ≥ 11,379 (FMP control rule).</td>
</tr>
<tr>
<td>Exploitation (spawner reduction) rate</td>
<td>24.1%</td>
<td>8.1%</td>
<td>8.0%</td>
<td>1.9%</td>
<td>8.1% ≤ 8.1%</td>
<td>FMP control rule.</td>
</tr>
<tr>
<td>SRFC Spawning Escapement</td>
<td>116,439</td>
<td>133,242</td>
<td>140,481</td>
<td>182,309</td>
<td>133,242 ≥ 122,000 escapement (FMP control rule).</td>
<td></td>
</tr>
<tr>
<td>Exploitation Rate</td>
<td>49.5%</td>
<td>42.2%</td>
<td>39.1%</td>
<td>21.0%</td>
<td>42.2% ≤ 47.1%</td>
<td>FMP control rule.</td>
</tr>
<tr>
<td>Canadian Stocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Fraser Coho</td>
<td></td>
<td>3.1%</td>
<td>7.6%</td>
<td>5.6% (3.1%)</td>
<td>4.4% (1.9%)</td>
<td>7.6% (1.9%) ≤ 10.0% 2017 Southern U.S. exploitation rate ceiling; PSC coho agreement.</td>
</tr>
<tr>
<td>Skagit</td>
<td></td>
<td>5.8%</td>
<td>10.2% (4.8%)</td>
<td>8.4% (2.9%)</td>
<td>7.3% (1.9%)</td>
<td>11.1% (1.9%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix.</td>
</tr>
<tr>
<td>Stillaguamish</td>
<td></td>
<td>7.7%</td>
<td>10.4% (3.4%)</td>
<td>9.2% (2.0%)</td>
<td>8.5% (1.3%)</td>
<td>8.5% (1.4%) ≤ 20.0% 2017 total exploitation rate ceiling; FMP matrix.</td>
</tr>
<tr>
<td>Snohomish</td>
<td></td>
<td>7.1%</td>
<td>9.9% (3.4%)</td>
<td>8.6% (2.1%)</td>
<td>7.9% (1.3%)</td>
<td>15.2% (1.4%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix.</td>
</tr>
<tr>
<td>Hood Canal</td>
<td></td>
<td>34.4%</td>
<td>36.9% (5.0%)</td>
<td>35.6% (3.1%)</td>
<td>34.9% (2.1%)</td>
<td>40.4% (2.1%) ≤ 65.0% 2017 total exploitation rate ceiling; FMP matrix.</td>
</tr>
<tr>
<td>Strait of Juan de Fuca</td>
<td></td>
<td>4.1%</td>
<td>7.2% (4.3%)</td>
<td>5.2% (2.4%)</td>
<td>4.3% (1.5%)</td>
<td>4.9% (1.8%) ≤ 40.0% 2017 total exploitation rate ceiling; FMP matrix.</td>
</tr>
<tr>
<td>Washington Coastal Coho (in thousands of fish)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quillayute Fall Coho</td>
<td>15.4</td>
<td>14.9</td>
<td>15.2</td>
<td>15.4</td>
<td>15.3</td>
<td>6.3 FMP MSY adult spawner estimate. Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Hoh Coho</td>
<td>5.5</td>
<td>5.3</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>2.0 FMP MSY adult spawner estimate. Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Queets Wild Coho</td>
<td>6.0</td>
<td>5.5</td>
<td>5.7</td>
<td>5.9</td>
<td>5.8</td>
<td>5.1 2017 Comanager adult spawner agreement. Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Grays Harbor Coho</td>
<td>NA</td>
<td>46.3</td>
<td>47.4</td>
<td>48.1</td>
<td>47.9</td>
<td>35.4 FMP MSY adult spawner estimate. Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>Willapa Bay Natural Coho</td>
<td>24.8</td>
<td>33.1</td>
<td>34.3</td>
<td>35.1</td>
<td>34.4</td>
<td>17.2 FMP MSY adult spawner estimate. Value depicted is ocean escapement.</td>
</tr>
<tr>
<td>ESA-Listed Salmon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Coastal Chinook</td>
<td>9.0%</td>
<td>3.1%</td>
<td>3.2%</td>
<td>1.0%</td>
<td>3.1% ≤ 16.0%</td>
<td>KRFC age-4 ocean harvest rate.</td>
</tr>
<tr>
<td>SRWC</td>
<td>11.6%</td>
<td>12.2%</td>
<td>10.0%</td>
<td>1.2%</td>
<td>12.2% ≤ 15.8%</td>
<td>SRWC age-3 ocean impact rate in fisheries south of Pt. Arena.</td>
</tr>
<tr>
<td>LCR Natural Tule Chinook</td>
<td>NA</td>
<td>41.3%</td>
<td>39.9%</td>
<td>38.3%</td>
<td>36.9% ≤ 41.0%</td>
<td>Total adult equivalent fishery exploitation rate.</td>
</tr>
<tr>
<td>LCN Coho a/</td>
<td>12.4%</td>
<td>12.6%</td>
<td>8.4%</td>
<td>5.1%</td>
<td>11.4% ≤ 18.0%</td>
<td>Total marine and mainstem Columbia fishery exploitation rate.</td>
</tr>
<tr>
<td>OCN coho a/</td>
<td>15.0%</td>
<td>11.7%</td>
<td>5.3%</td>
<td>1.5%</td>
<td>9.3% ≤ 30.0%</td>
<td>Marine and freshwater fishery exploitation rate.</td>
</tr>
<tr>
<td>SONCC (RK) coho</td>
<td>9.9%</td>
<td>3.6%</td>
<td>3.4%</td>
<td>0.5%</td>
<td>3.3% ≤ 13.0%</td>
<td>Marine fishery exploitation rate.</td>
</tr>
</tbody>
</table>
TABLE 11. Environmental effects of the Proposed Action relative to criteria and Alternatives analyzed in Preseason Reports I and II.

