Northeast Fisheries Science Center Reference Document 15-17

Technical Details for ASAP version 4

by Timothy J. Miller and Christopher M. Legault

September 2015

Northeast Fisheries Science Center Reference Document 15-17

Technical Details for ASAP version 4

by Timothy J. Miller and Christopher M. Legault

NOAA Fisheries, Northeast Fisheries Science Center, 166 Water Street,
Woods Hole, MA 02543

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, Massachusetts
September 2015

Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and
to enable the timely transmission of research results by Center and/or non-Center researchers,
where such results bear upon the research mission of the Center (see the outside back cover for
the mission statement). These documents receive internal scientific review, and most receive
copy editing. The National Marine Fisheries Service does not endorse any proprietary material,
process, or product mentioned in these documents.

All documents issued in this series since April 2001, and many documents issued prior to
that date, are available online at http./www.nefsc.noaa.gov/publications/. The electronic
version is available in PDF format to permit printing of a paper copy directly from the
Internet. If you do not have Internet access, or if a desired document is one of the pre-April
2001 documents available only in the paper version, you can obtain a paper copy by
contacting the senior Center author of the desired document. Refer to the title page of the
document for the senior Center author’s name and mailing address. If there is no Center
author, or if there is corporate (i.e., nonindividualized) authorship, then contact the Center’s
Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

Information Quality Act Compliance: In accordance with section 515 of Public Law 106-
554, the Northeast Fisheries Science Center completed both technical and policy reviews for
this report. These predissemination reviews are on file at the NEFSC Editorial Office.

This document may be cited as:

Miller TJ, Legault CM. 2015. Technical details for ASAP version 4. US Dept Commer, Northeast
Fish Sci Cent Ref Doc. 15-17; 136 p. Available at: http://www.nefsc.noaa.gov/publications/

Contents

1 Introduction 1
2 Model Equations 1
2.1 Selectivity e 1
2.2 Catchability for Abundance Indices e e 2
2.3 Mortality Rates e e e 3
2.4 Stock-Recruitment Relationship 4
2.5 Spawning Stock Biomass 5
2.6 Abundance at Age L e 5
2.7 Predicted Landings, Discards and ProportionsatAge. 6
2.8 Calibrated Abundance Indices and Age Composition 7
2.9 Predicted Abundance Indices and Proportionsat Age oo 7
2.10 Reported Fishing Mortality o . e 8
2.11 Reference Points 8
212 Projections e e e 9

3 Objective Function Components 9
3.1 Data . .. e 9
3.2 Penalties 10
3.2.1 Stock-Recruitment Relationship 13

3.2.2 Stock-Recruitment Scalar Parameter (Rg or SSBy) o e 13

3.2.3 Stock-Recruitment Steepness e e 13

3.2.4 Year 1 Abundance Parameters 13

3.2.5 Year1 Fishing Mortality Rate 14

3.2.6 Selectivity Parameters L 14

3.2.7 Availability of Population to Abundance Indiceso 14

3.2.8 Gear Efficiency of Abundance Indices 14

3.2.9 Fishing Mortality RandomWalk 14

3.2.10 AR process for Availability/Catchability of Abundance Indices 14

3.2.11 Relative Catch Efficiency Coefficiencts 14

3.2.12 Deviations between Fand M L 15

3.213 Maximum F . . . o 15

iii

Standardized Residuals, RMSE, and Effective Sample Size 15

Bibliography 16
Appendices 2
6.1 AD Model Builder Code for ASAP4 21
6.2 Auxiliary Code for Exporting Outputto R 107

iv

1 INTRODUCTION

ASAP (A Stock Assessment Program) is an age structure stock assessment modeling program originally developed by
Chris Legault and Victor Restrepo while they were at the Southeast Fisheries Science Center (Legault and Restrepo
1998). Modifications made in subsequent iterations are described at the top of Appendix 1. ASAP is a variant of statis-
tical catch-at-age models. This latest version can integrate annual catches and associated age compositions (by fleet),
abundance indices and associated age compositions, annual maturity, fecundity, weight, and natural mortality at age,
and annual environmental covariate effects on stock-recruit parameters or natural mortality (when estimated). It also
can incorporate (size-based) calibration estimates that relate abundance index time series with periodic changes in gear.
However, it is also flexible enough to handle data poor stocks without age data (dynamic pool models) or with only new
and post-recruit age or size groups. Further information and instructions for new features and options are described in
the ASAP version 4 User’s Guide provided with the installation.

There is an extensive usage of design matrices in ASAP4 for estimating covariate effects on natural mortality, catchability,
size-based calibration, and stock recruit relationships. Design matrices are commonly used in parameterizing generalized
linear models and related models and they provide a natural way to analyze effects of both categorical and continuous
covariates. In our adoption of the design matrix approach to parameterizing these different aspects of the assessment
model, we envisioned the user considering no more than a few covariates. To reduce the chance that model parameters
are confounded, the user should ensure there is no collinearity of the covariates and the rank of the matrices is full. Finally,
although there are a great number of changes from ASAP version 3, the GUI will accept an ASAP version 3 input file and
automatically create a default ASAP version 4 which then can be modified in various ways if the user would like to access
the features available in the new version.

This document provides details on the basic equations used in the ASAP version 4. It also provides appendices containing
the actual ADMB code used to generate the executable so that the exact calculations in the program are available. This
document uses an extensive set of mathematical notation and some variable names in a number of places instead of
symbols to facilitate understanding of the underlying code. All notation is defined in the text of the document, but it is also
listed with definitions in Table 1. Two log files are produced when running the model. “ASAP4input.log” reports the data
objects read into the model and “ASAP4fix.log” reports both minor modifications made to the input to allow the model to
run and major problems with the input data that need to be attended to by the user before the model will run. Note that all
logarithms are the natural type.

2 MODEL EQUATIONS

The description of the model generally follows the steps in the code for ease of understanding. Calculation of the objective
function is described in the next section. The population has age classes 1, ..., A where the last included all ages > A
(plus group) and the population is modeled from year 1 to Y. Catch and discards by fleet and abundance indices and
corresponding age composition information can exist for any subset of those years. When catch does not exist, fishing
mortality will be zero.

2.1 Selectivity

The approach used to estimate fleet and abundance index selectivity in ASAP version 4 is a bit different from that in
version 3. Similar to fleet selectivity in ASAP version 3, there are selectivity blocks and three options for estimating
selectivity within each block:

* age-specific selectivity s, where the number of parameters is equal to the number of ages (one parameter for each
age and at least one age should be fixed at 1.0 instead of estimated),

« logistic function (2 parameters: asg, b)
1

Sa= 3 +exp [—(a— aso)/b]’

+ and double-logistic (4 parameters: aso 1, b1, aso2, bo)

1 1
Sa= 17 exp [—(a— aso,1)/b1] 1+exp [(a— asop)/bo]

(@)

Note that when logistic or double-logistic selectivity is specified, the selectivity at age is divided by the maximum value
over all ages, creating the final selectivity vector with a maximum of 1.0 for that block. This scaling provides interpretation
of catchability and fishing mortality estimated by the model to be “fully selected” or the maximum value across age groups.

Unlike ASAP version 3, the user now defines selectivity blocks independently from fleets and abundance indices. Pa-
rameters can be used in multiple blocks to mirror parameters between fleets and/or abundance indices, or multiple times
within the same block to share parameters within a fleet or abundance index selectivity block. The user specifies which
block to use for each fleet and abundance index each year so that the same selectivity block could be used for multiple
abundance indices and/or fleets. When using the GUI, the total number of selectivity parameters is determined by the
software; otherwise the user must specify it. The user also specifies the upper and lower bounds, penalty weights, CVs,
phases, and the position in any selectivity blocks to use the parameter.

2.2 Catchability for Abundance Indices

Catchability for each abundance index q;; 5 is separable into year g;; and selectivity at age components s; ; (see Section
2.1 for details about the latter). To allow more variety of assumptions to the user, q;; is modeled in ASAP4 as the product
of availability of the population to the index Avail;; and efficiency of the gear used to collect the data from with the index is
derived Eff;,

git = AVaI'/,"tEff,'!t. (3)

Availability for abundance index i is modeled as a function of a vector of na,;,; coefficients B,,,; and a Y x nayg,; design
matrix Xayai ;. For year t,
Uavail, — lavail
1+exp [~ Xhaii Bavaii]
p Avail, it Avail,i

where Xavii: is the row of the design matrix corresponding to year t, and a4 and uavi, are the lower and upper
bounds on availability for abundance index i. Autoregressive models of availability are possible when availability deviation
parameters Adev;; are active. In this case, availability is specified as

Availit = lavai, +

(4)

AVail s = haa + Unvail, — lavail (5)
’ "1 +exp [—Ay]
where
A tins = XATvai/,i,tm,-n,ﬁAvai/,i (6)
and for tmin,i <t< tmax,i
Ait = Ait—1 + Xagain B avai + AV ¢ (7)

where tyin; and tmax,; are the first and last years where the abundance index is observed. Missing observations between
tmini @nd tyay; are allowed. To specify a random walk (as was possible for catchability in ASAP version 3), activate the
deviations Adev;; and specify Xavai,i to be a single column with a 1 at the first observation (at ¢y, ;) and 0 elsewhere,

1

0
Xavaii=| . |- (8)

Activating the deviations with covariates in the design matrix Xa,,i; would fit a more complicated ARMAX-type model for
availability which may be difficult to interpret.

