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Conservation of ecological communities requires deepening our understand-
ing of genetic diversity patterns and drivers at community-wide scales.
Here, we use seascape genetic analysis of a diversity metric, allelic richness
(AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically
demonstrate that large reefs high in coral cover harbour the greatest genetic
diversity on average. We found that a species’s life history (e.g. depth range
and herbivory) mediates response of genetic diversity to seascape drivers in
logical ways. Furthermore, a metric of combined multi-species AR showed
strong coupling to species richness and habitat area, quality and stability
that few species showed individually. We hypothesize that macro-ecological
forces and species interactions, by mediating species turnover and occupancy
(and thus a site’s mean effective population size), influence the aggregate
genetic diversity of a site, potentially allowing it to behave as an apparent
emergent trait that is shaped by the dominant seascape drivers. The results
highlight inherent feedbacks between ecology and genetics, raise concern
that genetic resilience of entire reef communities is compromised by factors
that reduce coral cover or available habitat, including thermal stress, and
provide a foundation for new strategies for monitoring and preserving
biodiversity of entire reef ecosystems.

1. Introduction

Known for their stunning arrays of colours, shapes and life forms, coral reefs are
captivating examples of extreme biodiversity. Hidden within the taxonomic and
life-history diversity found on reefs, but no less important, is the genetic diversity
carried within individuals and populations. Genetic diversity is the seed of
ecological and evolutionary processes like niche partitioning and species diversi-
fication that lead to the complex community structure typical of coral reefs and
other highly biodiverse ecosystems. In turn, community-level processes no
doubt have consequences for genetic diversity within populations, although
mechanisms are not well studied. Because of the many possible ways in which
genetic diversity may be linked to ecological functioning, adaptive capacity and
extinction risk, conservation strategies often call for preserving areas of high gen-
etic diversity [1,2]. When conservation strategies focus on habitats, communities
or ecosystems, as is common for coral reefs, it is important to understand how
genetic diversity patterns vary across co-distributed species, because including
genetic data can shift conservation priorities dramatically [3].
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Figure 1. Map of the Hawaiian archipelago. Hawaiian (italics) and English (regular font) names of sampled islands and number of species genetically sampled per
island are indicated; numbers in parentheses indicate islands excluded from community-level analyses of aggregate AR. Major currents are represented by arrows;
1000 and 2000 m isobaths are delineated. Islands east of 200° are the Main Hawaii Islands (MHI); islands west of 200° are the Northwest Hawaiian Islands (NWHI)

and part of Papahanaumokuakea Marine National Monument.

Investigating patterns of genetic diversity at the commu-
nity level can be framed by tests of foundational theory on
drivers of biodiversity. Theory predicts that physical area con-
strains diversity by limiting carrying capacity and the genetic
‘effective’ population size, while immigration boosts diversity
by bringing in new variants [4]. Species with similar constraints
on habitat and movement may thus be expected to have
similar patterns of genetic diversity [5], despite important
trait differences across species [6,7]. Furthermore, historical
events, such as major disturbances, may act on whole commu-
nities to produce a common signature of genetic bottleneck that
depresses observed genetic diversity [7,8]. Accumulating
evidence indicates that ecological interactions can shape
genetic diversity, such as when the genetic diversity of
habitat-forming species influences the diversity of associated
fauna [9]. Patterns of species-level diversity and genetic diver-
sity can be correlated, perhaps due to parallel responses to
dominant environmental gradients [10] or causal relationships
[11], suggesting the possibility of emergent genetic patterns
at the community level. Despite these homogenizing shared
forces, contrasts in life-history traits across species create differ-
ences in migration rates, habitat use and density, leading to
variation in patterns of genetic diversity across co-distributed
species. Life-history differences may also cause species to
vary in which landscape features most strongly drive their
spatial diversity patterns. There is much recent interest in
investigating the major environmental correlates of popula-
tion genetic patterns, partly due to the utility of protecting
key landscape features or locations in conservation planning.
However, prior landscape genetic studies have focused on, at
most, a handful of species at a time. To date, few studies
have explored the range of genetic diversity patterns and
their drivers across a large sample of co-distributed species,
and the role of life history in mediating these patterns and
drivers [6-8,12]. None to date have focused on a sample of
the ‘meta-community” that includes representatives from
multiple taxa, trophic levels and functional groups.

Here, we investigate how patterns of genetic diversity
vary across the Hawaiian Archipelago for a sample of 47

reef-associated animal species and ask if observed variation
can be ascribed to potential seascape drivers representing
benthic cover, ocean currents, habitat loss caused by sea-level
change, temperature stress and other site characteristics. At
first glance, the nearly linear array of discrete islands in the
Hawaiian Archipelago might be expected to produce high con-
gruence of genetic patterns as they impose uniform physical
constraints on population size and dispersal distance for
most reef species (figure 1). However, there are few clear cases
of isolation by distance, the null expectation for genetic structure
across a linear island array. Instead, patterns of population gen-
etic structuring are highly variable, and much of this variation
probably stems from the great diversity of life history and demo-
graphy across reef-dwelling species [13,14]. We leveraged the
large number of species genetically sampled across Hawai‘i to
investigate whether species’ genetic diversity patterns tend to
covary with each other and with species diversity, and whether
species traits account for observed variance in spatial patterns of
genetic diversity and association to seascape drivers.

A priori hypotheses about drivers of diversity across the
islands were derived from past theoretical and empirical
studies. They were:

H1: Marginal populations show reduced genetic diversity
due to greater isolation [15].

Species richness and genetic diversity covary [4,10].
Habitat size and immigration influence genetic and
species diversity [16].

Habitat loss during the last glacial maximum produced
genetic bottlenecks that dampen diversity [7,8].

The genetic diversity of habitat-forming species influ-
ences the genetic diversity of associated fauna [9,10].
Ecological factors structuring reefs, namely thermal
stress, coral cover and crustose coralline algae (CCA)
cover, may influence genetic diversity.

H2:
H3:

H4:
Hb5:

He:

We assessed these hypotheses based on both the
responses of each species to the various drivers and the
response of the aggregated data. The latter ‘community-
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Table 1. Summary of seascape effects on a reef community. Hypothesis column indicates which numbered hypothesis was tested with the dataset; symbols +
and — indicate whether the predicted relationship to genetic diversity is positive or negative. Support column: Y indicates support at p << 0.05 for the
hypothesis based on regression analyses of composite genetic diversity of mtDNA data (left), nucDNA data (middle) and linear mixed modelling (right). Italics
indicate factors not included in multiple regressions due to colinearity or data gaps. LGM is last glacial maximum; CCA is crustose coralline algae.

seascape driver

hypothesis

support brief description

fish species richness H2 + YYN Bootstrapped ‘Chao’” estimates of species counts collected on underwater visual
transects conducted by NOAA's Coral Reef Ecosystem Division from 2011 to 2012.
Number of sites surveyed per island was roughly proportional to reef area. Values

were natural log transformed.

coral species richness H2 + NNN Same as for fish species richness except that survey data spanned years 2006—2010.

habitat areé » - >H3 + YYY Logqg b(xb + 1) transformed estimates of total shaIIow—Water area within the 10-
fathom depth curve of each island.

potential larval immibgration W+ NNN ‘ In—comingbcentrality metric calculated from modelled larval Eonnectivity» estimated from
an oceanographic biophysical model parametrized for the species and habitat array.

néaref.t—neighbour distance W3 — NNN Path distances in km between apprdximété centroids of islands estimated using
Google Earth. The shortest distance to a neighbouring island was selected.

LGM habitat loss H4 — ‘ YNY Estimate of the relative sevérity of‘p‘obuiat‘io‘n bottlenecks due to habitat loss 18 000
years ago during the LGM when sea level was 120 m lower; one minus the ratio
of LGM to present-day habitat area.

M. capitata genetic diversity H5 + NNN Rarefied AR averaged across five microsatellite loci of the coral Montipora capitata
that each showed Hardy —Weinberg Equilibrium (non-significant tests that Fg
differs from zero).

coral cover » O He+ YYY Number of pixels with more than 10% cover in IKONOS satelite imagéry covering
0-30 m depth range. Expressed as a percentage by dividing by total number of
pixels analysed.