<table>
<thead>
<tr>
<th>Environmental Component</th>
<th>No-Action Alternativeb/</th>
<th>Alternative I</th>
<th>Alternative II</th>
<th>Alternative III</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Community Personal Income Impacts (thousands of dollars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North of Cape Falcon</td>
<td>3,046</td>
<td>7,916</td>
<td>7,233</td>
<td>6,227</td>
<td>7,138</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>5,590</td>
<td>4,146</td>
<td>2,120</td>
<td>146</td>
<td>4,139</td>
</tr>
<tr>
<td>Humbug to OR/CA border (OR KMZ)</td>
<td>165</td>
<td>150</td>
<td>89</td>
<td>33</td>
<td>146</td>
</tr>
<tr>
<td>OR/CA border to Horse Mt. (CA KMZ)</td>
<td>88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena (Fort Bragg)</td>
<td>2,315</td>
<td>295</td>
<td>48</td>
<td>-</td>
<td>476</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. (San Francisco)</td>
<td>5,332</td>
<td>7,367</td>
<td>7,367</td>
<td>-</td>
<td>3,180</td>
</tr>
<tr>
<td>South of Pigeon Pt. (Monterey)</td>
<td>1,191</td>
<td>7,367</td>
<td>7,367</td>
<td>-</td>
<td>4,194</td>
</tr>
<tr>
<td>West Coast Total</td>
<td>17,727</td>
<td>19,875</td>
<td>16,858</td>
<td>6,406</td>
<td>19,281</td>
</tr>
<tr>
<td>Recreational Community Personal Income Impacts (thousands of dollars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North of Cape Falcon</td>
<td>9,270</td>
<td>18,497</td>
<td>15,676</td>
<td>8,288</td>
<td>13,845</td>
</tr>
<tr>
<td>Cape Falcon to Humbug Mt.</td>
<td>2,571</td>
<td>5,055</td>
<td>5,804</td>
<td>26</td>
<td>5,055</td>
</tr>
<tr>
<td>Humbug to OR/CA border (OR KMZ)</td>
<td>344</td>
<td>551</td>
<td>1,561</td>
<td>551</td>
<td>551</td>
</tr>
<tr>
<td>OR/CA border to Horse Mt. (CA KMZ)</td>
<td>1,585</td>
<td>551</td>
<td>-</td>
<td>-</td>
<td>551</td>
</tr>
<tr>
<td>Horse Mt. to Pt. Arena (Fort Bragg)</td>
<td>1,919</td>
<td>1,208</td>
<td>1,354</td>
<td>211</td>
<td>1,208</td>
</tr>
<tr>
<td>Pt. Arena to Pigeon Pt. (San Francisco)</td>
<td>13,805</td>
<td>28,166</td>
<td>24,728</td>
<td>6,460</td>
<td>18,744</td>
</tr>
<tr>
<td>South of Pigeon Pt. (Monterey)</td>
<td>1,340</td>
<td>28,166</td>
<td>24,728</td>
<td>6,460</td>
<td>9,422</td>
</tr>
<tr>
<td>West Coast Total</td>
<td>30,835</td>
<td>53,477</td>
<td>49,123</td>
<td>15,536</td>
<td>48,825</td>
</tr>
</tbody>
</table>

a/ Impacts assumed when Alternatives were adopted in March may have changed due to updated information from the PSC, North of Falcon process, or other sources.
b/ Socioeconomic impacts under the No-Action Alternative are assumed equal to 2016 estimates.
c/ Annual management objectives may be different than FMP goals, and are subject to agreement between WDFW and the treaty tribes under U.S. District Court orders. Values in parentheses indicate impacts in Council-area fisheries.
d/ Includes projected impacts of inriver fisheries.
e/ Impact rates listed under Alternatives I-III on LCN coho and OCN coho represent marine impacts. It is anticipated that when combined with freshwater impacts, the exploitation rates will meet, but not exceed, NMFS guidance. Total exploitation rates are shown for the No-Action Alternative and the Proposed Action, including freshwater impacts.
FIGURE 3. Projected coastal community personal income impacts associated with the 2017 commercial troll fishery under Council-adopted management measures compared to estimated 2016 and the 2012-2016 inflation-adjusted average (in 2016 dollars).
FIGURE 4. Projected coastal community personal income impacts associated with the 2017 recreational fishery under Council-adopted management measures compared to estimated 2016 and the 2012-2016 inflation-adjusted average (in 2016 dollars).
This map is for reference only and is not intended for use in navigation or fishery regulation.
ADDENDUM: CONSISTENCY WITH OTHER APPLICABLE LAW

Magnuson-Stevens Conservation and Management Act (MSA)

The MSA provides parameters and guidance for Federal fisheries management. Overarching principles for fisheries management are found in the MSA’s National Standards, which articulate a broad set of policies governing fisheries management. In crafting fisheries management regimes, the Councils and NMFS must balance their recommendations to meet these different national standards.

The purpose of this action is to develop annual management measures for Pacific salmon under the salmon FMP. National Standard 1 (NS1) requires that “Conservation and management measures shall prevent overfishing while achieving on a continuing basis, the optimum yield from each fishery for the United States fishing industry.” The alternatives for the management measures are designed to ensure that conservation objectives and ACLs are met. These reference points are in turn designed to prevent overfishing while achieving optimum yield on a continuing basis. In 2017, some salmon stocks are forecast at very low abundance, and will be managed to meet harvest control rules and with flexibility provided in the Fishery Management Plan (FMP) and under the Pacific Salmon Treaty (PST). The three stocks of primary concern in 2017 are: Sacramento River winter Chinook (SRWC) (endangered under the Endangered Species Act (ESA)), Klamath River fall Chinook (KRFC), and Queets coho.

The alternatives were developed to minimize impacts to those stocks while allowing limited fisheries that are determined to be unlikely to affect the future productivity and sustainability of those stocks (e.g., exploitation rates are well below the FMP’s maximum fishing mortality threshold for KRFC and Queets coho). Specifically, under one alternative no coho retention would be permitted in the areas where Queets coho present, thus impacts to these stocks would be limited to the incidental impacts resulting from fisheries targeting Chinook, under another alternative no fishing would be authorized south of Cape Falcon, Oregon, to prevent fishing impacts on KRFC.