Similar to availability, gear efficiency is parameterized as a function of a vector of ngg; coefficients Bz, and a Y x ngg;
design matrix XEff’,‘
Ugs, — len
1+exp [~ XLy Ber]
p Eff,itFP Eff,i

where Xg+ is the row of the design matrix corresponding to year t, and /g and ugg; are the lower and upper bounds on
gear efficiency for abundance index i specified by the user. There are no gear efficiency deviations.

Effit = lIes + 9)

The coefficients may or may not be estimated depending on whether phases are > 0. Both availability and gear efficiency
are essentially parameterized as a sort of generalized logistic model with an arbitrary scale and location determined by
the upper and lower bounds. That is, a typical logistic model would be obtained if the lower and upper bounds were
0 and 1. This same method is also used in Section 2.4 for steepness of the Beverton-Holt stock-recruit relationship.
To model a single catchability term as in ASAP version 3, treat availability as catchability by fixing Eff;; = 1, which is
accomplished by specifying an appropriate Xgs,; while fixing 3 ; with proper lower and upper bounds. For example, this
can be accomplished by fixing Bg;; = 0 with the lower and upper bounds of 0 and 2, and specifying Xgf; to be a single
column of 1s. To model the random walk in catchability as was possible in ASAP version 3, follow the directions above for
the random walk in availability (which is interpreted as catchability with gear efficiency fixed at 1).

Modeling catchability as these components allows the user to include different sources of information explicitly. For
example, there maybe information about availability of the stock to a fishery-independent survey when that is the source
of information for the abundance index, or there may be information about efficiency of the gear that is used for the
abundance index.

2.3 Mortality Rates

Like catchability, fishing mortality for fleet f in year t at age a is assumed to be separable as a product of a year effect
(Fmult ;) and selectivity at age sy, (see Section 2.1). If the input catch for a fleet is < 0 in year t, Fmulty; = =19, This
allows fleets to operate during different years or the population to be modeled for a specified number of years before any
fishing occurs. For a fleet operating in years tmins, b, ... , tmax r, the Fmult in the first year is calculated as

Fmultyy,, , = € (10)
and for each subsequent year tmins < fi < tmaxr that the fleet is operating,
Fmult;;, = Fmult; ;,, eF®u (11)

Both Fmult,,,,, and the vector of deviations are estimated in log space (3r and Fdevy,). Note that the Fdev parameters
are not estimated as a bounded deviations vector in the ADMB code, and so fishing intensity can increase or decrease
continually or fluctuate throughout the time series. When the weight for fishing mortality deviations is Agqey, > 0, @ random
walk in the log of Fmult; is specified for this fleet. If there are gaps in the catch series for the fleet, the random walk will
skip over these years.

The directed fishing mortality rate (portion of F that contributes to landings) for a fleet, year, and age is computed using
the separable equation along with the proportion of catch released for that fleet, year, and age (PR ,) as

Fdir 2 = Frta(1 — PRy a). (12)

The discard mortality rate is
FdI'SCf,[,a = Ff,t‘aPRf,[,aRMf (13)

where RM is the fleet-specific proportion of released fish that die. The two parts are then added together to produce the
fishing mortality for the fleet, year, and age
Ftta = Fdirs ;5 + Fdiscy s a. (14)

If the user does not choose the option to estimate natural mortality (M), it is specified as a year by age matrix just as in
ASAP version 3. If the user chooses to estimate M, initial values are specified as

M; 2 = exp (XAT/1,1,rﬁM,1 + X12.28u2) (15)

where 3, ; is a vector of my coefficients with initial guesses which the user specifies, and Xy, ; is the row corresponding
to year t of a Y x my design matrix of annual covariates Xy,,1 which the user specifies. Similarly, 3,,, is a vector of mp
coefficients with initial guesses which the user specifies, and X , is the row corresponding to age a of a A x m, design
matrix of age-specific covariates Xy, 2 which the user specifies. Usually, the matrix Xy, » would be composed of 1s and 0s
to specify different mortality rates for subsets of age classes. Phases for some or all of the coefficients 3,,, and 3,,, may
be set to < 0 to fix natural mortality for subsets of ages or years. For example, if there are 5 age classes, age-specific
natural mortality constant over time is desired with initial guesses of 0.5,0.4,0.3,0.2,0.1, and M for age 5 is assumed
known and phases for other ages is 2, then set the phases of the coefficients to 2,2,2,2,-1 with design matrix

Xz = (16)

OO OO —
[eNeNeR o)
OO —+0O0
o =+ O OO
- OO oo

and 3, = {—0.693, —0.916, —1.204, —1.609, —2.303}. Also set 1 time-specific coefficient to 3,,, = 0 and set the phase
to -1. Xy,1 must be 1 column, but the values are irrelevant.

The total mortality (Z; 5) is the sum of natural and fishing mortality at year and age over all F fleets

].'
Zia=Mia+Fra=Ma+ Y Fia (17)
f=1

where F;; 4 is defined in Eq. 14.

2.4 Stock-Recruitment Relationship

If the user wants to include a Beverton-Holt stock-recruitment relationship, expected recruitment is parameterized following
Mace and Doonan (1988) as

4T[R0,tSSBt _ 47'{SSBTSSBO,1L/SPR0J

Rist = =
et SPRQ]{RO’[+ (57'[— 1)SSB[SSBO’I + (57'[— 1)SSB[

(18)

where R, is the expected recruitment in year t + 1 and SSB; is defined in Eq. 25 (Section 2.5). Steepness (1) and either
unexploited recruitment or SSB (R, or SSBy ¢, which the user specifies) are related to each other by the unexploited
SSB per recruit SPRy s = SSBy 1/ Ro¢- The unexploited spawning biomass per recruit is a potentially year-specific quantity
calculated as

A—1 a1 A—1
exp |— M,
SPRot =) {exp [— > Mix_1| Sraexp [—Pssst,a]} +exp [— > Mg Poa p—[exl:)TS—BMt:]] (19)
a=1 k=0 k=0 b

where M; , is the natural mortality rate at age a in year t with M;o = 0, &, 4 is the fecundity at age a in year ¢, and psss
is the fraction of the year at which spawning occurs. There are three options for the user on how to use SPRy; in the
stock-recruitment relationship: (1) use value from the first year, SPRy 1; (2) use the value from the last year, SPRy vy (used
in ASAP version 3); or (3) use yearly values. The unexploited stock biomass per recruitment is therefore fixed using the
first two options, but time-varying using the last option. It is also possible to model effects of annual covariates on 7 and

either SSB, or Ry by including corresponding design matrices. Steepness is modeled as a function of a vector of n,
coefficients 3. and a Y x n, design matrix X-, so steepness in year t is

0.8
1+ exp (_XI,I‘BT)

where X ; is the row of X, corresponding to year t. Similarly, either Ry or SSBy, are also modeled as a function of a
vector of ng coefficients 3, and a Y x ng design matrix Xo,

71 =02+ (20)

Ro,t = exp (X3 ,50) (21)
or
.
SSBy,¢ = exp (Xg150) (22)

where Xy ; is the row corresponding to year t of Xo. The default for steepness and unexploited recruitment or spawning
biomass is to use a single column of ones for the design matrices so that the parameters are constant over time. For
example, the user can specify a constant value of Ry = 108 with the design matrix

Xo = 1 (23)
1'
and starting value 5; = 13.81551 which gives the vector of unexploited recruitment
108

106
Ro(Xo) = exp (Xofo) = | . | (24)

108
If the user specifies to not use the stock-recruit relationship to model recruitment or if steepness is fixed at 1 with no
covariate effects on Ry and using SPRy from either year 1 or Y, then expected recruitment will be constant, R; = Ry.

Regardless of the what the user specifies, the program produces the annual values of SSBy, Ry, SPRy, and 7, so that the
user may inspect trends or variation in the these values over time and any influence on other estimated quantities.