(CA cover H6 + YNY Same as for coral cover.

thermal stress ‘ CHe— YYN Freque»ncyb of hotspot events, as deﬁ‘ned‘b‘y NOAA's Coral Reef Watch, when SST
exceeded the maximum monthly mean temperature, over years 1985-2000, and
measured at 4 km.

wave disturbance H6 — NNN Yearly average of maximum monthly mean wave energy over years 1997 - 2010,

measured at 1°.

level” analysis approach treats genetic diversity of all species invasive types. Multi-year environmental data were available
for sea surface temperature (SST), wave energy, irradiance and
chlorophyll-a [17]. We limited analysis to just two metrics that
are often named as drivers of coral reef communities, SST and
wave energy, both available as island level averages of all grid
cells within the 30 m isobath. Lastly, two habitat area measures
were available—total hard-bottom area classified from satellite
imagery, and bathymetric area within the 10-fathom contour.
The two estimates covaried and produced identical correlation
to rarefied mean AR (electronic supplementary material, table
S1); we present main results using the bathymetric estimate. A
principal components analysis of variation in seascape factors
across islands shows that approximately 60% of the variation

sampled as an emergent trait of the community, and builds
on previous reports of European forest plants and Mediterra-
nean darkling beetles which found that mean genetic
diversity of a community sample shows strong correlations
to landscape features and species diversity [7,12].

2. Material and methods

(a) Seascape factors

Environmental and ecological data used to test our set of six
hypotheses were assembled from both existing sources and
new efforts. Table 1 summarizes each dataset included in
analyses; see the electronic supplementary material for full
descriptions. Given the small number of islands with adequate
data to test our hypotheses, we sought to limit the number of
seascape drivers compared in alternative model testing. Below

occurs along two axes, with the primary axis most closely associ-
ated with fish species richness, coral cover and thermal stress
(electronic supplementary material, figure S1).

¥5€09107 €87 g 20S Y 20id  biobuysygndfisposjeforqds

we note our rationale for excluding additional available datasets
from analysis. Estimates of benthic cover included macroalgae,
sand, uncolonized, coral and CCA. We limited analyses of
benthic cover type to coral and CCA cover based on established
hypotheses about their roles structuring reefs. Although macroal-
gae also structure reefs, remote sensing methodology was unable
to make the ecologically critical distinction between native and

(b) Genetic diversity metrics

Genetic data assembly is detailed elsewhere [14]. Existing genetic
data from samples of reef species collected in Hawaiian waters
were included here for species with a minimum of six specimens
each taken from of two or more islands (electronic supplementary
material, dataset S1). Mean sample size per species per island
was 32; 10% of the species-site samples contained fewer than 10
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individuals. Excluding samples based on 6—10 specimens had
insubstantial effects on results (electronic supplementary material,
table S2). Analyses primarily focused on mitochondrial sequence
data because only a few species have nuclear datasets; however,
we also used the 11 nuclear multi-locus datasets available to
assess sensitivity of some results to the marker type (electronic sup-
plementary material, dataset S2). In addition, microsatellite data
for the coral Montipora capitata [18] was used as a predictor variable
to test hypothesis H5. For all genetic datasets, rarefied allelic rich-
ness (AR) was calculated for each island using HP-RARE [19]. As a
count of alleles, AR is unaffected by other locations but possibly
influenced via gene flow [20].

Multi-species ‘composite” AR means were calculated for each
island based on AR values of all species sampled. To reduce
sampling bias, composite AR was rarefied to a uniform size of
12 species per island by sampling species without replacement
500 times (electronic supplementary material, dataset S3). Bias
in marker composition across islands was checked and found
to be minimal (electronic supplementary material, ‘Methods’).
Lisianski, Kaho‘olawe and Lana‘’i were excluded from analyses
of composite AR due to low genetic sample sizes (n <12
species). See the electronic supplementary material for extensive
sensitivity analyses of this metric to sampling parameters.

(c) Statistical analyses

Moran’s I calculated with R packages ape and ncf [21] revealed no
large-scale or small-scale positive spatial autocorrelation of AR
across all sites, or NWHI (p = 0.31) and MHI (p = 0.99) subsets
of sites. The same was true for diversity metrics of fishes (p =
0.16) and corals (p = 0.91). After assembly of all seascape data
(electronic supplementary material, dataset S4), two islands were
excluded from all analyses (Necker and Gardner), because they
were missing data for several key seascape factors (electronic sup-
plementary material, ‘Methods’). When using composite AR,
Lisianski, Kaho’olawe and Lana‘i were also excluded due to low
sample size (n < 12 species), leaving 13 islands in the analysis.

Redundancy analysis (RDA) with the R package vegan [22]
was used to visualize variation in species” correlations of AR to
the seascape predictors and assess the influence of species traits
on this variation. A set of species traits, summarized in table 2, was
published previously [14] (electronic supplementary material,
dataset S5). Pearson’s r values describing each species’s correlation
of AR to each seascape factor were the dependent variables (elec-
tronic supplementary material, dataset S6). A partial RDA was also
performed, using the sample size (i.e. number of islands), marker
type and total marker diversity for each species as covariates, but
these covariates lacked influence (electronic supplementary material,
dataset S7). RDA was complemented by AIC, model selection of
linear models built with species and sampling traits to determine
which traits most parsimoniously explained which species showed
high or low correlations of AR to seascape factors.

Congruence of spatial patterns of AR across species was
gauged by Pearson’s correlation coefficient for each species’s
AR spatial pattern regressed against the composite AR pattern
of all species, for species sampled at more than five islands
(n=34). A one-sided t-test indicated whether species tended to
positively correlate with composite AR, to assess a community-
level trend towards congruence as in [7]. Sensitivity of congru-
ence to sampling was assessed (electronic supplementary
material, ‘Methods’). To assess the roles of life-history, sampling
and genetic traits on congruence, these Pearson’s r values were
regressed against species traits in table 2 in linear AIC.-based
model selection using with J]MP Pro v. 11.

The same model selection procedure was also used to assess
relationships of composite AR to physical and ecological seascape
factors in table 1. For comparison, a similar model selection pro-
cedure was implemented for the individual AR values for all
species-by-marker-by-island combinations available (1 = 421)

Table 2. Summary of species trait data used in analyses.

species

traits description

fish species is fish (1) or invertebrate (0)

endemic speciés is endemic to Hawai'‘i >(1) or widespread
in the Pacific (0)

PLD ‘ pelagic larval duration in days, log transformed

length maximum body length in cm, log transformed

min depth minimum reported depth occurrence in meters,

log transformed

depth range maximum depth minus the minimum depth, log

transformed
habitat species is tied to particular réef features (1) or
specialist found on most reef types (0)
Ost » strengfh of inter-island genetit differentiation
For strength of regional genetic differentiation

(i.e. groups of adjacent islands)

using a linear mixed model which designated the species-by-
marker label as a random effect (electronic supplementary
material, dataset S8). The latter tests the aggregated response of
individual species, which does not have to be the same as the
response of the aggregated data (composite AR). Variation was
high in AR values across species, and in which species were
sampled across islands; the two modelling approaches address
these issues differently but otherwise test the same hypothesis
with the same response variable. The composite mean uses rarefac-
tion to help standardize sampling variance across islands. The
mixed modelling approach uses the species-level data to incorpor-
ate the variance across species and also the possibility that each
species is drawn from its own distribution. Because of the large
increase of parameters that need to be estimated, power is lower,
but assumptions are fewer.

For both model selection procedures, data gaps for coral
species richness and M. capitata genetic diversity estimates
required omitting these predictors from model selection. Fish
and coral species richness and wave disturbance were omitted
due to colinearity with other factors (electronic supplementary
material, ‘Methods’; electronic supplementary material, table S1).
Models were limited to one to three terms for model comparison
to reduce model number given the small sample size of composite
AR (n =13 islands). Top models were defined as AAIC.< 2.0,
where AAIC, is the difference in AIC. score from the model
with the minimum observed AIC. score. Model selection was
repeated for regional subsets (i.e. seven islands in the NWHI and
six in the MHI), motivated by the many differences between
these regions that might produce distinct population genetic and
ecological dynamics.