KRFC and Queets coho are not currently overfished and the recommended fishing would not constitute overfishing. Impacts to SRWC are managed consistent with the Reasonable and Prudent Alternative (RPA) developed by NMFS in 2012 as a result of a biological opinion. For KRFC, regardless of whether there is fishing, the abundance projection for 2017 means the stock would not meet the conservation objective in the FMP and will likely meet the definition of “overfished” in 2018. Thus the alternatives are designed to result in only minimal impacts on the stock, consistent with the FMP harvest control rule for KRFC that restricts fishing impacts to 8.1 percent in 2017. The FMP provides flexibility in setting the annual spawning escapement for several Washington coho stocks, including Queets coho, provided there is agreement between the Washington Department of Fish and Wildlife (WDFW) and the treaty tribes, consistent with court orders in U.S. v Washington. Therefore, based on agreement between those parties and discussion on the Council floor that the reduced spawning escapement is unlikely to jeopardize the capacity of the fishery to produce maximum sustainable yield on a continuing basis, the Council adopted a 2017 spawning escapement target of 5,130 Queets coho to allow for limited harvest opportunity in ocean and in-river fisheries directed at other higher-abundance stocks. Additionally, under the criteria of the PST’s Southern Coho Management Plan, Queets coho abundance is in the “low” category in 2017 and subject to a total exploitation rate of 20 percent. The state and treaty tribal co-managers relied on a provision in the PST to request that the Southern Panel of the Pacific Salmon Commission agree to permit a 22 percent exploitation rate on Queets coho in 2017 to allow the U.S. to meet fishery management objectives [(Pacific Salmon Treaty, Article XV, Annex IV, Chapter 5, paragraph 11(c)]. The Southern Panel did agree to this request.
The three salmon stocks with specified ACLs are each projected to meet the stock-specific ACL set preseason. Therefore, except for the No-action alternative, the alternatives are consistent with NS1.

National Standard 2 requires the use of the best available scientific information. The Council’s Scientific and Statistical Committee (SSC) reviews and recommends the methods used to develop alternatives for salmon management measures. The No-action Alternative (see PRE I, Chapter V) would not meet this standard, as it does not take into account current abundance projections for salmon stocks. However, the other alternatives are crafted based on up to date scientific information regarding abundance and the methods approved by the SSC.

National Standard 3 requires individual stocks of fish to be managed as a unit throughout their ranges and interrelated stocks of fish to be managed as a unit. The conservation objectives and ACLs are established for individual stocks in the Salmon FMP and are based on either escapement or on total exploitation rate, both of which account for impacts to stocks throughout their range. All salmon stocks are managed as a unit in Council-area fisheries to ensure all conservation objectives are met. The alternatives were developed to be consistent with the conservation objectives and ACLs in the FMP. As discussed above, in 2017, KRFC would not meet FMP conservation objective even with no fishing impacts, and Queets coho, while meeting its conservation objective for ocean escapement, required adoption of a reduced spawning escapement objective to account for impacts from in-river fisheries. Impacts on these stocks from northern (Canadian and Alaskan) fisheries and fisheries in state waters were considered in developing the alternatives.

National Standard 4 requires that “Conservation and management measures shall not discriminate between residents of different States.” And that “allocation shall be: (A) fair and equitable…; (B) reasonably calculated to promote conservation; and (C) carried out in such manner that no…entity acquires an excessive share.” The alternatives were developed to be consistent with the allocation guidelines in the FMP, which were in turn developed to meet National Standard 4. Alternatives 1 and 3 and the Council’s Final Preferred Alternative (see PRE-III) depart from the FMP’s allocation scheme for coho in fisheries north of Cape Falcon, Oregon to the extent that it provides a lower portion of coho retention in commercial fisheries than allowed in the FMP. The purpose of this departure from the FMP is to minimize impacts on northern coho stocks, specifically Queets coho, while allowing retention where stocks are healthier.

National Standard 5 requires efficiency, where practicable, in the utilization of fishery resources. All alternatives in this EA meet this standard.

National Standard 6 requires conservation objectives and management measures to take into account and allow for variations among, and contingencies in, fisheries, fishery resources, and catches. All alternatives allow for inseason management of Council-area salmon fisheries to meet conservation objectives and preseason management objectives, with the exception described above for KRFC and Queets coho.

National Standard 7 requires that conservation and management measures shall, where practicable, minimize costs and avoid unnecessary duplication. All alternatives in this EA meet this standard.

National Standard 8 requires that conservation and management measures shall, consistent with the conservation requirements of the MSA, take into account the importance of fishery resources to fishing communities in order to “(A) provide for the sustained participation of such communities, and (B) to the extent practicable, minimize adverse economic impacts on such communities.” The alternatives represent a range of management measures with various economic impacts. The Final Preferred Alternative (see
PRE III) was developed to provide the optimum balance between the short-term needs of the communities and the long-term needs of the communities, needs which rely on long-term health of the salmon stocks.

National Standard 9 requires the reduction, to the extent practicable, of bycatch or bycatch mortality. All alternatives in this EA are expected to have no significant effects due to bycatch mortality on non-target species.

National Standard 10 requires, to the extent practicable, conservation and management measures to promote the safety of human life at sea. The Alternatives in this EA are not expected to impact risks to salmon fishermen.

Paperwork Reduction Act (PRA)

The purposes of the PRA are to minimize the burden of information collection by the Federal Government on the public; maximize the utility of any information thus collected; improve the quality of information used in Federal decision making, minimize the cost of collection, use and dissemination of such information; and improve accountability. The PRA requires Federal agencies to obtain clearance from the Office of Management and Budget before collecting information. This clearance requirement is triggered if certain conditions are met. “Collection of information” is defined broadly. In summary it means obtaining information from third parties or the public by or for an agency through a standardized method imposed on 10 or more persons. Collection of information need not be mandatory to meet the trigger definition. Even information collected by a third party, if at the behest of a Federal agency, may trigger the clearance requirement. Within NMFS, the Office of the Chief Information Officer is responsible for PRA compliance. Obtaining clearance can take up to 9 months and is one aspect of NMFS review and approval of Council decisions.