2.5 Spawning Stock Biomass

The spawning stock biomass in year t is a function of the population abundance which occurred at age N 4, the fecundity
at age 9;,, and the total mortality at age Z;; (see Section 2.3) which occurs during the fraction of the year prior to

spawning Psss,
A

SSB; = Nya®:a6xp{—psssZ:a} (25)

a=1

where the fecundity is either input by the user or else derived as the product of the weight and maturity at age.

2.6 Abundance at Age

For predicted recruitment N; 1, the parameters estimated in the model are the log-recruitment deviations,

Rdev; = log(N;,1) — log(R) (26)

which are elements of a bounded deviations vector (sums to zero) and predicted recruitment is calculated as
N1 = Refidev (27)
where ﬁ, is generated using methods described in Section 2.4.

The user provides initial values for the population abundance at ages 2 through A in the first year (The initial value provided
for age 1 is not used). If the phase for these parameters is > 0 then the model will estimate them, otherwise they will be
fixed at the initial values. If the user specifies to use the stock-recruit relationship to model recruits, a partial SSB for ages
2 through the maximum age is computed and used in the stock recruitment relationship (Eq. 18) to create an expected
recruitment in the first year Ry. Otherwise, Ry = Ry. In either case, the predicted recruitment Ny 1 is specified using Eq.
27, and SSB; is then completed using Eqg. 25 for the first age class.

For each subsequent year, abundances for age classes 2to A — 1 are
Nia=Ni_1a 1€ %, (28)

the plus group abundance is
Nea = Ne—1,a-1€ 471 + Ny a8~ 414, (29)

and the spawning stock biomass is computed (Eq. 25) so that ﬁm can be computed if the stock-recruit function is used.

2.7 Predicted Landings, Discards and Proportions at Age

The predicted numbers of fish landed /L\f’t’a and discarded /D\f!t’a at age ain year t for fleet f are derived from the Baranov

catch equation:
Fdirs ¢ 4

Lita=Nea 52 (1- %) (30)
t,.a
and Fdi
~ isc B
Dita= Nt,aiz Ll (1—e %), (31)
t,a

These predictions are components of predicted total weight of landings and discards and respective proportions at age.
The predicted total landings in weight is a function of L¢; , and the weight at age for landed fish in the fleet W, ¢ a,

A
Lwyst = Z LitaWiria- (32)

a=1

Similarly, the total discards in weight is a function of 5,,,,3 and the weight at age for discarded fish in the fleet Wp ¢ 4,

A
Dw = Z Dt taWp t 1, (33)

a=1

Note that different weights at age can be specified for landings and discards for each fleet. Since Fdiscy, , is derived using
the proportion of fish that die after release, the total observed discards in weight (Ds;) should only include those fish that
die after capture and release.

The predicted landings and discarded proportions at age for each fleet and year are

~ Lita
Pifta= —g = (34)
Zgﬂ Lita
and R
~ Dy ta
Ppfta= —F - (35)
22=1 Df,t,a

Any predicted proportion less than 10~ 15 is replaced by the value 10~'° to avoid division by zero in the objective function.

2.8 Calibrated Abundance Indices and Age Composition

We provided this new feature in ASAP version 4 to allow users to include estimates of relative catch efficiency (calibration
coefficients), potentially by length, more directly in an assessment. For example, the length-based relative catch efficiency
of the Henry B. Bigelow and Albatross IV estimated by Miller (2013) for Atlantic butterfish was used in its most recent
assessment (Adams et al. 2015). However, the user can specify multiple (length-based) relative catch efficiencies that
can be used to calibrate specific portions of abundance index time series. The input data for each abundance index
observation to be calibrated includes the uncalibrated numbers at length for each of L length classes and the age-length
key for year t. The input data for relative catch efficiency k includes the pj coefficient estimates 3,, the corresponding
Pk X px variance-covariance matrix Xk, and the design matrix X, (L x px) for calculating the relative catch efficiency at
length. Calibrated abundance index i in year t is

L
leit= Y luitipki (36)
=

where Iy 1, is the uncalibrated numbers-at length /,
i) = e XiBx (37)

is the relative catch efficiency at length /I, Xx is the row of the design matrix corresponding to length class /, and ﬁk =
REdev + Bk. The vector of py deviations REdev, are parameters that are initially 0, but estimated when the phase
for relative catch efficiency k is > 0. The deviations allow the calibration to depart from that provided using just the
input coefficient 3, when the other data components in the assessment model provide information about the change in
efficiency. When the deviations are estimated they are penalized by an objective function component described in Section
3.2.11 which uses the variance-covariance matrix Xx. The more precise the estimates of the coefficients, the less the
deviations will be allowed to differ from 0. This approach to dealing with changes in efficiency for a given abundance index
time series can be thought of as an intermediate between external calibration of the index observations and splitting the
series with separate catchabilities and selectivities.

The calibrated number at age a is
L

leita= Y Pit@Nlu,tipik (38)
I=1
where p; ((a|l) is the proportion at age a given length / from the age length key for abundance index i in year t and the
calibrated proportion at age a is
Ic.ita

S et
Note that this option will only work correctly for numbers-based (not biomass) indices and age composition. The calibrated
abundance indices I¢;; are used in the calculations of abundance index objective function components using the CVs
supplied with the abundance index series. Therefore, we implicitly assume that the CVs of the abundance indices and
effective sample sizes for the proportions-at-age do not depend on the gear used to collect the abundance index data.
The calibrated abundance indices and proportions at age also replace the normal abundance index data for the calibrated
years in the reported results. Note also, there will be px more parameters estimated for each relative catch efficiency k
for which the phase is 0.

pcita = (39)

2.9 Predicted Abundance Indices and Proportions at Age

Proper predictions of the abundance indices depend on correct specification of the time of year when the abundance index
data are collected and the units of measure of the abundance indices (numbers or biomass). If the month for abundance

index in year t is set to m;; = —1, the population numbers at age available to the survey are assumed to be the average

annual abundance at age,

N
Ntz = f (1—e %), (40)

ta

If the month is 1 < m;; < 13 the numbers at age are decremented based on the time of year when index occurs
Ni,t,a = Nt,ae_zt’a(;“ (41)

where d;; = (m;; — 1)/12. Note that the time of the observation refers to the beginning of the month specified, so m;; = 1
is January 1 and m;; = 12.5 is December 15. If the abundance index is measured in numbers, the predicted abundance

o~

index (/;1) is

A A
hi=> Tlita=0it Y NitaSita (42)
at

a=1

and if the abundance index is measured in biomass, then

A A
lii=> Tita=0it Y NitaWitaSita (43)
a=1

a=1

where W;; , are the user-defined weights at age for abundance index i. If the user selects to estimate the proportions at
age for an abundance index, then the proportions at age are computed in the same manner as the landings and discards
at age (Egs. 34 and 35),

o~

- I;
Dita= =2 (44)

it

Note that the user specifies the unit of measure for the abundance index and proportions at age separately, so all four
combinations of numbers and biomass are possible.

2.10 Reported Fishing Mortality

A feature of ASAP version 3 that is continued in ASAP version 4 is the use of a reported fishing mortality Frep, which
averages the total fishing mortality over an input range of ages, amin t0 amax. The calculation of Frep; n a given year is
done with 1 of 3 different types of weighting that the user chooses: equal weighting (w; 4 = 1), weighting by population
abundance at age (w4 = N; 3), or weighting by population biomass at age (wt s = Ni 2 W: 2 where W; ; denotes the January
1 weight at age a in year f). The weighted average is

amax
Za:am,-,, wrafta

Frep, =
t amax
el Wta

(45)

where F; , is defined in Eq. 17.

2.11 Reference Points

As in ASAP version 3, there are a number of common reference points based on the estimated fishing mortality at age
and biological characteristics in the model. The reference points are based on directed and discard selectivity at age from
all the fleets that were assigned to be directed. The directed selectivity at age is the ratio of total directed fishing mortality
at age to the maximum of the age-specific values

S7 Fdire s 4
max; (Zi] Fdirma>

sdir; 5 = (46)

8

The non-directed selectivity at age is obtained analogously from fishing mortality at age of fleets that were not assigned
as directed. These selectivities are fixed during the reference point calculations. The fishing mortality reference points are
computed for each year through a bisection algorithm that is repeated 20 times (producing an accuracy of approximately
107°). The reference points computed are Fo1, Fyax. Fusy. and Fxe, where the user specifies any number of values
between 0 and 100 for the percentage of spawning potential ratio. The associated maximum sustainable yield and
spawning stock biomass at F,sy are also provided. The annual reference point values are averaged in the same manner
as Frep to allow direct comparison. If selectivity or biological characteristics change over time, care must be taken in
interpreting the reference points and for the MSY-based reference points, the option chosen for usage of SPR, in the
stock-recruit relationship is very important. The program computes annual values using year-specific natural mortality,
weights at age, fecundity, and selectivity to demonstrate the potential for change in the reference points.

