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Agenda 
• What is the best available science on juvenile 

salmon migration in the Delta? 
• What are we actually modeling? 
• What was in ePTM v.0? 
• What are we changing in v.1.0? 
• Next steps ... 
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What we know about typical migrating juvenile salmon 
River/Upper estuary: 
• Strong urge to migrate away from natal streams 
• Spatial and temporal distribution of migration rates 
• Migration rate faster with oceanward flow, and slower with landward flow 
• Holding position during flood tides and oceanward swimming during ebb tides. Drifting when landward 

flow becomes very strong 
• Swimming orientation based on sensory inputs 
• Diel migration pattern, with holding during daylight hours 
Lower estuary: 
• More uniform daily migration pattern 
• Swimming orientation potentially due to several hydrodynamic and water quality cues 
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In the Delta 
• Migration mechanics vary between runs 
• Migration mechanics vary between hatchery and wild salmon 
• Migration mechanics and survival vary between life stages (migrating vs. 

rearing fry vs. smolts) 
• Predator avoidance, migration mechanics, route selection and survival vary 

by fork length 
• Covariates could affect swimming speeds, migration rates, predation, and 

survival 
• Various studies highlight effects of different covariates 
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Migration mechanics 
• Diel migration predominantly at night, and increasingly 

during day as well oceanward 
• Increased bi-directional diel detections during high flows 
• Possible flood-tide holding occurring 
• Durations typically less than 30 days 
• Migration rate is slowest in Delta 
• Fish don’t obey flow splits at junctions 
• North Delta, South Delta routes 
• Delta routes have lower survival 
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Predation 
• Complex assemblages of predators depending on 

environmental covariates 

• Predation knowledge driven by expert opinion 

• Predators behave differently and sample different 
parts of water column 

• Only beginning to address predation events and 
differentiate predators from salmon smolts 

Largemouth Striped 
Bass Bass 

Smallmouth Green 
Bass Sunfish 

Sacramento 
Pikeminnow Crappie 

Channel White 
Catfish Catfish 
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ePTM v.0: a first attempt at modeling migration 
• Represented behaviors based on representative hydrodynamics 

• Represented swimming behavior based on lab studies 

• Multiple models representing complex biophysical processes 

• Calibration, validation, and application steps continuously 
updated 
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ePTM v1.0:  a more streamlined model 
• Developing the simplest possible model that integrates various scientific 

results from different studies 
• Fish now making decisions based on the local hydrodynamics they 

experience 
• Definition and parametrization of swimming velocity now different, so that 

migration rates are comparable to those observed 
• Swimming, directional orientation, and memory now decoupled 
• Presenting an aligned calibration, validation and application pathway 
• Improved hydrodynamics and water quality co-variate response 
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We are simulating migration, not movement 
All the fine-scale behaviors below are averaged into a 15 minute – 
1 hour average migration rate: 
• Individual swimming patterns – rheotaxis, foraging, feeding, Milliseconds 

predator evasion, bioenergetic holding, etc. to seconds 
• Response to local thermal variability, turbulence, coherent Seconds to 

structures, obstacles, etc. minutes 
• Endurance runs, bursts of speed, recovery times, resting, etc. Seconds to 

minutes 

• Group dynamics: individual response to stimuli, group Microseconds 
contagion, etc. to seconds 
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Big takeaway 

During each model timestep, 
fish are doing their thing… 

We take snapshots at the 
beginning and at the end of 
the timestep 
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At the scale of motion we have information on… 
• Migration rates through reaches First acoustic-tag detection 

histories 
• Travel time distributions through reaches First acoustic-tag detection 

histories 
• Survival statistics through reaches Mark-recapture inferences 
• Diel detection patterns Acoustic-tag detections 
• Tidal detection patterns Acoustic-tag detections 
• Predation hotspots Autopsies, acoustic-tag detection 

filtering, predator surveys 
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Big takeaway 

We are inferring macro-scale 
migratory patterns from very 
coarse scale records of fish 
passage. 
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Hydrodynamics 
• Cross-sectional mixing: diffusivity structure, vertical 

movement mechanism, and what happens near water 
column boundaries 

• Bends: implementing a simplified lateral momentum 
balance 

• Junctions: implementing the critical streakline based 
partitioning of simulated juvenile salmon 

• Prop 1 work addresses more fundamental scientific 
questions 
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Biology 

• Diel swimming (a probability) 
• Predation (one or more generic predators via the X-T model) 
• Migration rate from a log-normal distribution 
• Migration direction based on memory, as well as local flows (still 

logistic) 
• Flood phase holding based on local velocity (and a general sense 

of the oceanward direction) 
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Next steps 

• Debugging and testing 

• Calibrating and validating (potentially with CWT data) 

• Reporting: 2 papers by the end of the year 

• Producing a robust, useful, and accessible tool 
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Thank you 
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Supplemental material 
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Biology of chinook salmon migrating through the Delta 