The proposed action includes an existing approved collection-of-information requirement which is being implemented under Federal regulations. A specific requirement on when and where to land fish is imposed when necessary to ensure timely and accurate assessment of catches in specific regulatory areas. If fishermen are unable to comply with this landing requirement because of unsafe weather or mechanical problems, they must notify the U.S. Coast Guard of their problem, and advise of the name of the vessel, the port where delivery will be made, the approximate amount of salmon on board, and the estimated time of arrival. This emergency provision is rarely used, but is important to be retained for safety purposes. Authorization under the PRA for this information collection was extended on July 31, 2014 and will expire on July 31, 2017 (OMB Control No. 0648-0433); the renewal for authorization of this information collection was submitted in January 2017 and is pending OMB approval.

Marine Mammal Protection Act (MMPA)

The MMPA of 1972 is the principle Federal legislation that guides marine mammal species protection and conservation policy in the United States. Under the MMPA, NMFS is responsible for the management and conservation of 153 stocks of whales, dolphins, porpoise, as well as seals, sea lions, and fur seals; while the US Fish and Wildlife Service is responsible for walrus, sea otters, and the West Indian manatee.

Off the west coast, the Southern Resident Puget Sound killer whale stock (SRKW) is listed as endangered under the Endangered Species Act (ESA); Guadalupe fur seal, and Southern sea otter California stock are listed as threatened under the ESA. The sperm whale (WA, OR, CA stock), humpback whale (WA, OR, CA, Mexico stock), blue whale eastern north Pacific stock, and Fin whale (WA, OR, CA stock) are listed as

Environmental Assessment Addendum: Consistency with other Applicable Law
2017 Ocean Salmon Fisheries Management Measures
(0648-BG59) 3 April 2017
as endangered under the Endangered Species Act (ESA). Any species listed as endangered or threatened under the ESA is automatically considered depleted under the MMPA.

The commercial salmon troll fisheries off the west coast are classified as Category III fisheries, indicating a remote or no likelihood of causing incidental mortality or serious injury to marine mammals (82 FR 3655, January 12, 2017). Recreational salmon fisheries are assumed to have similar impacts as they use similar gear and techniques. The proposed action is not expected to have impacts to marine mammals.

National Environmental Policy Act (NEPA)

This EA is intended to meet the NEPA requirements that apply to the proposed action.

Endangered Species Act (ESA)

Ocean salmon fisheries conducted under the FMP do affect ESA-listed salmon species. The alternatives analyzed in this EA were developed under the guidance of biological opinions issued by NMFS. The proposed action is consistent with consultation standards established by NMFS.

Of the ESA-listed marine mammals described above, Council-managed salmon fisheries only impact listed Southern Resident Killer Whales. Fisheries are managed consistent with the biological opinion for killer whales (NMFS, May 5, 2009). Effects on listed Puget Sound yelloweye rockfish, canary rockfish, and bocaccio and Pacific eulachon were addressed in a 2010 biological opinion (NMFS 2010b). The effects to ESA-listed North American green sturgeon were considered in a 2007 biological opinion (NMFS 2007b).

The following BOs and Section 4(d) determinations have been prepared for West Coast stocks by NMFS.

Table 1. NMFS ESA Biological Opinions regarding Evolutionarily Significant Units (ESUs) and Distinct Population Segments (DPSs) affected by PFMC Fisheries.

<table>
<thead>
<tr>
<th>Date</th>
<th>Duration</th>
<th>Species Considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 8, 1996</td>
<td>until reinitiated</td>
<td>Snake River spring/summer and fall Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snake River sockeye</td>
</tr>
<tr>
<td>April 28, 1999</td>
<td>until reinitiated</td>
<td>S. Oregon/N. California Coastal coho</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central California Coast coho</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oregon Coast natural coho</td>
</tr>
<tr>
<td>April 28, 2000</td>
<td>until reinitiated</td>
<td>Central Valley Spring-run Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California Coastal Chinook</td>
</tr>
<tr>
<td>April 27, 2001</td>
<td>until withdrawn</td>
<td>Hood Canal summer-run chum</td>
</tr>
<tr>
<td>April 30, 2001</td>
<td>until reinitiated</td>
<td>Upper Willamette River Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Columbia River chum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ozette Lake sockeye</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Columbia River spring-run Chinook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten listed steelhead DPSs</td>
</tr>
<tr>
<td>June 13, 2005</td>
<td>until reinitiated</td>
<td>California Coastal Chinook</td>
</tr>
<tr>
<td>April 4, 2015</td>
<td>until reinitiated</td>
<td>Lower Columbia River coho</td>
</tr>
<tr>
<td>April 30, 2010</td>
<td>until reinitiated</td>
<td>Sacramento River winter-run Chinook</td>
</tr>
<tr>
<td>April 29, 2004</td>
<td>until reinitiated</td>
<td>Puget Sound Chinook</td>
</tr>
<tr>
<td>April 26, 2012</td>
<td>until reinitiated</td>
<td>Lower Columbia River Chinook</td>
</tr>
</tbody>
</table>
Coastal Zone Management Act (CZMA)

Section 307(c)(1) of the CZMA of 1972 requires all Federal activities that directly affect the coastal zone be consistent with approved state coastal zone management programs to the maximum extent practicable. These management measures are based primarily on the Salmon FMP and its amendments, which were previously found to be consistent to the maximum extent practicable with the approved coastal zone management programs of the affected States. This determination has been submitted to the responsible state agencies for review under section 307(c)(1) of the CZMA, and reviewed for consistency with the Washington/Oregon/California coastal zone management programs. None of the alternatives are expected to affect any state’s coastal management program.