2.12 Projections

The projections in year beyond the terminal year of the model use the same basic calculations, except that there are no
data to which the estimates are fitted. The recruitments for each projection year can either be provided in the input data
or be derived from the stock recruitment curve (without deviations from the curve). The directed and discard selectivity
as well as the non-directed F at age are the same as used in the reference point calculations. There are five options to
define harvesting in each projections year:

« match an input directed catch in weight
« fish at an input Fxe,

« fish at Fqy

fish at the current (terminal year) Frep

fish at an input Frep

Each year the non-directed F can be modified from the terminal year to examine either increases or decreases in the
fishery.

3 OBJECTIVE FUNCTION COMPONENTS

The objective function in ASAP version 4 is the sum of components for abundance indices, catch, discards, any respective
age composition data, and any of a number of penalties. The components are the negative log of probability distributions,
and the objective function is minimized using AD Model Builder (Fournier et al. 2012).

3.1 Data

The logarithm of observations for aggregate catch and abundance index data component d are treated as normally
distributed,

f(Xatliat oar) = # exp {_12 [log(Xq,)) — |09(Md,t)]2} (47)
’/TG'd’t

20(“

where Xy ; is the observed catch or abundance index in year t, 114 is the predicted value for the observation (see Sections

2.7 and 2.9), and 04 = 4/log (CVi, + 1) where the user specifies CVy; in the input. The negative logarithm of Eq. 47
multiplied by a weight Ay

[log(Xa,) — 10g(t1a,r)] ? } } (48)

1
— A\ Iog [f(Xd,t\,ud,t, Ud,t)] =\g {Iog(od,,) + E {Iog(27r) + o2
d,t

is added to the objective function. The user specifies the weights and allows emphasis of one or more component of the
objective function. Components can have no influence on the objective function by setting Ay = 0.

Age composition observations for any fleet or abundance index d are treated as multinomially distributed,

A
ESS, ;! ESSq.p
f(Pd,t,15 e Pd,t,Alla,t, 15 - 5 fd,t,4, ESSqt) = : dra
TT4.(ESSaiPasa) 55
r (ESSd’[+ 1) A ESS4,tPa.t.a

= % (49)
1o, T (ESSupssa+1) a5

where ESSy ; is the effective sample size which the user specifies, pq 2 and pq 4 are the observed and predicted propor-
tion at age (see Sections 2.7 and 2.9), and I (-) is the gamma function. Similar to the aggregate observations the negative
logarithm of Eq. 49 is added to the likelihood

—log [f(Pa,t,1s - s Pd,tal a1, s a4 ESSar)] =
A

> {log [l (ESS4para+1)] — (ESSspata) 109 (tara) } —log [I (ESSas+1)]. (50)

a=1

There are no weighting multipliers provided for the age compositiond data, but the emphasizing particular components
can be achieved by increasing the effective sample sizes.

3.2 Penalties

Penalties are components of the objective function that allow the user to constrain how much a parameter deviates from
some value. Most of the penalties constrain deviation from the initial values of the respctive parameters which the user
provides, but in some cases the penalties are for deviation from some other expected value derived from other parameters
(e.g., expected recruitment from the stock-recruitment relationship). The parameters that can be penalized for deviating
from initial values are

« stock-recruitment function steepness value,

« stock-recruitment function scalar (Ry or SSBy) value,

» year 1 numbers at age,

« year 1 fully selected fishing mortality,

+ selectivity parameters,

« relative catch efficiency coefficients,

+ abundance index availability, and

+ abundance index gear efficiency.

10

There are also penalites available for deviation of estimated recruitment from that expected from the stock-recruitment re-
lationship, and to constrain inter-annual variability of fully selected fishing mortality and availability through autoregressive
objective function components. Finally, there are penalties the user can specify to stabilize estimation in early phases of
the minimization and for ensuring estimated fishing mortality is below a maximum value.

There are three distributions used for nearly all penalties in the objective function depending on the range of the parameter.
For a strictly positive parameter 6, a normal distribution on the log-transformed parameter is used

(9|9) fag ex p{ [|og(e) —log (é)r} (51)

where @ is the estimated parameter or average of annual estimated parameters and 0 is usually the initial value of the
parameter, but is specified for each penalty in subsections below. The standard deviation on log-scale oy is derived from
the user-provided CV, oy = 4 /log (CV92 + 1). Similar to data components, there is a weight Ay which the user specifies that

can be used to adjust the emphasis of particular penalties. The product of the weight and the negative of the logarithm of
the probability distribution function

-~ 12
ons [Iog(&) ~log (0)} o)

2
Ty

~ M log [f (9|§)] = 2 { log(oe) +% log

is added to the objective function.

For parameters with lower and upper bounds, /y and uy, there is an option to use a truncated normal distribution

exp {_2;9 [|og(9) ~log ((7)] 2}

1
0|0 = £ 53
(|) V2rag o |:Iog) Iog(@):l o |:Iog(/9)—log<0>):| (53)
o] a9
where @(-) is the cumulative standard normal distribution (the default) or a 4-parameter beta distribution
- r 0 — [,)Pore—1 — g)Po(1—pe)—1
f(9|9) _ (¢6) (0 —Ip) (ug)1 (54)
[(Popo)l (Po(1 — 110)) (ug — lp)Po=
where ~
0— Iy
= 55
o= (55)
and ¢y is a variance parameter. The variance for the 4-parameter beta distribution is
1 — pg)
v POV2 = (uy — lyy2tel = 1o) 56
(019) = P 0VE = o — 12— (56)
so that R)
= (up — 2O~ o)
b0 = (Up — ly) Rcve 1 (57)
where CVj is specified by the user in the input. Since ¢y > 0,
J(w=0) (7-1)
0<CVy< — (58)

0

so if the user specifies a value larger than the maximum possible CV, the maximum is used instead (Figure 1).

11

Figure 1. The maximum CV for the 4-parameter beta distribution is a function of the initial parameter value and the lower
and upper bounds of the parameter. For example when the Beverton-Holt steepness parameter, which is bounded by 0.2
and 1.0, is penalized using this distribution the maximum CV is greatest when the initial value is 0.333.

4—parameter Beta Distribution

CV(8) =0.894
me
S |
&
a :
b S S N
®© : :
£
N .
e N
= I R § 60333 USRS SR B
o : :
I I I I I
0.2 0.4 0.6 0.8 1.0

12

Similar to Eq. 52, the objective function component for a parameter with a truncated normal penalty is

oms [|og(9) ~log (é)} :

— g log [f(@\ﬁ)} “\o Iog(og)+% log

log(ug) — log (6 log(ls) — log (6
+ log{ @ 90 () — ¢ —90 () (59)
2 [

and for a parameter with a the 4-parameter beta penalty is

~Aalog [(618) | =X {log 7 (@0no)] + log [T (@a(1 — no)] — log 7 (@0)] + (@0 — 1)log (up —)
— (dapto — 1)log (6 — Is) — (@o(1 = a) — 1)l0g (uy —)} . (60)

3.2.1 Stock-Recruitment Relationship

When the weight for the recruitment penalty is A\g > 0, Eq. 52 is added to the objective function for each annual estimated
recruitment where 6 = R; and 8 = N; ; as defined in Sections 2.4 and 2.6.

3.2.2 Stock-Recruitment Scalar Parameter (Ry or SSBy)

When the weight for the stock-recruitment scalar (SR = Ry or SR = SSBo) penalty is Asg > 0, Eq. 52 is added to the
objective function where 9 = SRis the initial value which the user specifies, and # = SR is the average of the annual
estimates which may vary if annual SPR, is specified or covariate effects are modeled (see Section 2.4).

3.2.3 Stock-Recruitment Steepness

When the weight for the steepness penalty is A, > 0, either Eq. 59 or Eq. 60 is added to the objective function where
0 = 7 is the initial value provided by the user, and 6 = 7 is the average of the annual estimates which may vary if covariate
effects are modeled (see Section 2.4).

3.2.4 Year 1 Abundance Parameters

When the weight for the year 1 numbers at age penalty is Ay > 0, Eq. 52 is added to the objective function for each age
class where 6 = Nj 5, and 6 = N1 .2 18 either the initial value which the user specifies or determined by mortality rates in the

first year.
N N a—1
Nia = Nj 1 exp <— ZZLK> (61)
k=1

for ages 2 through A — 1 and
exp (— ZL Z1,k)
1—exp(—=Zia)

Note that all ages are included in the penalty whereas in ASAP version 3 the penalty only included age classes 2, ..., A,
and if A\g > 0 and Ay > 0, Ny 1 also occurs in the stock-recruitment relationship penalty (see Section 3.2.1).