Swimming behavior Migration rate 
Migration routes Migration duration 
Survival Predation 

Effect of environmental covariates 

Size and condition effects Life history trajectory 
Source variegation Inter-species effects 
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Swimming speeds 
• Respirometers and race track flumes: Sustained 

swimming speeds under stress can be about 4.3-11 
body lengths per second 

• In the rivers: swimming speeds are typically 1.5-2 
body lengths per second 
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Water operations, exports and entrainment 
• Exports confuse fish about migration direction 

• Exports decrease survival due to entrainment into pumps 

• Lower flow in conjunction with exports reduces survival 

• Entrainment zone depends on export levels and barrier 
placements 

• Effect can extend to North and West Delta as well, 
particularly when Delta Cross Channel is in operation 
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CDFW Proposition 1 proposed work 
• Cross-sectional mixing: becomes more complicated 

with 2D and 3D 
• Submerged islands: implementing simulated salmon 

residences using reactor theory 
• Open water processes: parametrization from SCHISM 
• Hydraulic controls and predation hotspots: 

parametrization from 2D hydroacoustic datasets 
• Navigation and predation: more data driven using ML 
• Response to covariates: temperature, turbidity, 

salinity 
• Repurposing CWT data: rich validation dataset, and 

allows us to go much farther back than AT datasets 
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Coded wire tag data 
• Graph of CWT release 
locations and beach seine 
and trawl locations 

• Trellis diagrams useful for 
Bayesian analysis of hidden 
models 

• Stitching together survivals 
from CWT and AT datasets 
using flow and path lengths 

• A unified survival map 
• Probability graphical model 
to determine likely migration 
routes/ rearing times 



           

        
 

        
          

 

      

      

   

    
     

Putting it all together: predation, the habitat layer, and net 
survival 
Total carrying capacity of a node 

type at that node 
Importance of each node = 

Scaled up number of fish released per 
node = 
Number of fish released per node x 
importance of each node 

Through Delta survival = 
Average survival of fish 
released from each node 
weighted by scaled up number 
of fish released per node 

Total carrying capacity of habitat areas of that node / 
Total carrying capacity of habitat areas in the whole Delta 

= 
Sum of carrying capacities of habitat types weighted by area of each habitat 
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	Increased bi-directional diel detections during high flows 

	• 
	• 
	Possible flood-tide holding occurring 

	• 
	• 
	Durations typically less than 30 days 

	• 
	• 
	Migration rate is slowest in Delta 

	• 
	• 
	Fish don’t obey flow splits at junctions 

	• 
	• 
	North Delta, South Delta routes 

	• 
	• 
	Delta routes have lower survival 
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	Figure
	Predation 
	• 
	• 
	• 
	Complex assemblages of predators depending on environmental covariates 

	• 
	• 
	Predation knowledge driven by expert opinion 

	• 
	• 
	Predators behave differently and sample different parts of water column 

	• 
	• 
	Only beginning to address predation events and differentiate predators from salmon smolts 


	Largemouth Striped Bass Bass 
	Figure
	Smallmouth Green Bass Sunfish 
	Figure
	Sacramento 
	Sacramento 
	Sacramento 

	Pikeminnow 
	Pikeminnow 
	Crappie 

	Channel 
	Channel 
	White 

	Catfish 
	Catfish 
	Catfish 


	Figure
	Figure
	U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 7 
	Figure

	ePTM v.0: a first attempt at modeling migration 
	ePTM v.0: a first attempt at modeling migration 
	• 
	• 
	• 
	Represented behaviors based on representative hydrodynamics 

	• 
	• 
	Represented swimming behavior based on lab studies 

	• 
	• 
	Multiple models representing complex biophysical processes 

	• 
	• 
	Calibration, validation, and application steps continuously updated 
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	ePTM v1.0:  a more streamlined model 
	• 
	• 
	• 
	Developing the simplest possible model that integrates various scientific results from different studies 

	• 
	• 
	Fish now making decisions based on the local hydrodynamics they experience 

	• 
	• 
	Definition and parametrization of swimming velocity now different, so that migration rates are comparable to those observed 

	• 
	• 
	Swimming, directional orientation, and memory now decoupled 

	• 
	• 
	Presenting an aligned calibration, validation and application pathway 

	• 
	• 
	Improved hydrodynamics and water quality co-variate response 
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	We are simulating migration, not movement 
	All the fine-scalebehaviors belowareaveragedinto a 15 minute – 1 hour average migration rate: 
	• 
	• 
	• 
	Individual swimming patterns – rheotaxis, foraging, feeding, Milliseconds predator evasion, bioenergetic holding, etc. to seconds 

	• 
	• 
	Response to local thermal variability, turbulence, coherent Seconds to structures, obstacles, etc. minutes 