Migratory Bird Treaty Act

The Migratory Bird Treaty Act of 1918 was designed to end the commercial trade of migratory birds and their feathers that, by the early years of the 20th century, had diminished populations of many native bird species. The act states it is unlawful to take, kill, or possess migratory birds and their parts (including eggs, nests, and feathers) and is a shared agreement between the United States, Canada, Japan, Mexico, and Russia to protect a common migratory bird resource. The Migratory Bird Treaty Act prohibits the directed take of seabirds, but the incidental take of seabirds does occur. None of the alternatives directly affect any seabirds protected by the Migratory Bird Treaty Act.

Executive Order 13175: Consultation and Coordination with Indian Tribal Governments (EO 13175)

Executive Order 13175 is intended to ensure regular and meaningful consultation and collaboration with tribal officials in the development of Federal policies that have tribal implications, to strengthen the United States government-to-government relationships with Indian tribes, and to reduce the imposition of unfunded mandates upon Indian tribes.

The Secretary recognizes the sovereign status and co-manager role of Indian tribes over shared Federal and tribal fishery resources. At Section 302(b)(5), the MSA reserves a seat on the Council for a representative of an Indian tribe with Federally-recognized fishing rights from California, Oregon, Washington, or Idaho.

The U.S. government formally recognizes that the four Washington Coastal Tribes (Makah, Quileute, Hoh, and Quinault) have treaty rights to fish for salmon within the Council-managed area. Each of the treaty tribes has the discretion to administer their fisheries and to establish their own policies to achieve program objectives. In addition, other tribes with Federally-recognized fishing rights may be impacted by Council-area fisheries, including tribes from Puget Sound, the Columbia River, and the Klamath River.
Accordingly, the proposed action and other alternatives have been developed through the Council process. Through the tribal representative on the Council, the Tribes have had a role in the developing the proposed action and analyzing the effects of the alternatives; therefore, the proposed action is consistent with EO 13175.

Executive Order 12898: Environmental Justice

Executive Order 12898 obligates Federal agencies to identify and address “disproportionately high adverse human health or environmental effects of their programs, policies, and activities on minority and low-income populations in the United States” as part of any overall environmental analysis associated with an action. NOAA guidance, NAO 216-6, at 7.02, states that “consideration of Executive Order 12898 should be specifically included in the NEPA documentation for decision making purposes.” Agencies should also encourage public participation “especially by affected communities” as part of a broader strategy to address environmental justice issues.

The environmental justice analysis must first identify minority and low-income groups that live in the project area and may be affected by the action. Typically, census data are used to document the occurrence and distribution of these groups. Agencies should be cognizant of distinct cultural, social, economic or occupational factor that could amplify the adverse effects of the proposed action. (For example, if a particular kind of fish is an important dietary component, fishery management actions affecting the availability or price of that fish could have a disproportionate effect.) In the case of Indian tribes, pertinent treaty or other special rights should be considered. Once communities have been identified and characterized, and potential adverse impacts of the alternatives are identified, the analysis must determine whether these impacts are disproportionate. Because of the context in which environmental justice developed, health effects are usually considered and three factors may be used in an evaluation: whether the effects are deemed significant, as the term is employed by NEPA; whether the rate or risk of exposure to the effect appreciably exceeds the rate for the general population or some other comparison group; and whether the group in question may be affected by cumulative or multiple sources of exposure. If disproportionately high adverse effects are identified, mitigation measures should be proposed. Community input into appropriate mitigation is encouraged.

Fisheries conducted under the FMP are not expected to disproportionately affect minority and low-income communities. West Coast Indian tribes are part of the Council’s decision-making process on salmon management issues, and tribes with treaty rights to salmon, groundfish, or halibut have a seat on the Council. Available demographic data detailed in the Salmon FMP Amendment 14, Appendix B show that coastal counties where fishing communities are located are variable in terms of social indicators like income, employment, and race and ethnic composition. As a result, the alternatives are not expected to have notable effects on fishing communities in general, nor on minority and low income groups in particular.

Executive Order 13132: Federalism

Executive Order 13132 enumerates eight “fundamental federalism principles.” The first of these principles states “Federalism is rooted in the belief that issues that are not national in scope or significance are most appropriately addressed by the level of government closest to the people.” In this spirit, the Executive Order directs agencies to consider the implications of policies that may limit the scope of or preempt states’ legal authority. Preemptive action having such “federalism implications” is subject to a consultation process with the states; such actions should not create unfunded mandates for the states; and any final rule published must be accompanied by a “federalism summary impact statement.”
The Council process offers many opportunities for states and Indian tribes (through their agencies, Council appointees, consultations, and meetings) to participate in the formulation of management frameworks and management measures implementing the framework. This process encourages states and tribes to institute complementary measures to manage fisheries under their jurisdiction that may affect federally managed stocks.

The proposed action would not have federalism implications subject to Executive Order 13132.

REGULATORY FLEXIBILITY ACT (RFA)

This action is exempt from the procedures of the RFA because NMFS is waiving notice and comment for the reasons described below under the Administrative Procedures Act determination section.

ADMINISTRATIVE PROCEDURE ACT (APA)

NOAA’s Assistant Administrator for Fisheries (AA) finds it is impracticable and contrary to public interest to provide for prior notice and comment on the rule implementing the salmon management measures and waives this requirement under 5 U.S.C. 553(b)(B) for the reasons explained below.

The annual salmon management cycle begins May 1 and continues through April 30 of the following year. May 1 was chosen because the pre-May harvests constitute a relatively small portion of the annual catch. The time frame of the preseason process for determining the annual modifications to ocean salmon fishery management measures depends on when the pertinent biological data are available. Salmon stocks are managed to meet annual spawning escapement goals or specific exploitation rates. Achieving either of these objectives requires designing management measures that are appropriate for the ocean abundance predicted for that year. These preseason abundance forecasts, which are derived from previous years’ observed spawning escapements, vary substantially from year to year, and are not available until January and February because spawning escapement continues through fall.

The preseason planning and public review process associated with developing Pacific Fishery Management Council (Council) recommendations is initiated in February as soon as the forecast information becomes available. The public planning process requires coordination of management actions of four states, numerous Indian tribes, and the Federal Government, all of which have management authority over the stocks. This complex process includes the affected user groups, as well as the general public. The process is compressed into a two-month period which culminates at the April Council meeting at which the Council adopts a recommendation that is forwarded to NMFS for review, approval, and implementation of fishing regulations effective on May 1.