3. Results
(a) Spatial diversity patterns

Spatial patterns of genetic diversity varied considerably across
the 34 well-sampled species (sampled at more than four
islands). For eight species sampled with both nuclear and mito-
chondrial markers at 6-12 islands, spatial patterns positively
correlated between the marker sets, suggesting single-marker
spatial trends are interpretable (electronic supplementary
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Table 3. Which species respond to which seascape drivers? Top models from multiple regression model selection built with species’ traits (independent [
variables) and correlation coefficients for each species” AR regressed against individual seascape factors (dependent variable). Depth indicates depth range. (—)

indicates negative relationships; all others are positive. *p << 0.05; **p << 0.01. %
<

seascape factor species trait predictors coeff. 1 coeff. 2 %_J
habitat area bt 0.21%* 2 279 0.48 6.15%* %’
coral cover » » depth, g 0.24** 3 18.8 054 0.40** 486% ;%
potential larval immigration depth, ¢bsr 0.29%* 3 26.2 0.76 0.29* 5.77% §
wave disturbance depth (), g 0.28** 3 82 035 —045% —625* 2
CCA cover depth, count 0.30%* 3 2.00 0.24 0.24* —0.09%* >
LGM habitat loss PLD (—), taxonomy” 046+ 5233 030 —047™ —o79% &
- marker’, depth (—) B 42 Coes 0002 ;
nearest-neighbour Fo 0.13* 2 39.8 0.45 5.68% ;
fish spp. richness herbivore (—) 0.15* 2 34.6 0.23 —0.27* g
coral spp. richness herbivore, Fer 0.29%* 3 220 0.31 5.63** —0.28% N
thermal stress no significant model 2
“Invertebrates tend to show more negative correlation to LGM habitat loss than fishes. =

byt B dataset tend to show more positive correlation to LGM habitat loss than other marker types.

material, table S3). Furthermore, individual species” mtDNA
AR patterns showed significant tendency for positive corre-
lations to the composite mean AR pattern calculated using all
47 species (t-test 2.4, d.f. = 33, p = 0.01; electronic supplemen-
tary material, figure S2). Congruence retained significance
when highly influential species were omitted, either because
they were particularly well sampled or most positively corre-
lated to the mean pattern (electronic supplementary material,
"Methods’). Species with shorter PLD tended to have higher
congruence (adj. *=0.13, p=0.04). Composite AR of all
species ranged 3.0—3.8 haplotypes per six individuals across
islands, and tended to show higher values at both margins of
the island chain (quadratic * = 0.45, p = 0.05; electronic sup-
plementary material, figure S3), contrary to our first
hypothesis that a stepping stone habitat array produces lower
diversity at the margins due to reduced immigration. Impor-
tantly, habitat area ranges three orders of magnitude across
the sampled islands (6.6-470 km?), with large areas at the mar-
gins. High genetic diversity at the margins was also seen for the
nucDNA version of composite AR of 10 species, because
mtDNA and nucDNA composite AR values significantly
correlated (=051, p=0.1; electronic supplementary
material, table S1). A population genetic simulation repro-
duced the patterns of high diversity at the margins when
effective population sizes were made to vary across demes
with the same relative magnitude seen in habitat area across
the Hawaiian Archipelago (i.e. approx. threefold; electronic
supplementary material, ‘Methods” and figure S4).

(b) Species-genetic diversity correlation

Estimated number of fish species (standardized for sampling
effort) ranged 98-152 across islands and showed a negative
quadratic fit with latitude, such that composite AR and fish
species diversity significantly covaried (+*=0.51, p <0.01;
electronic supplementary material, figure S3), supporting our
second hypothesis. Coral species richness ranged from 10
to 25 per island and positively correlated with fish species
richness (r* = 0.30, p = 0.04; electronic supplementary material,

table S1), but was not significantly correlated to composite AR
(r*=0.27, p = 0.08; electronic supplementary material, figure
S3). Functional group specificity of species-versus-genetic
diversity correlations may contribute to the mixed result [11].
Composite nucDNA AR showed almost identical relationships
to species richness as mtDNA (electronic supplementary
material, table S1). Considering species’ individual responses,
model selection showed that herbivores tended to respond posi-
tively to coral species richness and negatively to fish species
richness (table 3). An obligate corallivore, Chaetodon lunulatus,
was the species whose AR pattern most strongly correlated
to coral species richness (r* = 0.99; electronic supplementary
material, dataset S6).

(c) Effects of species traits on seascape drivers

of genetic diversity
RDA showed that the 12 species traits together explained 49%
of the variation in how species related to the seascape drivers
(p=0.04; electronic supplementary material, figure S5).
Overall, species with stronger genetic structuring (i.e. pair-
wise differentiation between adjacent islands or groups of
islands) showed stronger relationships to most drivers, and
especially to habitat-related factors. The strongest trends in
seascape associations were tied to the combined effects of
taxonomy, habitat area and depth range. For example, species
that showed the strongest response to habitat loss during the
last glacial maximum tended to be invertebrates with shallow
depth ranges, short PLD and low marker diversity, which typi-
cally indicates a past bottleneck. Shallowest species responded
negatively to wave disturbance, and larger depth range was
also associated with influence of coral cover and CCA cover
on genetic diversity (table 3).

Interestingly, the few species that showed strong positive
correlation of genetic diversity to simulations of potential
larval immigration were deep-water, more genetically struc-
tured species, a rare combination in our dataset. The larval
immigration model, which scaled larval production to habitat
area, produced a strong peak in potential immigration at the
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Table 4. Top seascape mixed models of species AR (n = 421). All models for which AAIC, ranged 0—2 are listed (excluding models for which coefficient signs n

opposed our hypothesized relationships). Arch. is archipelago-wide, K is the number of parameters, w; is the Akaike weight. Coefficients are ordered by predictor

order. ***p < 0.10, *p < 0.05, **p < 0.01.

region seascape predictors K
Arch. habitat area, LGM habitat loss 4
bArcbh. » » habi>tat>areab, corél cdverw o 4
Arch. habitat area, coral cover, LGM habitat loss 5
v eden .
Arch. habitat area, CCA cover, LGM habitat loss 5
Wi bt -
MHI coral cover, CCA 4

AIC,

AAIC, w; coeff. 1 coeff. 2 coeff. 3
0 0.16 0.20%* —0.29%
12 009 o 043*
1.5 0.07 0.18* 0.21 —0.22
e o gl
19 0.06 0.19* 3.54 —0.28*
O s e
1.1 0.08 0.61* 23.6*

Table 5. Top seascape models of composite AR (n = 13). All models for which AAIC, ranged 02 are listed. Adj. is adjusted, other abbreviations and notation

as in table 4.
region seascape predictors
Arch. habitat area, coral cover 0.59%* 3
Arch. habitat area, LGM habitat loss 0.59%* 3
CAch. habitat area, thermal stress 058 3
Arch. habitat area 0.44* 2
b (CA cover, thermal stress 056 3
Arch. thermal stress 0.39* 2
o e i o
MHI coral cover 0.61%** 2

centre of the chain (electronic supplementary material,
figure S6). This pattern is expected by the stepping stone
model and by the pattern of habitat area, but in conflict with
the hypothesized positive effect of immigration on observed
diversity, which showed high values at the margins. Larval
inputs from Hawai‘i’s nearest neighbour, Johnston Atoll, an
alternative potential cause of the uptick in diversity at the mar-
gins, is unlikely according to the biophysical transport model
(electronic supplementary material, figure S6), as are larval
inputs from farther away, which were not included. Estimates
of potential larval immigration pattern were also relatively
insensitive to PLD and spawning seasonality.

(d) Community-level seascape genetic analysis

A mixed modelling approach to assess the aggregated response
of individual species to the seascape identified various combi-
nations of habitat area, LGM habitat loss and coral cover as the
most influential seascape correlates (table 4). Pairwise colinear-
ity of habitat area, coral cover, thermal stress and LGM habitat
loss at the 13 islands was not high (r < 0.5; electronic sup-
plementary material, table S1). Model selection of composite
AR provided nearly identical assessments of top drivers to
the mixed modelling approach, although p-values differed.
Pairing habitat area with coral cover, thermal stress or LGM
habitat loss created competing top bi-variate models that
explained 59% of the variation in composite AR across the
archipelago (table 5). When limited to Northwestern Hawaiian
Islands (NWHI), habitat area explained 67% of the variation in
composite mtDNA diversity, whereas in the Main Hawaiian

~17 0 0.13 0.24* 0.56*+*
~15 02 0.12 0.30* — 029
- e S
~12 05 0.10 0.30*

B e e
—09 08 0.09 —01*

39 o8 o

1.1 0 0.52 1024+

Islands (MHI), coral cover was a more parsimonious model
and explained 61% of variation in mtDNA AR (table 5).
Overall, positive correlation between genetic diversity and
habitat area appears to be the strongest community-level
seascape genetics relationship. Interestingly, equal numbers
of species showed positive and negative correlations with habi-
tat area individually. When those species with the highest
positive individual correlations to habitat area are removed
from the composite mean, the strong positive effect of habitat
area on composite diversity remains and exceeds any single
species’s correlation to habitat (electronic supplementary
material, figure S7).