N1 A= Kl1,1 (62)

13

3.2.5 Year 1 Fishing Mortality Rate

When the we|ght for the penalty on year 1 fishing mortality for fleet f is Armur,, > 0, Eq. 52 is added to the objective
function where 6 = qultﬁ is the initial value provided by the user, and 6 = Fmult; 1 is defined in Section 2.3.

3.2.6 Selectivity Parameters

When the weight of the penalty for selectivity parameter v, is A\g, > 0, either Eq. 59 or Eq. 60 is added to the objective
function where 6 = s, is the initial value which the user specifies, and 6 = s, is the selectivity parameter (see Section 2.1).

3.2.7 Availability of Population to Abundance Indices

When the weight for the penalty on the availability component of catchability for abundance index i is Aavaii > 0, either
Eqg. 59 or Eq. 60 is added to the objective function where 6 = /ng/,- is the initial value which the user specifies, and
6 = Avail; is the average of the annual estimates which may vary if covariate effects are modeled. This would be a penalty
on catchability if the user specifies the the attributes of the gear efficiency component properly. See Section 2.2 for more
details.

3.2.8 Gear Efficiency of Abundance Indices
When the weight for the penalty on the gear efficiency component of catchability for abundance index i is Agx; > 0, either

Eqg. 59 or Eq. 60 is added to the objective function where 0 = Eff is the initial value which the user specifies, and 6 = Eff;
is the average of the annual estimates which may vary if covariate effects are modeled (see Section 2.2).

3.2.9 Fishing Mortality Random Walk

When the weight for the penalty on fishing mortality deviations for fleet f is Arge, > 0, Eq. 52 is added to the objective
function for each annual devation where 6 = 0, and 8 = Fdev;;, for tmins < tx < tmaxr (S€€ Section 2.3).

3.2.10 AR process for Availability/Catchability of Abundance Indices

When the weight for the penalty on the deviations of the availability component of catchability for abundance index i
iS Aagey;, > 0, Eq. 52 is added to the objective function for each annual devation where § = 0 and 6 = Adev;;, for
tmini < b < tmax,i (S€e Section 2.2).

3.2.11 Relative Catch Efficiency Coefficiencts

When the weight for the penalty on relative catch efficiency k is Agex > 0, the product of Agex and the negative log of a
multivariate normal penalty

~ o~ o 4 1~ ~ i~ =~
[(BilB) = @m) % x| exp |~ 5 (B — B TE, (B — B (63)
is added to the objective function where Ek are the input estimates of the py relative catch efficiency coefficients, X is the

estimated variance-covariance matrix for the coefficients and Bk are the estimates within the assessment model. Note
that the differences 3, — B, = REdev are the parameters actually estimated (see Section 2.8).

14

3.2.12 Deviations between F and M

This penalty which helps stabilize estimation in early phases was used in ASAP version 3 and is an option to the user in
ASAP version 4. When specified and the current phase is not the final phase of estimation, the negative log of the penalty

f(F, M) = exp {—AF_M [log (F) — log (W)]Q} (64)

is added to the objective function where F and M are the average total fishing and natural mortalities over all ages and
years of the model and
)\F,M - 1027PHASE (65)

where PHASE is the current phase of estimation. When there are multiple phases, the influence of the penalty decreases
as the phase increases.

3.2.13 Maximum F

This penalty was also used in ASAP version 3 and is an option to the user in ASAP version 4. When specified and any
of the fishing mortalities at age for fleet f in year t is greater than the maximum fishing mortality MAXF (which the user
specifies), the negative log of the penalty,

f(max(Fy.1.)) = exp [—1000 (max(Frra) — MAXF)Z} (66)

is added to the objective function.

4 STANDARDIZED RESIDUALS, RMSE, AND EFFECTIVE SAMPLE SIZE

For any log-normally distributed observation x the standardized residual is calculated as

_ log(x) — log(x)
- g

Res (67)
where X is the predicted value and o is the standard deviation of the log-observation or parameter which is a function of
the CV that the user specifies in the input as described previously in Section 3.1. For log-normal or truncated log-normal
parameter penalties, a standardized residual is provided where x = 6, x = 6, and ¢ = oy are defined in Section 3.2. For
penalties that use the 4-parameter beta distribution, standardized residuals are calculated as

Po — 1o
Res = ———— 68
V(o) (68)
where 91
— I
= 69
Po= 0 (69)
po(1 — p16)
Vv 7
(o) b0+ 1 (70)

and pg, ¢g, lp, and ug are defined in Section 3.2.

The root mean-squared error for data component or parameter penalty d is calculated as

where ny is the number of annual observations. For parameter penalties ny = 1.

There are two types of effective sample sizes calculated for the age composition data components. The first uses the
method described by McAllister and lanelli (1997). For each yearly age composition data component, an estimated
effective sample size is calculated as

Z:=1 IAJd,t,a(-| - ,Bd,t,a)

ESS; 4, = _raLal, (72)
Z?ﬂ (Pa,t.a — Pd.t.a)?
The second uses a method (TA1.8) described by Francis (2011),
== Ng — 1
ESSz41t = Nat — (73)
t 2 (W — Wg)?
where ny is the number of years of age composition data in component d (e.g., a fleet or abundance index),
R4 ¢/N
W = ==, (74)
d,t
A
Rt = alPata— Posa), (75)

a=1

A A 2
Sut=1| > @Bosa— (z p) , (76
a=1

a=1

and
— 1
Wo=—> Way (77)

For either method, the predicted proportion py,., is given by Egs. 34, 35, or 44, depending on the data component, and
Pa.t,a is the corresponding observation.

5 Bibliography

Adams CF, Miller TJ, Manderson JP, Richardson DE, Smith BE. 2015. Atlantic butterfish 2014 stock assessment. NEFSC
Ref. Doc. 15-06; 110 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA
02543-1026, or online at http://www.nefsc.noaa.gov/publications/

Fournier DA, Skaug HJ, Ancheta J, lanelli J, Magnusson A, Maunder M, Nielsen A, Sibert J. 2012. AD Model Builder: using
automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Method
Softw. 27(2): 233-249.

Francis RICC. 2011. Data weighting in statistical fisheries stock assessment models. Can J Fish Aquat Sci. 68(6): 1124—
1138.

Legault CM, Restrepo VR. 1998. A flexible forward age-structured assessment program. ICCAT Working Document
SCRS/98/58. 15p.

Mace PM, Doonan IJ. 1988. A generalised bioeconomic simulation model for fish population dynamics. New Zealand
Fishery Assessment Research Document 88/4. Fisheries Research Centre, MAFFish, POB 297, Wellington, NZ.

McAllister MK, lanelli JN. 1997. Bayesian stock assessment using catch-age data and the sampling-importance resam-
pling algorithm. Can J Fish Aquat Sci. 54(2): 284-300.

Miller TJ. 2013. A comparison of hierarchical models for relative catch efficiency based on paired-gear data for U.S.
Northwest Atlantic fish stocks. Can J Fish Aquat Sci. 70(9): 1306—1316.

16

Table 1. Definitions of all notation used in equations throughout this document.

S e N

Sa

asp

b

as,1
b;
asp,2
b2

Qit
tmin,/
tmax,i
Avail; ;
Navail,i
ﬁ Avail
Xavail,i
Xavail,i t

Lavair
Upvai;
AdeV,',[
Eff;;
NEetr,i
Ber
Xt i
Xt i t

It

UEff,
Frta
qu/tf‘t
tmin,f

tmax, f

By
Fdevy s,

A Fdev,
Fdirs 1 4
Sdirt,a

a particular age class

number of age classes

a particular year

number of years in the model

a particular fleet

number of fleets in the model

a particular abundance index

a particular fleet or abundance index

a particular relative catch efficiency

a particular length class

number of length classes

a particular selectivity parameter

selectivity at age a

age at the inflection point of a logistic selectivity ogive

inverse of the slope parameter of a logistic selectivity ogive

age at the inflection point of the ascending limb in a double-logistic selectivity ogive
inverse of the slope parameter of the ascending limb in a double-logistic selectivity ogive
age at the inflection point of the decending limb in a double-logistic selectivity ogive
inverse of the slope parameter of the decending limb in a double-logistic selectivity ogive
catchability of abundance index i in year t

first year that abundance index i is observed

last year that abundance index i is observed

availability of population to abundance index i in year ¢

number of coefficients modeling effects on availability of population to abundance index i
vector of nav,i,; coefficients modeling effects on availability of population to abundance index i
Y X navai; design matrix modeling effects on availability of population to abundance index i
row of the design matrix Xaai; corresponding to year t modeling effects on availability of population to
abundance index i

lower bound on availability for abundance index i

upper bound on availability for abundance index i

availability deviation parameter for abundance index i in year ¢

efficiency of the gear used for abundance index i in year t

number of coefficients modeling effects on gear efficiency of abundance index i

vector of ngg,; coefficients modeling effects on gear efficiency of abundance index i