As described in the Federal Register Notice for this action under the “Schedule Used to Establish 2017 Management Measures” section, the Council solicited public comment on its proposed management options and notified the public of the measures it recommended to NMFS for implementation. In addition to opportunities for public input at the March and April Council meetings, the Council held public hearings on the alternatives in each coastal state between the March and April Council meetings. In addition to the Council process, notice and opportunity for public comment is provided through meetings and caucuses of State, Tribal, local governments, and the various user groups. This parallel process occurs throughout the February to April time frame when Council recommendations are developed. The major meetings that concern salmon fisheries on the West Coast include the North of Cape Falcon Forum, sponsored by the state of Washington and Northwest Indian tribes with treaty fishing rights; U.S. v. Oregon meetings related
to ocean and Columbia River fisheries; and meetings held by the Oregon Fish and Wildlife Commission and the California Fish and Game Commission. Recommendations and information from these forums are incorporated into the Council process when representatives from these entities provide comments and information at Council sponsored functions.

Providing opportunity for prior notice and public comments on the Council’s recommended measures through a proposed and final rulemaking process would require 30 to 60 days in addition to the two-month period required for development of the regulations. Delaying implementation of annual fishing regulations, which are based on the current stock abundance projections, for an additional 60 days, would require that fishing regulations for May and June be set in the previous year, without knowledge of current stock status. Although this is currently done for fisheries opening prior to May, relatively little harvest occurs during that period (e.g., less than 4 percent of commercial and recreational harvest occurred prior to May 1 in the last decade, 2006 through 2015). Allowing the much more substantial harvest levels normally associated with the May and June seasons to be regulated in a similar way would impair NMFS’s ability to protect weak stocks and ESA-listed stocks, and provide harvest opportunity where appropriate. The choice of May 1 as the beginning of the regulatory season balances the need to gather and analyze the data needed to meet the management objectives of the Salmon FMP and the requirements to provide adequate public notice and comment on the regulations implemented by NMFS. Providing for notice and public comment on the Council’s recommendations, in addition to that provided for through the Council process, is therefore impracticable and contrary to the public interest.

If these measures are not in place on May 1, ocean salmon fisheries will not open as scheduled. This would result in excessive impacts on some salmon stocks, while forgoing harvest opportunities for salmon north of Cape Falcon, Oregon and negative economic impacts.

Overall, the annual population dynamics of the various salmon stocks require managers to vary the season structure of the various West Coast area fisheries to both protect weaker stocks and give fishers access to stronger salmon stocks, particularly hatchery produced fish. Failure to implement these measures immediately could negatively impact international, state, and tribal salmon fisheries, thereby undermining the purposes of this Agency action. Based upon the above-described need to have these measures effective on May 1 and the fact that there is limited time available to implement these new measures after the final Council meeting in April and before the commencement of the ocean salmon fishing year on May 1, NMFS has concluded it is impracticable to provide an opportunity for prior notice and public comment under 5 U.S.C. 553(b)(B).

The AA also finds that good cause exists under 5 U.S.C. 553(d)(3), to waive the 30-day delay in effectiveness of this action. As previously discussed, these measures are essential to conserve threatened and endangered salmon stocks, and to provide for harvest of more abundant stocks. If these measures are not in place on May 1, then the West Coast ocean salmon fisheries will not open as scheduled.

To enhance notification to the fishing industry of this action, NMFS will announce the new measures over the telephone hotline used for inseason management actions and also post the regulations on its West Coast Region website (http://www.westcoast.fisheries.noaa.gov). Additionally, NMFS will advise the states of Washington, Oregon, and California on the new management measures. These states announce the seasons for applicable state and Federal fisheries through their own public notification systems.
Finding of No Significant Impact

Finding of No Significant Impact for Authorization for
2017 OCEAN SALMON FISHERIES MANAGEMENT MEASURES
(XRIN 0648-BG59)

National Marine Fisheries Service
(NMFS)

The National Oceanic and Atmospheric Administration Administrative Order 216-6A (April 22, 2016), and its Companion Manual (January 13, 2017) contain criteria for determining the significance of the impacts of a proposed action. In addition, the Council on Environmental Quality regulations at 40 C.F.R. §1508.27 state that the significance of an action should be analyzed both in terms of “context” and “intensity.” Each criterion listed below is relevant to making a finding of no significant impact and has been considered individually, as well as in combination with the others. The significance of this action is analyzed based on the NAO 216-6A Companion Manual criteria and CEQs context and intensity criteria. These include:

1) Can the proposed action reasonably be expected to cause substantial damage to the ocean and coastal habitats and/or essential fish habitat as defined under the Magnuson-Stevens Act and identified in Fishery Management Plans (FMPs)?

Response: The proposed action would not cause substantial damage to the ocean or coastal habitats or essential fish habitat based on previous analysis (e.g., Appendix A of Salmon FMP Amendment 18). Council area ocean salmon fisheries are hook-and-line fisheries. Hook-and-line gear does not adversely affect the ocean floor and thus, does not damage ocean or coastal habitats. Nets and bottom contact gear are not permitted in the ocean salmon fisheries.

2) Can the proposed action be expected to have a substantial impact on biodiversity and/or ecosystem function within the affected area (e.g., benthic productivity, predator-prey relationships, etc.)?

Response: Substantial impacts to biodiversity and ecosystem function would not be anticipated because higher trophic-level species affected by the salmon fisheries are primarily marine mammals, which generally are opportunistic feeders with various available prey options and their populations have been stable or increasing. Considerations specifically related to Southern Resident killer whales (SRKW) are more complicated but are addressed in more detail through NMFS' Endangered Species Act (ESA) Section 7 consultation on the fisheries, as noted below in the response to question 4. Overall, the Pacific Coast salmon fisheries have a minimal impact on marine mammals, as noted above. Direct salmon fisheries impacts on seabirds are minimal to non-existent. Harvest removes fish that otherwise would have remained in the ecosystem to prey on lower trophic levels; however, salmon fisheries' removals are not significant in this respect and wide-scale changes in oceanographic conditions, resulting from El Niño events for example, are the primary determinants of abundance, variability, and structure of lower trophic level populations. In addition, maintaining biodiversity by conserving salmon evolutionarily significant units is a key management goal.