4. Discussion

This study breaks new ground in exploring how relationships
between genetic diversity and seascape variables change when
examined at the species and community levels. Variation in
seascape relationships across species is high, as expected of a
marine meta-community with diverse life histories and ten-
dency for high gene flow. Nevertheless, there are logical
ways in which species traits predict which seascape factors
most influence a given species. Species with higher spatial gen-
etic structure showed stronger links to seascape metrics,
because they are demographically more sensitive to the local
environment compared with species with genetic stocks span-
ning many islands. Herbivores responded positively to species
richness of corals, which provide shelter and algal substrate,
and negatively to fish species richness, perhaps due to
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competition and predation. Shallower species showed stronger
effects of both wave energy, where effects are concentrated,
and past bottlenecks because shallow areas fluctuate consider-
ably with sea level compared with deeper areas [23]. The
lingering signal of historical habitat loss corroborates evidence
for genetic bottlenecks tied to the last glacial maximum else-
where in Polynesia, and may be most pronounced at islands
with large shallow lagoons [24]. Only deep-water species
with high genetic structuring, a rare combination in our data-
set, showed strong influence of potential larval immigration
(inferred from circulation models). The small population
sizes at the many small islands in the middle of the island
chain probably lead to such low diversity levels for shallow
species there that even a relatively high rate of immigration
cannot compensate. However, deeper species have larger and
more stable habitat area even at small islands, and thus we
speculate that larval immigration emerges as a detectable
impact at depth, as long as genetic structuring is sufficient to
create strong localized genetic responses.

(a) Congruence and composite AR

Low-dispersal species had a tendency for higher congruence
of AR, echoing previous findings for European plants
where dispersal ability predicted level of congruence in genetic
diversity [7]. Finding significant congruence lends support to
the interpretability of composite mean genetic diversity of
all species, a metric which served two purposes. First, it
improved upon the traditional use of one or a few exemplar
species which are often used to represent genetic diversity in
reef conservation planning. The conventional exemplar species
strategy would fail to uncover most of the significant driver
relationships found here and, due to the variation in genetic
patterns among species, would not represent much of the
reef-associated community. Second, it leveraged the many
single-marker datasets as replicates to overcome sampling
error in assessing the role of seascape factors in shaping pat-
terns of genetic diversity at the community level. Despite
finding that species traits created some differences in how
species related to seascape drivers, using mean genetic diver-
sity did not obscure relationships to seascape drivers.
Instead, the mean showed patterns that fit with most of our
hypotheses. Finding the same strong correlations to habitat
area and fish species richness when composite genetic diversity
was calculated from 11 multi-locus nuclear datasets indicates
these relationships are not marker-specific. The overall mess-
age of the results is that the composite mean seascape models
show the same qualitative patterns as the mixed modelling
of species-level data, and the same patterns whether it is calcu-
lated with mtDNA or nucDNA samples. Although combining
data from non-homologous mtDNA loci into a single mean is
not ideal, the trends across locus types are invariant, and
thus the non-homologous marker dataset is probably an
adequate proxy for a homologous marker dataset in this situ-
ation (i.e. with a large sample of species and an island chain).
These findings support the value of continued careful synthesis
of the thousands of existing ‘last-gen” datasets in the literature,
and help establish the robustness and utility of the composite
mean as a tool for applied population genetics. In sum,
although using a composite mean comes with accompanying
errors and assumptions, it has a potentially important role to
play in distilling complex data and aiding the uptake of genetic
data by conservation and management.

(b) Roles of seascape drivers

Habitat area appears to be a dominant influence on genetic
diversity, with high predictive power for both genetic and
species-level diversity across islands. The dominant effect of
habitat area on diversity is widely understood [4]. Another
logical finding was the strong influence of coral cover on
reef genetic diversity. Coral cover acts as a modifier of habitat
quality and quantity, by providing shelter, food and rugosity.
Confirming basic relationships between diversity and habitat
factors bolsters the validity of the unexpected influences of
additional seascape factors at the island scale.

Finding little influence of our estimate of potential immi-
gration on mean genetic diversity fits with the rarity of
isolation by distance among these species shown previously
across the Hawaiian Archipelago [14]. Interestingly, dispersal
metrics had little spatial variation relative to the variation in
habitat size across islands. This suggests that rate of drift
may be more spatially variable than migration, and thus
more influential to genetic diversity of shallow-water reef com-
munities [25,26]. The increase in diversity at marginal locations
is due to the coincidence that the largest habitat areas within
the Hawaiian Archipelago are found at the margins, and this
was confirmed by population genetic simulation (electronic
supplementary material, figure S4). Additionally, realized
immigration might differ from modelled biophysical transport
perhaps due to effects of chemical cues from coral and CCA,
post-settlement mortality or density-dependence affecting
rates of settlement and recruitment [27,28].

Although the effect of recent thermal stress on genetic diver-
sity was not one of the strongest seascape factors, it showed
significant negative correlation to composite AR and roughly
half of the species showed a moderate or strong correlation indi-
vidually (electronic supplementary material, dataset S6).
Thermal stress is known to directly affect health of coral and
algal populations with cascading effects on reef habitat complex-
ity, quality or productivity [29]. Low-latitude Pacific reefs have
experienced thermal stress up to 240% higher than Hawai‘i
and documented ecological effects have also been more severe
[30], suggesting that recent declines in genetic diversity might
also be more severe at lower latitudes. Indirect or synergistic
effects from other predictors or unanalysed ‘latent” factors may
influence which seascape drivers show strong influence on gen-
etics. For example, thermal stress shows moderate correlation
with fish and coral species richness (electronic supplementary
material, figure S1), which may partially account for its
correlation to genetic diversity.

() Conservation implications

The seascape relationships identified here lend crucial and novel
empirical support to difficult, urgent and controversial decisions
unfolding about how best to conserve genetic diversity at both
community- and species-level scales. Specifically, these results
lend a new form of support to the idea that conserving large,
intact reefs with high coral cover protects the diversity of entire
reef communities, and thus supports the emerging strategy of
creating large-scale marine protected areas pursued by the Big
Ocean Initiative, among others [31]. Active conservation of reef
biodiversity will promote future resilience to mounting stress
posed by increasing coastal development and adaptive potential
to climate change [31-33]. In particular, the likely negative effect
of thermal stress on genetic diversity may signal the potential for
global warming to compromise the adaptive capacity and
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genetic integrity of not just corals but the entire coral reef com-
munity. Papahanaumokuakea Marine National Monument
safeguards the majority of Hawaiian reef biodiversity, but popu-
lations in the MHI tend to be genetically distinct [13] and warrant
additional protections. Our study shows that genetic diversity
varies across the MHI, extending the argument for targeted pro-
tection of genetic resources of reefs throughout the MHIL
Notably, Hawai‘i Island has the greatest amount of coral reef
area, harbours maximal genetic diversity, on average, and
probably serves a unique and particularly influential role due
to its large size at the margin of the chain. Nihoa and Ni‘ihau,
which sit at the transition between NWHI and MHI, also warrant
particular focus for future research and protection due to intri-
guing combinations of high genetic divergence and unusual
fish composition [34].

(d) Eco-genetic feedbacks

It might seem puzzling that the multi-species mean showed
strong positive correlation to habitat area even though
equal numbers of individual species showed positive and
negative correlations to habitat area (electronic supplemen-
tary material, figure S7). There are many ways that macro-
ecological forces and species interactions could generate this
seemingly contradictory pair of results. Note that which
species are included in which islands’ multi-species means
is driven largely by ecology—most species do not occur com-
monly at all islands, and sampling efforts were in most cases
exhaustive, such that the lack of DNA samples from some
islands reflects the species’s rarity or the absence there.
The cause of such absence or rarity can not only be due to
environmental mismatch (e.g. colder temperatures at the
northern end of the chain), but also due to lottery/
precedence effects on recruitment success or high mortality
due to competitive exclusion, or intense predation.

A specific example that demonstrates the possible linkage
of community ecology to community-level genetic patterns in
Hawai'‘i is that endemic and widespread reef fishes exhibit
opposite linear gradients in density across the archipelago,
both in aggregate and for pairs of endemic and non-endemic
congeners [34]. Whereas the density ratio of endemics to
non-endemics is 2 : 3 at the southeastern end of the chain, it
flips to 3:2 at the northwestern end, with an inflection
point of 1:1 around French Frigate Shoals at the midpoint.
The environmental climate of the northwestern end of the
chain is unusual for Pacific coral reefs, and endemics show
a competitive advantage over non-endemics under these con-
ditions. Our genetic samples also showed an increase in
proportion of endemics with latitude that was driven by
the sampled fishes. Assuming genetic diversity scales with
numerical abundance and only abundant species are geneti-
cally sampled, this swapping of competitive dominance
across islands would lead to the same calculations of mean
AR despite individual species showing very different spatial
patterns of AR. In support of this possibility, we found that
for the 10 endemic fishes in our dataset the mean correlation
of genetic diversity to habitat is negative (r = —0.06), while
for the 13 non-endemic fishes it is positive (r = 0.11). Never-
theless, other processes aside from endemism probably also
contribute to the emergent trends in composite diversity.

