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Fig. 1. Payoff of bottom-up models versus their
complexity. A model's payoff is determined not
only by how useful it is for the problem it was
developed for, but also by its structural realism;
ie, its ability to produce independent predictions
that match observations. If model design is guided
only by the problem to be addressed Swhich often
is the explanation of a single pattern), the model
will be too simple. If model design is driven by all
the data available, the model will be too complex.
But there is a zone of intermediate complexity
where the payoff is high. We call this the
“Medawar zone® because Medawar described a
similar relation between the difficulty of a
scientific problem and its payoff (47). If the very
process of model development is guided by
multiple patterns observed at different scales
and hierarchical levels, the model is likely to end
up in the Medawar zone.
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Spatial Structure
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Key physical drivers

e Temperature at Keswick ¢ Flows throughout river

— Egg to Fry Survival (Apr — and Delta
Oct) — Rearing capacity
— Spawn timing (Apr) * Flow at Wilkins Slough
* Fremont Weir Spill — Movement Lower River
— Yolo entrance probability to Delta
 Flow at Hood * Delta Hydrodynamics

— Smolt survival — Smolt survival
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“To the extent that fish behave
passively, this model is probably
suitable for describing Delta-wide
movement”
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“It was emphasized by the 2010 OCAP IRP
(Anderson et al. 2010, p 24) and confirmed by
the Acoustic Tag Study conducted in April-
May 2012 that steelhead smolts do not
behave like passive particles and it was
simply inappropriate to rely on the PTM to
direct water operations intended to protect
out-migrating juvenile steelhead”



Modifications of DSM2-PTM to increase biological realism

Particle Features DSM2-PTM

Swimming behavior  Goes with flow Selective tidal transport
with possible navigation
error

Route selection Proportional to flow Proportional to flow*

Mortality Immortal Survival depends on

distance travelled and time

Key parameters:

e Predator density

* Predator-prey random velocities
e Swimming speed

e Velocity threshold

e Probability of confusion




Swimming behavior in the estuary
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