Environmental Assessment:
2017 Ocean Salmon Fisheries Management Measures
(0648-BG59) 1 April 2017
3) Can the proposed action reasonably be expected to have a substantial adverse impact on public health or safety?

Response: This proposed action would not impact public health or safety because the proposed action, consistent with the Salmon FMP, has provisions to adjust management measures if unsafe weather affects the fisheries’ access and is consistent with previously analyzed management measures used since the FMP was adopted.

4) Can the proposed action reasonably be expected to adversely affect endangered or threatened species, their critical habitat, marine mammals, or other non-target species?

Response: This proposed action would not significantly affect any endangered or threatened species or its habitat. Several salmonid species that are potentially caught in the fisheries are listed as threatened or endangered under the ESA. NMFS has issued biological opinions addressing the effects of the fisheries on all of these species. The alternatives for the 2017 fisheries were developed consistent with the biological opinions for these species. In addition, SRKW are listed as endangered under the ESA. The alternatives for the 2017 fisheries were developed consistent with NMFS’ ESA Section 7 consultation on the effects of the Salmon FMP on SRKW. This consultation, dated May 5, 2009, concluded that fisheries conducted under the Salmon FMP were not likely to jeopardize SRKW or adversely modify its critical habitat.

Ocean salmon fisheries are classified under the Marine Mammal Protection Act (MMPA) as Category III (82 FR 3655, January 12, 2017), indicating there is “a remote likelihood of or no known incidental mortality or serious injury of marine mammals” (MMPA 118(c) I).

5) Are significant social or economic impacts interrelated with natural or physical environmental effects?

Response: Social and economic impacts are responsive to the level of fishing, and the level of fishing is directly related to forecasts of salmon stock abundance in relation to required conservation measures. Projections for 2017 suggest a combined economic value for commercial and recreational fisheries that is somewhat more than the value in 2016 and below recent averages for the period of 2012 through 2016. The projected economic value for 2017 commercial salmon fisheries (ex-vessel value) is $11.4 million (compared with the 2012-2016 average of $23.6 million). The projected economic value (coastal community impacts) for 2017 recreational salmon fisheries is $48.8 million (compared with the 2012-2016 average of $52.3 million). All these dollar values are in inflation-adjusted 2016 values.

There would not be significant natural or physical environmental effects expected to result from the proposed action. Therefore, there would not be any significant social or economic impacts interrelated with significant natural or physical environmental effects.
6) Are the effects on the quality of the human environment likely to be highly controversial?

Response: The impacts of the proposed action would not be expected to be controversial, due to the use of the best available science in decision-making, as provided by the Council’s Salmon Technical Team (STT) and Scientific and Statistical Committee (SSC) during development of the alternatives. The proposed action was developed through the Council process, including a four-week period of extensive public review and discussion of the alternatives. Public hearings were held in each of the West Coast states (California, Oregon, and Washington), in addition to the March and April Council meetings. The Council considered these public comments when adopting the proposed action.

7) Can the proposed action reasonably be expected to result in substantial impacts to unique areas, such as historic or cultural resources, park land, prime farmlands, wetlands, wild and scenic rivers, essential fish habitat, or ecologically critical areas?

Response: No significant impacts would be expected to occur in any of the above areas. No ground disturbing activity is part of this proposed action.

8) Are the effects on the human environment likely to be highly uncertain or involve unique or unknown risks?

Response: The effects of this proposed action would not be anticipated to be highly uncertain or involve unknown risks. The proposed 2017 ocean salmon fisheries would be comparable to previous fisheries developed under the Salmon FMP, which has been in place for many years. Salmon fisheries conducted under the FMP have been monitored and analyzed in the Council’s pre-season process for many years and, thus, risks from the fisheries are relatively well known. There is some uncertainty involved in projecting stock abundance in a given year; however, such uncertainty is addressed by implementing precautionary management measures to protect the less abundant stocks (i.e., “weak” stocks). In order to prevent overfishing on, and conserve, the weaker stocks, there is less harvest opportunity on the more abundant stocks that intermix with weak stocks in the fisheries.

The proposed action would deviate from the north of Cape Falcon coho allocation schedule in the FMP; NMFS would need to implement an alternative that deviates from the FMP through a temporary rule for emergency action. The Council Operating Procedures include criteria for requesting an emergency rule, including that the action would not decrease the long term yield from the stock complex and that the action is necessary to meet FMP objectives. The Council considered these criteria and voted unanimously to recommend an alternative that would deviate from the FMP and require an emergency rule, see section Part 2, section 3.0 of the EA. Consistent with NMFS policy guidelines for the use of emergency rules (62 FR 44421, August 21, 1997), NMFS has implemented ocean salmon fisheries under emergency rules in other years (e.g., 2008 and 2016) to meet conservation and management objectives.

Thus, there are no expected unknown risks associated with this proposed action.
9) Is the proposed action related to other actions with individually insignificant, but cumulatively significant impacts?

Response: The action would not be expected to have any significant cumulative effects. Fisheries are managed in a sustainable manner and consistent with the Magnuson-Stevens Fishery Conservation and Management Act (MSA), ESA, MMPA, and other applicable law. Managers account for impacts from other fisheries in developing the alternatives. Fisheries are conducted consistent with ESA consultations, which serve to protect multiple stocks in the mixed-stock ocean salmon fisheries, especially where ocean distributions overlap. Management measures for the ocean salmon fisheries are developed annually taking into account scientific and management information from the prior year’s fisheries, as well as new scientific information regarding stock status and environmental conditions that may affect the stocks, and socio-economic impacts of the alternatives.