As a whole, community-level genetic diversity reflects both
the bottom-up result of each species’s population genetic his-
tory, as is well known and understood, but also top-down

influences of community filtering of species composition
and interspecific constraints on the composite effective popu-
lation size of the species assemblage. In other words, although
species-level processes filter and constrain community-level gen-
etic patterns, community-level processes also filter and constrain
community-level genetic patterns. These latter effects are as yet
not well documented and studied. However, recent demon-
stration that haplotype turnover closely tracks species turnover
supports the idea that mean genetic diversity is constrained
by macro-ecological forces in addition to well-understood
species-level processes (e.g. genetic drift) [35].

(e) Composite genetic diversity as an emergent
property?

It is interesting to consider how and why composite diversity
can show higher correlation to habitat than any species shows
individually. If the boost in correlation is entirely due to the
large sample size (i.e. treating species as locus replicates), this
suggests that all species would show the same high correlation
to habitat area with better genomic sampling. However, it is
likely that some fraction of species in a community will always
show negative or no correlation with area due to particular
species traits, species interactions and historical effects.
Indeed, a recent synthesis of species—genetic diversity corre-
lations finds both positive and negative relationships are
prevalent at the species level [36]. We hypothesize that compo-
site genetic diversity is likely to be an emergent property at the
community level that shows responses to the seascape distinct
from individual species’ responses, due to the aforementioned
linkage to other community-level traits such as species com-
position and diversity. The distinction between drivers of
individual species’ genetic diversity and drivers of multi-
species genetic diversity is analogous to the distinction between
drivers of abundance patterns within a species and drivers of
total abundance of individuals within a community, which is
well understood to be an emergent ecological property of the
community. Mathematically, when species composition,
species richness and/or species abundance distributions vary
strongly across space, composite genetic diversity should
diverge more strongly from representing the mean genetic
diversity of individual species, but continue to mirror species
diversity patterns. A mechanistic macro-ecological link between
species and genetic diversity patterns exists if the same large-
scale assembly rules that dictate species composition also influ-
ence composite genetic diversity [37]. Specifically, a species’s
rarity and small range size lead to low total gene diversity,
and also lead to greater chance of local extinction, thereby
impacting both composite genetic diversity and species compo-
sition. Further work is needed to better understand these sorts of
feedbacks that link composite genetic diversity to species abun-
dance distribution, community assembly and its drivers.
Detecting macro-ecological regularities requires large sample
sizes; using the multi-species mean overcomes stochasticity
associated with any single dataset so that the most dominant
pattern and its drivers are more powerfully assessed [12]. The
composite mean may be a convenient and appropriate tool
that can reveal underlying macro-ecological processes influen-
cing diversity at all hierarchical levels, and reveal these effects
more strongly than a comparison of the patterns of individual
species. The findings as a whole demonstrate that conti-
nued expansion of integrative studies of community-level
genetic diversity holds promise to elucidate the complex
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interdependencies across biodiversity levels and provide
critical information to stem the loss of global biodiversity.
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Appendix 1

Names and addresses of 31 contributors to the Hawai‘i Reef Connectivity Consortium group authorship.
Consortium members contributed existing data to the study, and verified proper data usage and
interpretation of results.

Kimberly Andrews, Dept Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136,
Moscow ID 83844-1136

lliana Baums, Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory
University Park, PA, 16802, USA

Moisés A. Bernal, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San
Francisco, CA 94118, USA

Giacomo Bernardi, Department of Ecology and Evolutionary Biology, University of California Santa
Cruz100 Shaffer Road, Santa Cruz, California, 95060

Christopher Bird, Marine Biology Program, Department of Life Sciences, Texas A & M University—Corpus
Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, USA

Holly Bolick, Bishop Museum, 1525 Bernice St, Honolulu, HI, 96817, USA

Brian Bowen, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kane‘ohe, HI 97644, USA
Richard Coleman, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kine‘ohe, HI 97644, USA
Gregory T. Concepcion, Pacific Biosciences, 1380 Willow Rd, Menlo Park, CA, 94025, USA

Matthew T. Craig, Southwest Fisheries Science Center, National Marine Fisheries Service, National
Oceanic and Atmospheric Administration, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA

Toby S. Daly-Engel, Department of Biology, University of West Florida, 11000 University Parkway,
Pensacola, FL, 32514, USA

Joseph D. DiBattista, Department of Environment and Agriculture, Curtin University, PO Box U1987,
Perth, WA 6845, Australia

Jeffrey Eble, Center for Environmental Bioremediation and Diagnostics, University of West Florida,
11000 University Parkway, Pensacola, FL, 32514, USA

Iria Fernandez-Silva, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San
Francisco, CA 94118, USA

Erik C. Franklin, Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology,
University of Hawai‘i, Kdne‘ohe, HI 97644, USA

Alan Friedlander, Fisheries Ecology Research Lab, Department of Biology, University of Hawai‘i,
Honolulu, Hawai‘i 96822, USA and Pristine Seas-National Geographic, Washington DC 20036, USA.



Michelle R. Gaither, School of Biological and Biomedical Sciences, Durham University, South Road,
Durham DH1 3LE, UK and California Academy of Sciences, Ichthyology, 55 Music Concourse Drive, San
Francisco, CA 94118, USA

Jamison Gove, Ecosystems and Oceanography Division, Pacific Islands Fisheries Center, National
Oceanographic and Atmospheric Administration Inouye Regional Center, Honolulu, HI, 96818

Mathew lacchei, Department of Oceanography, University of Hawai‘i at Manoa, 1000 Pope Rd.,
Honolulu, HI, 96822, USA

Yanli Jia, International Pacific Research Center, University of Hawai‘i at Manoa, Honolulu, HI, 96822, USA

Donald Kobayashi, Ecosystems and Oceanography Division, Pacific Islands Fisheries Center, National
Oceanographic and Atmospheric Administration Inouye Regional Center, Honolulu, HI, 96818

Nicholas R. Polato, Department of Ecology & Evolutionary Biology, 215 Tower Rd., Cornell University,
Ithaca, NY 14853, USA

Malia Ana J. Rivera, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kane‘ohe, HI 97644, USA

Luiz A. Rocha, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San
Francisco, CA 94118, USA

Joshua Reece, Valdosta State University, 1500 North Patterson Street, Valdosta, GA 31698, USA
Derek Skillings, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kane‘ohe, HI 97644, USA
Scott R. Santos, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
Zoltan Szabo, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kane‘ohe, HI 97644, USA
Molly Timmers, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kane‘ohe, HI 97644, USA

Lisa Wedding, Center for Ocean Solutions, Stanford University, 99 Pacific Street, Suite 555E, Monterey,
CA 93940

Gareth J. Williams, Center for Marine Biodiversity and Conservation, Scripps Institution of
Oceanography, La Jolla, CA 92083, USA

Nicholas M. Whitney, Behavioral Ecology and Physiology Program, Mote Marine Laboratory, Sarasota, FL
34236



Supplemental Methods concerning input data

Assembly of existing seascape datasets. ‘Habitat area’ used Logy, (x+1) transformed estimates of total
shallow-water area within the 10-fathom depth curve of each island [1]. An alternative estimate of
habitat area, the total hard-bottom area classified from satellite imagery (see below), strongly
correlated with this metric and produced identical correlation to rarefied mean AR as the bathymetric
estimate (Table S1).

Percentages of ‘Coral cover’ and ‘Crustose coralline algal (CCA) cover’ used published estimates
produced from IKONOS satellite imagery covering 0-30m depth range in shallow-water coral reef
ecosystems [2, 3]. Grid cells were classified as one of six benthic cover types when at least 10% of the
grid cell contained a single cover type (i.e., hard coral, CCA, ‘uncolonized hard bottom,” macroalgae,
sand and ‘hard bottom indeterminate cover’). In the MHI, finer subcategories of these six types were
combined to match NWHI classes. Necker was excluded from analyses of benthic cover because of large
classification gaps. Total area metrics were converted to percentage cover by dividing number of typed
grid cells by the total grid cells classified at each island.