	• 
	• 
	Endurance runs, bursts of speed, recovery times, resting, etc. Seconds to minutes 

	• 
	• 
	Group dynamics: individual response to stimuli, group Microseconds contagion, etc. to seconds 
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	Figure
	Big takeaway 
	During each model timestep, fish are doing their thing… 
	We take snapshots at the beginning and at the end of the timestep 
	Figure
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	At the scale of motion we have information on… 
	• 
	• 
	• 
	Migration rates through reaches First acoustic-tag detection histories 

	• 
	• 
	Travel time distributions through reaches First acoustic-tag detection histories 

	• 
	• 
	Survival statistics through reaches Mark-recapture inferences 

	• 
	• 
	Diel detection patterns Acoustic-tag detections 

	• 
	• 
	Tidal detection patterns Acoustic-tag detections 

	• 
	• 
	Predation hotspots Autopsies, acoustic-tag detection filtering, predator surveys 
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	Big takeaway 
	We are inferring macro-scale migratory patterns from very coarse scale records of fish passage. 
	Figure
	U.S. 
	U.S. 
	U.S. 
	Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 14 



	Figure
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	Figure
	Hydrodynamics 
	• 
	• 
	• 
	Cross-sectional mixing: diffusivity structure, vertical movement mechanism, and what happens near water column boundaries 

	• 
	• 
	Bends: implementing a simplified lateral momentum balance 

	• 
	• 
	Junctions: implementing the critical streakline based partitioning of simulated juvenile salmon 

	• 
	• 
	work addresses more fundamental scientific questions 
	Prop 1 
	Prop 1 
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	Biology 
	• 
	• 
	• 
	Diel swimming (a probability) 

	• 
	• 
	Predation (one or more generic predators via the X-T model) 

	• 
	• 
	Migration rate from a log-normal distribution 

	• 
	• 
	Migration direction based on memory, as well as local flows (still logistic) 

	• 
	• 
	Flood phase holding based on local velocity (and a general sense of the oceanward direction) 
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	Figure
	Next steps 
	• 
	• 
	• 
	Debugging and testing 

	• 
	• 
	Calibrating and validating (potentially with ) 
	CWT data
	CWT data



	• 
	• 
	Reporting: 2 papers by the end of the year 

	• 
	• 
	Producing a robust, useful, and accessible tool 
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	Swimming speeds 
	• 
	• 
	• 
	Respirometers and race track flumes: Sustained swimming speeds under stress can be about 4.3-11 body lengths per second 

	• 
	• 
	In the rivers: swimming speeds are typically 1.5-2 body lengths per second 
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	Figure
	Figure
	Water operations, exports and entrainment 
	• 
	• 
	• 
	Exports confuse fish about migration direction 

	• 
	• 
	Exports decrease survival due to entrainment into pumps 

	• 
	• 
	Lower flow in conjunction with exports reduces survival 

	• 
	• 
	Entrainment zone depends on export levels and barrier placements 

	• 
	• 
	Effect can extend to North and West Delta as well, particularly when Delta Cross Channel is in operation 
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	Figure
	Figure
	CDFW Proposition 1 proposed work 
	• 
	• 
	• 
	Cross-sectional mixing: becomes more complicated with 2D and 3D 

	• 
	• 
	Submerged islands: implementing simulated salmon residences using reactor theory 

	• 
	• 
	Open water processes: parametrization from SCHISM 

	• 
	• 
	Hydraulic controls and predation hotspots: 


	parametrization from 2D hydroacoustic datasets 
	• 
	• 
	• 
	Navigation and predation: more data driven using ML 

	• 
	• 
	Response to covariates: temperature, turbidity, salinity 

	• 
	• 
	Repurposing CWT data: rich validation dataset, and allows us to go much farther back than AT datasets 
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	Coded wire tag data 
	Coded wire tag data 
	• 
	• 
	• 
	Graph ofCWTrelease locationsandbeach seine and trawllocations 

	• 
	• 
	Trellisdiagramsusefulfor Bayesiananalysis ofhidden models 

	• 
	• 
	Stitchingtogethersurvivals from CWT and AT datasets using flow and path lengths 

	• 
	• 
	A unifiedsurvival map 

	• 
	• 
	Probabilitygraphicalmodel to determine likely migration routes/rearingtimes 


	Figure
	Putting italltogether:predation,thehabitatlayer,and net survival 
	Total carrying capacity of a node 
	type at that node 
	Importance of each node = 
	Scaled up number of fish released per node = Number offishreleasedper node x 
	importance of each node 
	ThroughDeltasurvival = 
	Average survival of fish releasedfrom eachnode weightedbyscaledupnumber of fish released per node 
	Total carrying capacity ofhabitat areas ofthat node / Total carrying capacity of habitat areas in the whole Delta = Sum of carrying capacities of habitat types weighted by area of each habitat 
	U.S. 
	U.S. 
	U.S. 
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