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How Do We Determine Values 

of Behavioral Parameters?
• Theory

– Hypotheses about fish behavior

• Trial and Error

– “Pattern matching” to observed data

• Problems:

– No uncertainty in parameter estimates

– Somewhat subjective



Goals

• Develop methods to fit models to observed data

• Methods should be general

– Applicable to any model

• Provide parameter estimates + uncertainty

• Allow assessment of different model structures



Challenges
• The ePTM is computationally burdensome

– Traditional optimization routines take too long

• Models are stochastic

– Gradient methods won’t work (e.g., Newton-Raphson)

– Traditional stochastic methods take too long

• A potential solution

– Gaussian process model + 

– Markov Chain Monte Carlo (MCMC) optimization



General Idea
• Build a simple model that predicts ePTM output

– Orders of magnitude faster than ePTM

• Set ePTM aside, use simple model for 

calibration

• Run ePTM at best-fit parameters

• Evaluate goodness of fit



Gaussian Process Models
• Distance-weighted interpolation

• Based on multivariate normal distribution

– e.g., Kriging

Source: 

http://www.gitta.info/C

ontiSpatVar/en/image/
kriging.jpg
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Developing

Gaussian Process Models (GPM)

Select N parameter sets
(Latin hyper cube sampling)

Run ePTM N times,
Once for each parameter set

N sets of model 
outputs

(travel time, survival)

Fit Gaussian 
Process Model
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Application to DSM2-ePTM
• 7 parameters (per reach)

• Swimming behaviors

– Swimming velocity (mean + SD)

– Daytime holding probability

– Velocity holding threshold 

• Selective tidal stream transport

– Probability of mis-assessing downstream direction

• Function of mean velocity relative to SD velocity

• XT Survival model (Anderson et al. 2005)

– , mean distance between predator-prey encounters

– , random encounter velocity



Acoustic Telemetry Data

– USFWS (Delta Action 8 study)

– Late-fall Chinook salmon

– Vemco acoustic telemetry

– 1,583 Acoustic tagged fish

– 4 Years (2007 – 2010)

– 8 unique release groups

– 9 reaches

– Migrated between December and February
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Gaussian Process Model

• 2000 parameter sets

– Run for each reach and release

– 144,000 ePTM model runs!

• Ran in parallel on Amazon cloud

• Model outputs for each reach and release

– Survival probability

– Proportion of fish in 20 travel time bins

– Flexible distribution shapes (e.g., bi-modal)



Likelihood Function

in MCMC Optimization Routine

• Multistate mark-recapture model

– Perry et al. (2010)

– Survival, detection, routing

• Multinomial distribution for travel times

– Proportion of fish in 20 travel time bins

– Observed number in each bin



Compare Alternative Models



Coupled physical-biological models

• Physical models

– Spatially explicit: 1D – 3D hydrodynamics

• Biological models

– Add “fishy” behaviors to neutrally buoyant particles

• E.g., swimming velocity, holding during day

• Conduct simulation experiments

– Water management actions

– Patterns from fish behaviors and hydrodynamics