Multi-year environmental data were available for sea surface temperature (SST), wave energy,
irradiance and chlorophyll-a as island level averages of all grid cells within the 30m isobath [4]. “Thermal
stress’ represented the frequency of Hotspot events, as defined by NOAA’s Coral Reef Watch, when SST
exceeded the maximum monthly mean temperature over years 1985-2000, measured at 4 km. ‘Wave
disturbance’ represented yearly average of maximum monthly mean wave energy over years 1997-
2010, measured at one degree.

During the last glacial maximum (LGM) 18,000 years ago, sea level was as much as 120 m lower than
present [5], severely restricting coral reef habitat in some parts of the archipelago. ‘LGM habitat loss’
compared current bathymetric area within 0-45 m depth and area within 120-165 m depth, which is the
analogous depth range when sea level was 120m lower during the LGM [6]. Necker and Gardner
Pinnacles were excluded because unusual bathymetry at these pinnacles makes this approach uncertain.
To estimate the likely severity of population bottlenecks due to habitat loss during the LGM, we
subtracted from one the ratio of LGM to present day area estimates.

Distance to nearest island was used as a simple metric of probable connectivity. ‘Nearest neighbor
distance’ was estimated on GoogleEarth using path distances between approximate centroids of islands
and selecting the shortest distance to a neighboring island. A second, bio-physical metric of connectivity
is described below.

Larval Dispersal Model: A particle tracking transport model based simulated larval dispersal using a
regional implementation of the Massachusetts Institute of Technology general circulation model [7]
(MITgcm) for years 2009-2014 configured for the Hawaiian Archipelago (175°E-210°E and 15°N-35°N),
with hourly output at 4 km horizontal resolution across 50 vertical layers. The model was forced by
surface wind stress at a resolution of 0.25 degree from satellite scatterometer measurements for the
period of May 2009 to May 2014 at daily intervals, using monthly climatological surface heat and fresh
water fluxes, and ocean conditions from a global ocean estimation system at 8 km resolution at the
lateral open boundaries. Reef habitat was defined for 687 pixels, representing all shallow reefs and
submerged banks present in the Archipelago, using a combination of IKONOS-derived data [35, 36] and
modeled coral distributions in the MHI [8]. The relative amount of larvae released per reef cell was
determined by the percentage of reef habitat in each pixel. Larvae were released every 2 weeks for a
maximum pelagic larval duration (PLD) of 45 days, an approximate median duration from the range of
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PLD known for our genetically sampled species and the majority of common reef taxa [9]. Relative
dispersal rates in Hawaii were insensitive to PLD beyond 40 days.

Larval dispersal estimates were compared from two alternative biophysical modeling approaches, an
advection transport algorithm and an individual-based model (IBM), that both used the MITgcm data,
the same habitat designations, and a 45-day maximum PLD bounded to 3 — 33 m depth. For the IBM, 50
particles were released each day (totaling 1673 days) from each habitat pixel, creating >57 million
particles total/run. Particles were kept at 50 meters depth, allowed to passively disperse for 45 days
without directional behavior. Particles that reached <5 km distance from defined reef pixels after 45
days were deemed settled and tallied by island. Results were averaged at monthly resolution for all
release dates. For the second larval dispersal simulation, an advection transport algorithm [10, 11],
dispersal kernels were resolved to densities of < 1/60 million larvae per km?, allowing rare and/or
infrequent events to be quantified. For both models, outputs were compared when averaged across all
release dates, and when limited to release dates April through July, a window when the majority of the
species in the genetic dataset spawn and settle. The results were highly correlated for release dates and
for the two alternative modeling approaches. Thus only the data produced by the advection transport
model for all months was used further.

A single metric from this output was used in analysis to best represent ‘potential larval immigration’: an
estimate of in-closeness centrality, which measures the relative distances each node (island) is from all
other nodes based on dispersal to that node (i.e., immigration) [12]. High closeness means that a site
has strong, direct connections to many other sites instead of indirect or no connections. Exploratory
analysis of other metrics from the model output, such as number of settlers, self-recruitment rate,
betweeness centrality and out-closeness centrality revealed no further insights about mean genetic
diversity.

Species richness datasets. ‘Fish Species Richness’ and ‘Coral Species Richness’ estimates came from
coral and fish species counts collected on underwater visual transects by the Pacific RAMP, conducted
by the NOAA Pacific Islands Fisheries Science Center’s Coral Reef Ecosystem Division, from 2011-2012
for fishes and from 2006-2010 for corals. Estimates of mobile invertebrate species richness were
unavailable. Fish surveys were based on a stratified random design across reef zone and depth zones of
<30m depth on hard bottom habitats with a stationary point count [13]. Coral surveys were conducted
at permanent sites distributed haphazardly within reef zones at <30m depth on hard bottom habitats
using a linear-point intercept method [14]. Number of sites surveyed per island was roughly
proportional to reef area. Both methods identified taxa to the finest taxonomic level possible and only
observations at the species level were used in diversity calculations. Sites were pooled by island [15] and
incidence-based bootstrapped ‘chao’ estimates were calculated with the specpool function in the R
package vegan [16]; this procedure corrects for varying numbers of transects per island.

Colinearity of seascape predictors: Before model selection, colinearity between pairs of predictor
variables was assessed with significance testing of linear and quadratic regression, and principal
components analysis (Fig. S1). Regression tests showed covariance of latitude, coral cover and wave
disturbance to be the most prominent concern. Wave disturbance increases linearly with latitude with
near-perfect correlation. Coral cover declines linearly with latitude (and waves) until an asymptote north
of 24 °N, creating a strong curvilinear relationship. Therefore of the three predictors, we include only
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coral cover in all analyses because its positive correlations with both mean genetic diversity and fish
species richness are more interpretable than the apparent bowl-shaped relationships of latitude and
wave disturbance to diversity metrics (Fig. S5). However, latent effects of latitude and/or wave
disturbance may confound interpretation of the relationship between coral cover and mean genetic
diversity. Also, the co-variation of fish species richness, coral cover and thermal stress make the
detected effects ascribed to any one of these factors potentially augmented effects from the other two
(Fig. S1).

Other latitudinal gradients in the predictor data are noted below. LGM habitat loss showed a significant
negative quadratic relationship with latitude, caused by four extreme low values at the archipelago’s
margins (r’=0.64, p=0.004). We repeated analyses involving LGM habitat loss without these sites
(Hawai‘i, Maui, Moloka‘i and Kure) and found that significance of its relationship to genetic diversity
were identical, so a latent effect of latitude is unlikely. Thermal stress showed a moderate positive
guadratic fit to latitude and highest values at Lisianski, the epicenter of observed coral bleaching in the
NWHI in 2002 [17]. Because the oceanographic mechanism producing this gradient is unknown [17] and
thermal stress showed no linear or quadratic relationship to any other predictors, we retained this
predictor. The remaining predictors, Habitat area, CCA cover, and M. capitata genetic diversity showed
no significant linear or quadratic colinearity (i.e., Pearson’s r>0.7; Table S1).

Linear modeling of allelic richness: Although Poisson-distribution with log link function and an over-
dispersion parameter are often used in GLMs of high-variance count data (ie., richness), Poisson model
fits and P values were identical to normal-distributed GLMs with identity link functions (i.e., ordinary
linear models), so AIC-based model selection used the latter. Indeed, because the species richness and
mean allelic richness data used here have no zeros and are means of count data, their distributions are
expected to be symmetric and bell shaped, albeit limited to positive values. Species Richness data was
natural log transformed. For all GLM models, all pairwise relationships, interactions, and residuals of
multiple regressions were inspected to determine appropriate treatment, and residuals were tested for
spatial autocorrelation.

Simulation of observed spatial pattern of composite genetic diversity. We simulated a linear stepping-
stone model at equilibrium consisting of 12 populations and compared two scenarios: (1) all populations
had equal effective sizes, and (2) the two marginal populations were three times larger than all other
populations. Simulations were run with Fastsimcoal2.5 [18]. Results are based on 200 replicates of each
scenario and sample size of 10 haploid individuals. We simulated mtDNA sequences 1kb in length and
mutation rate = 2x10°. In the low-migration scenario m = 0.001 between neighbouring populations (i.e.
total proportion of migrants in non-marginal demes was 0.002). In the high-migration scenario m = 0.01
(i.e. total proportion of migrants in non-marginal demes = 0.02). The results show that when migration
rates are low (Fig. S3a), the effect of the reduced migration at the margins is more than compensated by
the larger effective size of the marginal populations. The same overall pattern is observed for higher
migration rates (Fig. S3b) but in this case, genetic diversity is more evenly distributed among demes so
the pattern is less pronounced.



Sensitivity Analyses Methods and Results
We assessed sensitivity of results to various aspects of the study design, detailed below.