10) Is the proposed action likely to adversely affect districts, sites, highways, structures, or objects listed in or eligible for listing in the National Register of Historic Places or may cause loss or destruction of significant scientific, cultural or historical resources?

Response: No significant effects of this proposed action would be anticipated on cultural, scientific, or historical resources. No ground disturbing activity is anticipated. In addition, tribes have representation on the Council and are involved in the preseason planning process.

11) Can the proposed action reasonably be expected to result in the introduction or spread of a nonindigenous species?

Response: The proposed action would not be expected to import, introduce, or contribute to the spread of non-indigenous species. The fishing vessels participating in the proposed action would not increase the risk of introduction through ballast water or hull fouling. Disposition of the catch does not include any translocation of living marine resources, nor use of any nonindigenous species as bait.

12) Is the proposed action likely to establish a precedent for future actions with significant effects or represents a decision in principle about a future consideration?

Response: The action would not be setting precedents for future actions with significant effects because the fisheries management measures are structured each year based on the best available scientific information.

13) Can the proposed action reasonably be expected to threaten a violation of Federal, State, or local law or requirements imposed for the protection of the environment?

Response: This proposed action would not threaten a violation any federal, state, or local law or requirement imposed for the protection of the environment.
14) Can the proposed action reasonably be expected to result in cumulative adverse effects that could have a substantial effect on the target species or non-target species?

Response: Cumulative effects were analyzed in the “Preseason Report II” part of the Environmental Assessment. While several actions and events are described that could impact cumulative effects related to the proposed action, none were determined to result in substantial cumulative adverse effects.

15) Can the proposed action reasonably be expected to jeopardize the sustainability of any target species that may be affected by the action?

Response: No, the proposed action would not jeopardize the sustainability of target species. Preseason analyses conducted by the Council’s STT and SSC provide managers with information needed to structure the fisheries consistent with the MSA; conservation objectives, annual catch limits, control rules, and status determination criteria for each stock or complex; and accountability measures as described in the Salmon FMP. The FMP conservation objectives are based on the best available science and are intended to prevent overfishing while achieving optimum yield from West Coast salmon fisheries, as required by the MSA.

One Chinook salmon stock, Klamath River fall Chinook, is not expected to meet its conservation objective for spawning escapement in 2017, even without Council-area ocean fisheries impacts, and is, therefore, subject to a harvest control rule in the FMP that provides for de minimis fisheries impacts. Under the proposed action, fisheries would be managed consistent with the harvest control rule.

The estimated abundance for Queets River coho in 2017 is sufficient to meet its forecast escapement objective after estimated ocean fisheries impacts, but when combined with estimated impacts from in-river fisheries, analyses concluded that the spawning escapement would not be met. The State of Washington and the treaty tribes that are parties to U.S. v Washington and Hoh v Baldrige, agreed to a reduced spawning escapement objective for 2017, consistent with provisions of the FMP. Additionally, the Southern Panel of the Pacific Salmon Commission (PSC) concurred with a deviation from the exploitation rate in the PSC’s Southern Coho Management Plan for 2017, consistent with the provisions of the Pacific Salmon Treaty (Pacific Salmon Treaty, Article XV, Annex IV, Chapter 5, paragraph 11(c)). The Council recommended measures that would limit fisheries impacts on Queets coho while allowing harvest of more abundant stocks in the area north of Leadbetter Point, Washington; these measures would include a deviation from the FMPs coho allocation schedule in order to reduce fisheries impacts on Queets coho in commercial fisheries.

With the thorough analyses and planning that occurred in the Council process to develop the Council’s recommended management measures, the level of fishing impacts of the proposed action would not be expected to affect the ability of the salmon stocks to produce maximum sustainable yield in the long term.
16) Can the proposed action reasonably be expected to jeopardize the sustainability of any non-target species?

This proposed action would not jeopardize the sustainability of non-target species. For salmon species listed under the ESA, the ocean salmon fisheries are structured such that impacts on listed species are consistent with the applicable ESA consultation standards articulated in the biological opinions analyzing the impacts on those species, as discussed in response to Question 4, above. For non-salmon species, regulations are in place under the Pacific Coast Groundfish FMP and the Halibut Act and Area 2A Catch Sharing Plan to limit incidental catch in the salmon fisheries of halibut and groundfish to ensure that impacts to these species are sustainable. These regulations include landing/possession limits, quotas, size limits, gear restrictions, and time/area closures. Encounters of non-target salmonid species (e.g., chum and sockeye salmon, and steelhead) in the ocean salmon fisheries are generally minimal.
DETERMINATION

In view of the information presented in this document and the analysis contained in the supporting Final Environmental Assessment prepared for 2017 Ocean Salmon Fisheries Management Measures (XRN 0648-BG59), it is hereby determined that the 2017 ocean salmon fisheries management measures will not significantly impact the quality of the human environment as described above and in the Final Environmental Assessment. In addition, all beneficial and adverse impacts of the proposed action have been considered to reach the conclusion of no significant impacts. Accordingly, preparation of an environmental impact statement (EIS) for this action is not necessary.

The alternatives for the 2017 ocean salmon fisheries management measures were developed through the Council process, which provides many opportunities for public comment. The Council and NMFS both published notices in the Federal Register to notify the public of meeting dates and opportunities to provide comment on the development of alternatives (e.g., 81 FR 95568 and 82 FR 2859). The Council and its advisory bodies met March 7–13, 2017, in Vancouver, Washington, and developed three alternatives, which were adopted, for ocean salmon fisheries seasons that will commence on May 1, 2017. The Council met again April 6–11, 2017, in Sacramento, California, to adopt a final preferred alternative. During these Council meetings, and the nearly four-week period between meetings, the public had opportunities to review the alternatives as they were developed and to comment on the three adopted alternatives. Between the March and April Council meetings, the Council held public hearings in each of the coastal states (Washington, Oregon, and California). Public input given throughout the process informed the Council’s final recommendation for the annual management measures. This schedule was established under the Pacific Coast Salmon Fishery Management Plan (FMP).

Barry A. Thom
Regional Administrator
West Coast Region
National Marine Fisheries Service

Date
April 21, 2017