Y x ngg; design matrix modeling effects on gear efficiency of abundance index i

row of the design matrix Xgs; corresponding to year t modeling effects on gear efficiency of abundance
index i

lower bound on gear efficiency for abundance index i

upper bound on gear efficiency for abundance index i

fishing mortality for fleet f in year t at age a

fully selected fishing mortality for fleet f in year t

first year that fleet f is operating

last year that fleet f is operating

natural logarithm of fully selected fishing mortality for fleet f in year ty, ¢

deviation parameter for fully selected fishing mortality for fleet f in year #

weight for the fishing mortality deviations penalty in the objective function

directed fishing mortality rate at age a for fleet f in year ¢ attributed to landings

directed selectivity at age a in year t attributed to landings

17

Table 1. (continued)

Fdisct 4
RM;

PR ta
Mt,a

m

Buma
X1
X1t

PLfta
Pp/f.t,a
Pk

B

discard fishing mortality rate at age a for fleet f in year t attributed to catch not landed

discard mortality rate for fleet f

proportion of catch at age a released by fleet f in year t

natural mortality rate at age ain year t

number of coefficients modeling anual effects on natural mortality

vector of my coefficients modeling anual effects on natural mortality

Y x my design matrix modeling anual effects on natural mortality

row of the design matrix Xy 1 corresponding to year t modeling anual effects on natural mortality
number of coefficients modeling age effects on natural mortality

vector of m, coefficients modeling age effects on natural mortality

Y x my design matrix modeling age effects on natural mortality

row of the design matrix Xy, » corresponding to age class a modeling age effects on natural mortality
total fishing mortality rate, the sum of fishing mortality of all fleets, at age ain year ¢

total mortality rate, the sum of fishing and natural mortality, at age ain year t

expected recruitment in year t based on the stock-recruitment relationship

spawning stock biomass in year t

steepness parameter of the stock-recruitment relationship

unexploited recruitment parameter of the stock-recruitment relationship in year ¢

unexploited spawning stock biomass parameter of the stock-recruitment relationship in year ¢
ratio of unexploited spawning stock biomass and recruitment in year t

fecundity at age ain year t

fraction of the year elapsed at time of spawning

number of coefficients modeling annual covariate effects on steepness

vector of n, coefficients modeling annual covariate effects on steepness

Y x n; design matrix modeling annual covariate effects on steepness

row of the design matrix X, corresponding to year t modeling annual covariate effects on steepness
number of coefficients modeling annual covariate effects on either unexploited recruitment or SSB
vector of ng coefficients modeling annual covariate effects on unexploited recruitment or SSB

Y X ng design matrix modeling annual covariate effects on either unexploited recruitment or SSB
row of the design matrix Xy corresponding to year t modeling annual covariate effects on either unex-
ploited recruitment or SSB

population abundance (numbers) at age ain year t

annual deviation parameter for recruitment in year ¢

minimum of age range used for calculating Frep;

maximum of age range used for calculating Frep;

one of three different types of weighting for age a and year ¢ used for calculating Frep,

weight (mass) of a fish at age a in year t on January 1

one of three different types of weighted averages of total fishing mortality over ages anmin 10 amax
predicted landings in numbers by fleet f in year t at age a

predicted landings in weight by fleet f in year ¢

predicted discards in numbers by fleet f in year t at age a

predicted discards in weight by fleet f in year ¢

weight (mass) of a fish landed by fleet f at age ain year t

predicted proportion of landings by fleet f in year t at age a

predicted proportion of discards by fleet f in year t at age a

number of coefficients modeling length effects on relative catch efficiency (calibration) k

vector of py input coefficients modeling length effects on relative catch efficiency (calibration) k
vector of p, estimated coefficients modeling length effects on relative catch efficiency (calibration) k

18

Table 1. (continued)

REdev
Xy

Xk

X1

le.it
Icita
Pc.ita
lu,its
Pk,
pit(all)
mij ¢
dit

lit
Wit.a
ﬁHﬁ
Fo 1
Fuax
Fusy
Fxo,
CVa:

Od,t

Ad
ESSy

Pa,t,a
Hd.ta
AR
SR

SR
AR

A Fmults 1

Bk — B

Pk X Pk variance-covariance matrix for estimates of 3,

L x px design matrix modeling length effects on relative catch efficiency (calibration) k

row of the design matrix X, corresponding to length class / modeling length effects on relative catch
efficiency (calibration) k

calibrated observation for abundance index i in year ¢

calibrated observation for abundance index i in year t at age a

calibrated observation for proportion of abundance index i in year t at age a

uncalibrated observation for abundance index i in year t at length /

relative catch efficiency k at length /

proportion at age a given length / from the age length key for abundance index i in year ¢

month when abundance index i occurs in year ¢

fraction of the year elapsed at time of observation of abundance index i in year t

prediction from model for abundance index i in year ¢

weight (mass) of a fish at age a in year ¢ for index i

predicted proportion at age a for abundance index i in year t

fully selected fishing mortality when slope of yield per recruit curve is 10%

fully selected fishing mortality that maximizes yield per recruit

fully selected fishing mortality that maximizes sustainable yield defined by stock-recruit relationship
fully selected fishing mortality that provides X% of unexploited SSB per recruit

coefficient of variation for observation in year t for either fleet or abundance index d

standard devation of the natural logarithm of the observation in year t for either fleet or abundance index
d

weight for fleet or abundance index d in the objective function

effective sample size of multinomial distribution for age composition observations in year t for either fleet
or abundance index d

observed proportion at age ain year f for either fleet or abundance index d

predicted proportion at age ain year t for either fleet or abundance index d

weight for recruitment penalty in the objective function

average value of Ry or SSB, over all years in the model

initial value of Ry or SSB,

weight for log-normal penalty on deviation of average Ry or SSBy from initial value in the objective
function

average value of steepness over all years in the model

initial value of steepness

weight for penalty on deviation of average steepness from initial value in the objective function

initial value for abundance at age ain the first year

weight for penalty on deviation of abundance at age a in the first year from initial value in the objective
function

initial value for fully selected fishing mortality of fleet f in the first year

weight for penalty on deviation of fully selected fishing mortality of fleet f in the first year from initial value
in the objective function

selectivity parameter v

initial value of selectivity parameter

weight for penalty on deviation of selectivity parameter v from initial value in the objective function
estimates of coefficients for size effects on relative catch efficiency k

initial values of coefficients for size effects on relative catch efficiency k

19

Table 1. (continued)

AREK

Avail
Avail;
A Avail

Eff;
Eff;
AEf,

A Fdevy
A Adev;

F

M
AFM
MAX ¢
Res

weight for penalty on devation of estimated coefficients for size effects on relative catch efficiency k from
initial values

average availability of population to abundance index i over all years observed

initial value of availability of population to abundance index i

weight for penalty on deviation of average availability of population to abundance index i from initial value
in the objective function

average gear efficiency of abundance index i over all years observed

initial value of gear efficiency of abundance index i

weight for penalty on deviation of average gear efficiency of abundance index i from initial value in the
objective function

weight for penalty on fully selected fishing mortality deviations in the objective function

weight for penalty on annual deviations of availability of population to abundance index i in the objective
function

average fishing mortality of all ages and years in the model

average natural mortality of all ages and years in the model

weight for penalty on deviation of F from M

maximum fishing mortality allowed in the model

standardised residual for a particular observation or a penalized parameter estimate

Root-mean squared error for data component or penalized parameter estimate d

a particular observation, parameter estimate, or average of annual parameter estimates

a particular predicted observation or initial parameter value

component of the standardized residual for a parameter with a 4-parameter beta distribution penalty
estimate type 1 of effective sample size for age composition data component d in year t

estimate type 2 of effective sample size for age composition data component d in year t

a component of Ny 4t

a component of Ny 4+

a component of 7 4 ¢

20

6.1

/1
/1
/1
/1

/1
/1

/1
/1

/1

/1

/1

/!

/1

/1

/!

/1
/1

/!

/1

/1

/1

/1

/!

/1
/1
/1

/1

APPENDICES

AD Model Builder Code for ASAP4

ASAP4 (Age Structured Assessment Program Version 4: November 2014)
modified from ASAP3 by Timothy Miller
ASAP3 code by Christopher Legault with major contributions from Liz Brooks
modified from original ASAP by Christopher Legault and Victor Restrepo 1998

Major changes from ASAP3
1) Restructure selectivitiy specification so that blocks and/or parameters can be
used in multiple fleets and/or surveys.
2) Reparameterizes catchability as a product of availability and efficiency

as functions of annual covariates and flexibility of phases for each survey,
single catchability possible by turning off one of the components.