1. Marker Type - Due to existing concern about reliability of single-locus genetic data and interpretability
of mitochondrial data, we sought to confirm that spatial patterns of AR based on mitochondrial data are
consistent with other marker types within a species. We were able to compare rarefied AR from nuclear

and mitochondrial datasets individually for 8 species with both types of markers available. Comparisons

used Pearson’s r values and confirmed positive covariation (Table S2).

Eleven species total were sampled with multiple nuclear markers across the Hawaiian Archipelago
(Dataset S2). This nucDNA dataset includes two coral species not included in the mtDNA dataset; all
other species are included in the mtDNA dataset. We used HPRARE to calculate rarefied allelic richness
for these 11 datasets, using a rarefaction size of 20 alleles (minimum sample size of 10 individuals).
Twelve islands were sampled with at least 6 species, including Necker and Gardener. The number of
species sampled per island for the nuclear dataset was correlated with that of the mtDNA dataset
(r’=0.47, p=0.02). Because variation in sampled species per island was low (it ranged 6 to 11 species),
rarefying the island means was not necessary. We compared the nucDNA values of mean allelic richness
to the values from mtDNA. We again excluded Necker and Gardner from analyses as one or the other
behaved as a strong outlier in all tests. For the remaining ten islands, the two estimates of composite
genetic diversity are well-correlated (r?=0.50, p = 0.02) and showed similar responses to most seascape
factors (Table S1). Notably, fish species richness strongly predicted composite nucDNA diversity (r’=0.73,
p=0.002), with a stronger fit than for composite mtDNA diversity at this subset of ten islands (r?=0.44,
p=0.02). Habitat area was also a significant predictor of composite nucDNA diversity (r’=0.41, p=0.05),
and this was the top model in alternative model selection of univariate and bi-variate models of
composite nuclear diversity. The most parsimonious bi-variate regression models were a competing set
of habitat area paired with coral cover, CCA cover, thermal stress or LGM habitat loss all within AAIC. of
2.0, a similar list to the top models for the mtDNA dataset. However, none of the secondary coefficients
showed statistical significance. The smaller sample size of species and islands in the nucDNA dataset
likely reduces power to pick up these secondary effects.

2. Minimum sample size - To assess sensitivity of the study’s results to the rarefaction size of 6
haplotypes per sample, we repeated all analyses for a rarefaction size of ten haplotypes, excluding
samples smaller than this minimum. The inclusion of small samples doesn’t change any of the results
(Table S3). The notion that polymorphic loci require large sample sizes is in fact a common
misconception in the field [19-22].

3. Diversity metric - As an alternative genetic diversity metric to allelic richness, we calculated gene
diversity (GD), the mean rarity of alleles and resampled island means to get a composite genetic metric.
Mean GD correlated highly with mean AR (Table S1), so only AR was used in main statistical analyses.

4. MtDNA locus — In concept, pooling allelic richness data for non-homologous mitochondrial loci may
seem problematic because the marker-species diversity estimates are not replicates from a single
“population” but instead taken from a highly similar set of populations each representing a genome
region. However, our results indicate that error associated with combining samples taken from several
regions of mtDNA does not overwhelm the signal and bias is very low. Using a large sample (e.g., adding
species) is a valid way to overcome noise, and the fact that we find a significant result indicates that the
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signal is strong using our sample. Thus, the estimates made from non-homologous nuclear and
mitochondrial loci can be viewed as reliable and useful proxies for estimates made from homologous
loci. We detail our analyses supporting this statement below.

Species sampled with COl showed higher marker diversities on average than the other marker types.
However, this trend was driven by three COI datasets with unusually high genetic diversity- two hermit
crabs and a limpet (Calcinus haigae, C. seurati and Cellana talcosa). All three species had very poor
sampling, and as such these species were excluded from species-level analyses and have little impact on
composite AR. Marker type had no effect on species level results in the redundancy analysis. We also
confirmed that correlation coefficients for each species’ AR to the top seascape factors (habitat area,
coral area, fish species richness, and thermal stress) are uninfluenced by marker type using ANOVA.
Neither marker type nor gene diversity had any effect on congruence. Specifically, a t-test showed that
species sampled with COl or CB were no more likely to show high or low congruence to the composite
AR values than species sampled with other loci (t=1.2, p=0.22).

Bias could nevertheless arise in the composite AR results if certain islands were predominantly sampled
with mtDNA regions of low diversity. Cytochrome B shows lower diversity than other mtDNA regions in
our dataset. Average of total gene diversity from the sampled species is 0.66 for CytB and ~0.73 for all
other markers — not a large difference. In our case, the most influential islands to the trends in patterns
and drivers of composite AR are Hawaii (highest AR) and Nihoa (lowest AR), so bias in marker
composition is most crucial for these two islands. In fact, 49% of species at Hawaii were sampled with
Cyt B, whereas 65% of species at Nihoa were sampled with Cyt B, potentially amplifying their difference
in AR. To figure out how much bias this difference in marker composition creates, we calculated the
mean total genetic diversity at each location as a weighted average using the proportion of CytB
markers in the island’s sample. We find the expected difference in diversity due to the different marker
ratio at the two islands is 1% (mean total gene diversity of 0.696 at Hawai’i vs. 0.685 at Nihoa). In
comparison, the actual difference in rarefied AR for the two locations is 22%, and the relative difference
in raw mean gene diversity (more comparable to total gene diversity) is 16%. A 1% bias cannot produce
a 16% effect. Thus, bias is not contributing measurably to the results.

5. Species sampled - We explored the sensitivity of the congruence results to the species included in the
composite mean. Because there are 37 species in the calculation of the rarified island mean, excluding
one doesn’t change the mean enough to make a difference in congruence results. We chose to test the
stability of the composite mean and congruence results by jackknifing in ways to purposefully disrupt
them. First, we recalculated the resampled island means after omitting, as a group, the three species
with the highest congruence to the resampled mean (celexa, halorn and panpen, all with congruence
r>0.7 ). Overall distribution of congruence values to the new resampled mean was nearly identical, and
the positive skew of the distribution was nearly identical (with identical statistical significance p=0.03).
Although the congruence of the three omitted species to the new mean was lower (r=0.45, 0.61 and
0.69), they remained some of the highest observed congruence values. We repeated this type of test a
second time, omitting four other species with high influence on the results because they were collected
at many islands, including islands with small total number of species sampled (acapla,
ophpic,parmul,abuabd). These species showed a mix of low and high congruence (r = 0.05, 0.13, 0.44
and 0.55). Again overall distribution and skew of congruence to the new multi-species mean were
unchanged when calculated without these four species, yet the four species showed no appreciable



change in their individual congruence to the mean from which they were omitted (r = 0.07, 0.08, 0.39
and 0.56).

6. Taxon - We re-calculated the rarefied multi-species mean allelic richness using only fishes, to test the
possibility that the fishes were driving all of the seascape relationships. Rarefaction used a sample of 8
species per island instead of 12 to accommodate lower samples at some islands. Correlation of the fish-
only mean to fish species richness, habitat area and other seascape factors were very noisy due to
certain islands becoming large outliers. Even with these islands excluded, the mean of all 47 species
showed higher correlation to fish species richness than the mean of the 37 fishes (all: R2=0.67, p =
0.001; fishes: R2 = 0.46, p = 0.01; Fig S8). Most likely, running analyses with fish-only means of genetic
diversity, although more comparable to fish species richness estimates, reduces sample sizes at some
islands to low levels, compromising statistical power of seascape analyses.
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1  Table S1. Colinearity matrix based on Pearson’s r values for all genetic diversity and seascape variables at 13 islands sampled across
2 the archipelago. Column headers correspond to row labels. AR is allelic richness, mtDNA genetic metrics use 47 datasets, nuclear AR
3 uses 11 multi-locus nuclear datasets sampled at 10 islands, GD is gene diversity, Fsr is genetic isolation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1. Mean mtDNA AR 1.00
2. Mean NucDNA AR 0.70 1.00
3. Mean mtDNA GD 0.94 0.54 1.00
4. Mean mtDNA Fst -067 -039 -060 1.00
5. Habitat Areat 0.68 0.64 0.61 051  1.00
6. Habitat Areaf" 0.72 0.76 0.56 036  0.80 1.00
7. Coral Cover 0.56 0.62 0.48 012 032 0.59 1.00
8. CCA Cover 0.52 0.09 0.66 002 041 0.31 0.39 1.00
9. LGM Habitat Loss 036 -026 037 011 0.03 020 -052 -010 1.00
10. Nearest Neighbor -0.16 -051 -010 017 035 -039 -012 0.08 0.34 1.00