Reparameterizing q required changing catchability random walk to be AR(1) for
availability and phases specified for each index.

Random walk can still be done using a column of a single 1 with the rest zeros for
covariates. Also changed the process to be with respect to

the time span of the survey so that if there are years when the survey is not
carried out, the random walk still occurs.
3) Estimation of natural mortality allowed, possibly as a function of annual
covariates or age.
4) Internal length—based calibration of HBB:AIV series possible by providing curve
coefficients and associated penalties,

covariate design matrix, and annual indices at length and age—length keys for
calibrated years.
5) Fleets can operate for subsets of the entire model time span, fishing mortality in
non—operating years will be zero. Random walks and phases

are fleet—specific spanning corresponding periods of operation
6) Changed way user determines which information is included in calculations and
objective function to be less confusing.

Catch, discard, and index observations are included if observations are > 0. An
entire index or fleet may be omitted

from likelihood if lambda is set to zero (and appropriate parameter phases are set
to <= 0). Age composition will be included

only for years where the aggregate is > 0 AND input Neff is > 0. So, number of age
comp years <= number of aggregate years.
7) Parameterized steepness and RO (or S0) as functions of annual covariates.
8) Penalty for numbers at age in the first year now also always includes the first
age class.

Note: for indices, age composition in year y is not used if the aggregate index in
year y is not used.

Minor changes from ASAP3
1) removed option to use likelihood constants. Just always include them.
2) log—normal penalties are now normal or truncated normal (based on lower and upper
bounds) by default. Priors/penalties for age—specific selectivity

parameters and steepness can also be shifted and scaled beta distributed instead
of log—normal to accommodate bounds provided (for selectivity) or 0.2—1.0 for
steepness.

21

/1

/1

/1
/1
/1

/!

/1

/1

/!

/1
/1

/1
/1

/1

/!

/1
/1

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1

4) made objective function components sdreport numbers/vectors so that correlation
with other components and parameters can more easily observed.
5) Timing of indices can now vary from year to year.

Major changes from ASAP2

user defines SR curve using steepness and either RO or SO

allow user to mix and match biomass and numbers for aggreagate indices and indices
proportions at age

user enters a number of weight at age matrices then defines which are used for catch,
discards, SSB, Jan—1 B, and indices

compute annual SR curve estimates of RO, SO, steepness, and spawners per recruit to
show how changes in M, fecundity , WAA impact these estimates over time

expected population at age in year 1 can be either an exponential decline or user
initial guesses for optional deviation calculations

compute Francis (2011) stage 2 multiplier for multinomial to adjust input Neff

update April 2012

fix bug with which inconsistent year for M and WAA used in calculation of unexploited
SSB per recruit

(was first year when all other calculations were last year, now everything last year)

also added trap for division by zero in Freport calculation to avoid crashes when pop
size gets small

incorporated Liz Brook’s make—Rfile.cxx for ADMB2R to optionally create rdat file
automatically

created new output file asap2RMSE.dat for use with R script

update April 2008
fixed bug in get_log_factorial function — variable could be i used in two places (
thanks to Tim Miller for finding this one)

Major changes from original ASAP

Enter all available indices and then select which ones to use for tuning

Change in selectivity estimation to reduce parameter correlations
Added option to use logistic or double logistic selectivity patterns
Selectivity blocks now independent with own initial starting guesses

Added CVs and lambdas for many parameters

Multiple matrices for weights at age at different times of the year

M matrix instead of vector

Freport feature to allow easier comparison among years with different selectivity
patterns

Echo input read to file for improved debugging

MCMC capability added
One file for Freport, SSB, and MSY related variables
One file for use in AgePro software (.bsn file)

Full likelihood calculations, including (optionally) constants

Output of standardized residuals

Modified year 1 recruitment deviation calculations to reduce probability of extremely
large residual

TOP_OF_MAIN_SECTION

/1

set buffer sizes

22

arrmblsize=5000000;

gradient_structure ::set GRADSTACK_BUFFER_SIZE(10000000) ;
gradient_structure ::set MAX_NVAR_OFFSET(50000);
gradient_structure ::set NUM_DEPENDENT_VARIABLES(10000) ;
time(&start); //this is to see how long it takes to run
cout << endl << "Start time " << ctime(&start) << endl;

GLOBALS_SECTION
#include <admodel.h>
#include <time.h>
#include <admb2r.cpp>
time_t start,finish;
long hour,minute,second;
double elapsed_time;
ofstream ageproMCMC (" asap4.bsn") ;
ofstream basicMCMC ("asap4MCMC. dat") ;
ofstream inputlog ("asap4input.log");
ofstream fixlog ("asap4fix.log");
#define see(object) cout << #object ":\n" << object << endl;
//[——— preprocessor macro from Larry Jacobson NMFS-Woods Hole
#define ICHECK(object) inputlog << "#" #object "\n" << object << endl;
#define easy(object) cout << #object ":\n" << object << endl;

DATA_SECTION

int debug

int io

number CVfill

Il CVfill=100.0;

/1 basic dimensions

init_int n_years

Il ICHECK(n_years);

init_int year1

Il ICHECK(year1);

init_int n_ages

Il ICHECK(n_ages) ;

vector double_ages(1,n_ages)
Il for(int i=1; i<=n_ages; i++) double_ages(i) = double(i);
init_int n_fleets

Il ICHECK(n_fleets);
init_int n_indices

Il ICHECK(n_indices);

// fleet names here with $ in front of label
// index names here with $ in front of label

// biology

// option now to estimate year and age effects on natural mortality
init_matrix M_ini(1,n_years,1,n_ages)

Il ICHECK(M_ini) ;

init_int estimate_M //0 = no, 1 = yes

Il ICHECK(estimate_M) ;

23

init_int n_M_year_cov
Il ICHECK(n_M_year_cov) ;
init_matrix M_X_year(1,n_years,1,n_M_year_cov)
Il ICHECK(M_X year) ;
init_ivector phase_M_year_pars(1,n_M_year_cov)
Il ICHECK(phase_M_year_pars) ;
init_vector M_year_pars_ini(1,n_M_year _cov)
I'l ICHECK(M_year_pars_ini);
init_int n_M_age_cov
Il ICHECK(n_M_age_cov) ;
init_matrix M_X_ age(1,n_ages,1,n_M_age cov)
Il ICHECK(M_X_age) ;
init_ivector phase_M_age pars(1,n_M_age_cov)
Il ICHECK(phase_M_age_pars) ;
init_vector M_age_pars_ini(1,n_M_age_cov)
Il ICHECK(M_age_pars_ini) ;
LOCAL CALCS
if (estimate_M == 0) //use M at age matrix input rather than estimate

{

M_year_pars_ini = 0.0;

for(int i=1;i<=n_M_year_cov;i++) phase_M_year_pars(i) = —1;
M_age_pars_ini = 0.0;
for(int i=1;i<=n_M_age _cov;i++) phase_M_age_pars(i) = —1;
}
END _CALCS

init_number isfecund
Il ICHECK(isfecund);
init_number fracyearSSB
Il ICHECK(fracyearSSB) ;
init_matrix mature(1,n_years,1,n_ages)
Il ICHECK(mature) ;
init_int n_WAA_matrices
Il ICHECK(n_WAA_matrices) ;
int nrowsWAAIni
I'' nrowsWAAini=n_years+«n_WAA_matrices;
init_matrix WAA_ini(1,nrowsWAAIni,1,n_ages)
Il ICHECK(WAA_ini) ;
3darray WAA(1,n_WAA_matrices,1,n_years,1,n_ages)
int nWAApointbio
Il nWAApointbio=n_fleets«2+2+2;
init_ivector WAApointbio(1,nWAApointbio) // pointers to WAA matrix for fleet catch and
discards, catch all fleets, discard all fleets, SSB, and JaniB
Il ICHECK(WAApointbio) ;
matrix fecundity (1,n_years,1,n_ages)
3darray WAAcatchfleet(1,n_fleets ,1,n_years,1,n_ages)
3darray WAAdiscardfleet(1,n_fleets ,1,n_years,1,n_ages)
matrix WAAcatchall(1,n_years,1,n_ages)
matrix WAAdiscardall(1,n_years,1,n_ages)
matrix WAAssb(1,n_years,1,n_ages)
matrix WAAjanib(1,n_years,1,n_ages)
LOCAL_CALCS
for (int i=1; i<=n_WAA_matrices; i++)

24

{
for(int y=1; y<=n_years; y++) WAA(i,y) = WAA_ini((i—1)«n_years+y);