11. Larval Immigration 030 -026 034 026 0.14 0.09 0.08 0.24 0.52 0.18 1.00
12. Fish Spp Richness 0.72 0.85 0.53 -044 059 0.83 0.61 0.02 047 -033 -025 1.00
13. Coral Spp Richness 0.53 0.23 0.33 052 057 0.59 0.52 0.11 -018  0.39 0.31 0.63 1.00

14. Thermal Stress 062 -059 -054 017 044 -066 -042 -020 048 0.24 0.48 069 -016 1.00

15. M. capitata AR 047 -029 -043 005 033 -053 -047 -031 041 0.20 008 -059 -039 0.09 1.00

16. Wave Disturbance 010 -026 -001 -035 -018 -049 -073 -028 033 0.21 040 -035 027 037 0.25 1.00

17. Latitude 001 -021 0.08 040 -013 043 -071 -026 023 0.15 052 -026 028 022 0.26 0.98 1.00

4 TBased on bathymetry
5 tBased on classified satellite imagery
6
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11
12
13

14
15

16
17

18

19

20
21
22
23

Table S2. Differences in main results based on rarefying allelic richness to 6 haplotypes (RAR
6) versus 10 haplotypes (RAR 10). A. Redundancy analysis; ‘cum.’ indicates cumulative. B.
Congruence analysis. C. Seascape model selection analysis. * is p < 0.05, ** is p < 0.01, ***is
p<0.001.

A. Redundancy Analysis

Dataset cum. r’ axis 1r° axis 2 r°
RAR 6 0.47* 0.48%** 0.37%**
RAR 10 0.49* 0.54*** 0.28***
B. Congruence
Dataset Mean r t-test N
RAR 6 0.13 2.21* 36
RAR 10 0.16 2.38%* 34
C. Seascape model selection of composite AR
RAR 6 RAR 10
Predictors Adj. r’ A AIC, Adj. r’ A AIC,
Habitat area, Coral cover 0.59***  0.00 0.63* 0.00
Habitat area, LGM habitat loss 0.59*** 0.23 0.57* 0.68
Habitat area, Thermal stress 0.58**  0.40 0.40 6.29
Habitat area 0.44**  0.50 0.35* 2.57
CCA cover, Thermal stress 0.56**  0.76 0.53 3.37
Thermal stress 0.39* 0.82 0.23 4.57
% Coral cover 0.34%* 2.04 0.48* 2.24
% Coral cover, LGM habitat loss 0.34 6.26 0.50* 4.26
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26
27
28
29
30
31

32
33
34
35

36
37
38
39
40
41
42
43

44
45
46

47
48
49

50

51

52

Table S3. Correlation of spatial patterns of allelic richness for 8 fishes with paired nuclear and
mitochondrial datasets. All samples rarefied to 10 individuals. Sources indicated by superscripts.

Pearson’s r N
Species Second Marker type Loci value islands
Abudefduf abdominalis' Nuclear sequence 3 0.83 8
Abudefduf vaigiensis' Nuclear sequence 3 0.61 6
Epinephelus/Hyporthodus quernus® Microsatellite 6 0.32 9
Etelis coruscans’ Microsatellite 8 0.13 7
Etelis marshi’® Microsatellite 9 0.06 9
Lutjanus kasmira* Nuclear sequence 3 0.26 8
Pristipomoides filamentosus’ Microsatellite 13 0.11 8
Zebrasoma flavescens’ Microsatellite 13 0.57 12

Source Data

1. Coleman RR, Gaither MR, Kimokeo B, Stanton FG, Bowen B, Toonen RJ (2014) Large-scale
introduction of the Indo-Pacific damselfish Abudefduf vaigiensis into Hawai'i promotes genetic
swamping of the endemic congener A. abdominalis. Molecular Ecology, 23, 5552-5565.

2. Rivera MAJ, Andrews KR, Kobayashi DR, Wren JLK, Kelley C, Roderick GK, Toonen RJ
(2011) Genetic analyses and simulations of larval dispersal reveal distinct populations and
directional connectivity across the range of the Hawaiian Grouper (Epinephelus quernus).
Journal of Marine Biology, 2011, 1-11.

3. Andrews KR, Moriwake VN, Wilcox C, Grau EG, Kelley C, Pyle RL, Bowen BW (2014)
Phylogeographic analyses of submesophotic snappers Etelis coruscans and Etelis "marshi”
(Family Lutjanidae) reveal concordant genetic structure across the Hawaiian Archipelago. Plos
One 9, €91665-¢91665.

4. Gaither MR, Bowen BW, Toonen RJ, Planes S, Messmer V, Earle J, Robertson DR (2010)
Genetic consequences of introducing allopatric lineages of Bluestriped Snapper (Lutjanus
kasmira) to Hawaii. Molecular Ecology, 19, 1107-1121.

5. Gaither MR, Jones S a, Kelley C, Newman SJ, Sorenson L, Bowen BW (2011) High
connectivity in the deepwater snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-
Pacific with isolation of the Hawaiian archipelago. PloS one, 6, €28913.

6. Eble J, Toonen R, Sorenson L, Basch L, Papastamatiou Y, Bowen B (2011) Escaping
paradise: larval export from Hawaii in an Indo-Pacific reef fish, the yellow tang Zebrasoma
flavescens. Marine Ecology Progress Series, 428, 245-258.
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53  Figure S1. Principal Components Analysis of seascape factors at all islands
54  main text for explanation of factors.
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59
60
61
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63
64

Figure S2. Congruence of spatial patterns of allelic richness across species. Distribution of
correlations between individual species” mtDNA allelic richness and the composite mtDNA
mean for 34 species sampled at > 5 islands. Box plot horizontal lines indicate maxima and
quartiles, diamond is centered on mean with tips at 95% confidence interval; red bracket shows

range of 50% observation density.
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65
66
67
68

69
70

Figure S3. Plots of composite mtDNA allelic richness against 12 factors. Numbers indicate
islands in order from southeast to northwest (1. Hawai‘i, 2. Maui, 3. Moloka‘i, 4. Oahu, 5.
Kaua‘i, 6. Ni‘ihau, 7. Nihoa, 8. French Frigate Shoals, 9. Maro, 10. Laysan, 11. Pearl and
Hermes, 12. Midway, 13. Kure).
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Fig. S4. Output of genetic simulations. Plots show allelic richness along a linear habitat array
with migration among neighboring populations only. Solid squares correspond to the scenario
where all populations have equal sizes (N. = 1000); circles correspond to a scenario were the two

marginal populations are three times larger than the others (N. = 3000 vs N, = 1000).
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Figure S5. Redundancy analysis relating genetic diversity, seascape variables and species’
traits. Predictive power of species traits (blue font) for the strength of spatial correlation of each
species’ AR values with seascape factors (red font). Seascape factors adjacent to trait vectors are
under positive influence, factors opposing are under negative influence; these associations are
driven by the species names clustered adjacent or opposing to the vectors (black font, see Dataset
S1 for full names).
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Figure S6. Modeled larval immigration rates. A. Map of Hawaii overlaying estimates of
‘larval immigration’ (i.e., in-closeness centrality; green circles) and pairwise rates of larval
exchange (greyscale lines), with southeastward movement above the archipelago and
northwestern movement below the archipelago. Island to the south is Johnston Atoll. B. Plot of
Larval Immigration against latitude for the 13 Hawaiian Islands analyzed.
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Fig. S7. The distribution of species’ correlations of mtDNA AR to habitat area. Solid arrow
indicates the composite AR correlation to habitat area inclusive of all species (r = 0.66). Shaded
units indicate 8 species with highest individual correlations. Dashed arrow indicates the
composite AR correlation to habitat area with these 8 species omitted from the mean (r = 0.61).
Box plot horizontal lines indicate maxima and quartiles, diamond is centered on mean with tips
at 95% confidence interval; red bracket shows range of 50% observation density; A: for all
species (mean r = 0.05, N = 39), B: when 8 species are omitted (mean r =-0.10, N = 31).
Identities of omitted species are: C. exarata, C. lunulatus, C. miliaris, H. ornatissimus, L.
kasmira, M. vanicolensis, O. erinaceus and P. pencillatus; three are invertebrates and three are
endemics.
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112 Fig S8. Comparison of correlations of mean allelic richness to fish species richness. A. Mean
113 mtDNA AR based on all species; B. Mean mtDNA AR on all 37 fishes. Red lines include all
114  islands; green lines exclude islands numbered 2 (Maui) and 4 (Molokai) which are outliers in

115  plot B.
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