}

if ((max(WAApointbio) > n_WAA_matrices) || (min(WAApointbio) < 1))
{
for (int i=1; i<=n_WAA_matrices; i++)
{
if (WAApointbio(i) > n_WAA_matrices || WAApointbio(i) < 1)
fixlog << "WAApointbio (" << i <<") is " << WAApointbio(i) << " but it needs
to be between 1 and " << n_WAA_matrices << endl;
}
ad_exit(1);
}

for (int i=1; i<=n_fleets; i++)

WAAcatchfleet (i) = WAA(WAApointbio(i+2—1));
WAAdiscardfleet (i) = WAA(WAApointbio(i=+2));
}
ICHECK(WAAcatchfleet) ;
ICHECK(WAAdiscardfleet) ;
WAAcatchall=WAA(WAApointbio ((n_fleets«2)+1));
WAAdiscardall=WAA(WAApointbio ((n_fleets »2) +2)) ;
WAAssb = WAA(WAApointbio ((n_fleets«2)+3));
ICHECK (WAAssb) ;
WAAjan1b = WAA(WAApointbio ((n_fleets«2)+4));
ICHECK(WAAjan1b) ;

if (isfecund==1) fecundity=mature;
else fecundity=elem_prod (WAAssb, mature) ;

END_CALCS

J] CaAtCR s s skt ke ko ko ke ko k k ke k ko hk kk k ko kk ok k ok ko k k ok ok ok k* ok **

/! Includes both landed and discarded components

init_matrix CAA_ini(1,n_years=n_fleets ,1,n_ages+1)

Il ICHECK(CAA_ini);

init_matrix DAA_ini(1,n_years=n_fleets ,1,n_ages+1)

Il ICHECK(DAA ini);

init_matrix proportion_release_ini(1,n_years«n_fleets ,1,n_ages)
Il ICHECK(proportion_release_ini);

init_vector release_mort(1,n_fleets)

Il ICHECK(release_mort);

init_matrix catch_tot_ CV(1,n_years,1,n_fleets)

Il ICHECK(catch_tot_CV);

init_matrix discard_tot_ CV(1,n_years,1,n_fleets)

Il ICHECK(discard_tot_CV);

init_matrix input_Neff_catch_ini(1,n_years,1,n_fleets)

Il ICHECK(input_Neff_catch_ini);

init_matrix input_Neff_size_discard_ini(1,n_years,1,n_fleets)
Il ICHECK(input_Neff_size_discard_ini);

25

3darray proportion_release(1,n_fleets ,1,n_years,1,n_ages)
3darray catch_paa_obs(1,n_fleets ,1,n_years,1,n_ages)
3darray discard_paa_obs(1,n_fleets ,1,n_years,1,n_ages)
vector catch_age_comp_like_const(1,n_fleets)

vector discard_age_comp_like_const(1,n_fleets)

matrix catch_tot_fleet_obs(1,n_fleets ,1,n_years)
matrix discard_tot_fleet_obs(1,n_fleets,1,n_years)
vector catch_tot_like_const(1,n_fleets)

vector discard_tot_like_const(1,n_fleets)

matrix catch_tot_sigma(1,n_fleets ,1,n_years)

matrix discard_tot_sigma(1,n_fleets ,1,n_years)

matrix input_Neff_catch(1,n_fleets ,1,n_years)

matrix input_Neff_discard(1,n_fleets,1,n_years)

// fleets can be operating at different times
ivector n_catch_years(1,n_fleets)

ivector n_catch_age_comp_years(1,n_fleets)
ivector catch_time_span(1,n_fleets)

ivector catch_min_time(1,n_fleets)

ivector catch_max_time(1,n_fleets)

ivector n_discard_years(1,n_fleets)

ivector n_discard_age_comp_years(1,n_fleets)
ivector discard_time_span(1,n_fleets)
ivector discard_min_time(1,n_fleets)

ivector discard_max_time(1,n_fleets)

LOCAL_CALCS

catch_paa_obs=0.0;
discard_paa_obs=0.0;
catch_tot_like_const=0.0;
discard_tot_like_const=0.0;
catch_age_comp_like_const=0.0;
discard_age_comp_like_const=0.0;
n_catch_years = 0;
n_catch_age_comp_years = 0;
catch_min_time = 0;
catch_max_time = 0;
catch_time_span = 0;
n_discard_years = 0
n_discard_age_comp_years = 0;
discard_min_time = 0;
discard_max_time = 0;
discard_time_span = 0;
dvector temp(1,n_ages);

for (int i=1;i<=n_fleets;i++)
{
for (int y=1;y<=n_years;y++)
{
temp =CAA_ini((i—1)=n_years+y)(1,n_ages);

26

for(int a = 1; a<=n_ages; a++) if(temp(a)<0.0) temp(a) = 0.0;
catch_tot_fleet_obs (i,y)=CAA_ini((i—1)*n_years+y,n_ages+1);
input_Neff_catch(i,y)=input_Neff_catch_ini(y,i);
if (catch_tot_CV(y,i) < 1.0e—15)
{
fixlog << "Changed catch_tot CV(" << i << "," <<y << ") to 100" << endl;
catch_tot_CV(y,i) = CVfill;
}
catch_tot_sigma(i,y)=sqrt(log(catch_tot_CV (y,i)+catch_tot_ CV(y,i)+1.0));
if (catch_tot_fleet_obs(i,y)>1.0e—15)
{
if (catch_min_time (i) == 0) catch_min_time(i) = vy;
if (catch_max_time (i) < y) catch_max_time(i) = vy;
n_catch_years (i) ++;
catch_tot_like_const(i)+=0.5+«10g(2.0«Pl) + log(catch_tot_sigma(i,y));
if (sum(temp)>1.0e—15 && input_Neff_catch(i,y) > 1.0e—15)
{ //both requirements as well as total catch > 0 to include age comp in
objective function
n_catch_age_comp_years (i) ++;
catch_paa_obs (i ,y)=temp/sum(temp) ;
// compute multinomial constants for catch at age, if requested

catch_age_comp_like_const(i) —= gammin(input_Neff_catch(i,y) + 1.0);
catch_age_comp_like_const(i) += sum(gammin(input_Neff_catch (i ,y)+~catch_paa_obs
(i,y) + 1.0));

}

else catch_paa_obs(i,y)=0.0;

}

temp =DAA_ini((i—1)*n_years+y) (1,n_ages);
for(int a = 1; a<=n_ages; a++) if(temp(a)<0.0) temp(a) = 0.0;
discard_tot_fleet_obs (i,y)=DAA_ini((i—1)*n_years+y,n_ages+1);
proportion_release(i,y)=proportion_release_ini((i—1)«n_years+y)(1,n_ages);
input_Neff_discard (i,y)=input_Neff_size_discard_ini(y,i);
if (discard_tot_CV(y,i) < 1.0e—15)
{
fixlog << "Changed discard_tot CV (" <<y << "," << i << ") to 100" << endl;
discard_tot_CV (y,i) = CVfill;
}
discard_tot_sigma(i,y)=sqrt(log(discard_tot_CV(y,i)«discard_tot_CV(y,i)+1.0));
if (discard_tot_fleet_obs(i,y)>1.0e—15)
{
if (discard_min_time (i) == 0) discard_min_time(i) = y;
if (discard_max_time (i) < y) discard_max_time(i) = y;
n_discard_years (i) ++;
discard_tot_like_const(i)+=0.5+log(2.0=Pl)+log(discard_tot_sigma(i,y));
//discard_tot_like_const(i)+=0.5+log(2.0+Pl)+log(discard_tot_fleet_obs(i,y)) +
log (discard_tot_sigma(i,y));
if (sum(temp)>1.0e—15 && input_Neff_discard(i,y) > 1.0e—15)
{ //both requirements as well as total discards > 0 to include age comp in
objective function
n_discard_age_comp_years (i) ++;
discard_paa_obs(i,y)=temp/sum(temp) ;

27

/! compute multinomial constants for discards at age, if requested
discard_age_comp_like_const(i) —= gammin(input_Neff_discard(i,y) + 1.0);
discard_age_comp_like_const(i) += sum(gammin(input_Neff_discard (i,y)*
discard_paa_obs(i,y) + 1.0));
}
else discard_paa_obs(i,y)=0.0;
}
}
catch_time_span (i) = catch_max_time (i) — catch_min_time(i);
discard_time_span (i) = discard_max_time (i) — discard_min_time(i);
}
END_CALCS

imatrix catch_years(1,n_fleets,1,n_catch_years)
imatrix catch_times(1,n_fleets ,1,n_catch_years)
imatrix catch_age_comp_years(1,n_fleets ,1,n_catch_age_comp_years)
imatrix catch_age_comp_times(1,n_fleets ,1,n_catch_age_comp_years)

imatrix discard_years(1,n_fleets,1,n_discard_years)
imatrix discard_times(1,n_fleets,1,n_discard_years)
imatrix discard_age_comp_years(1,n_fleets ,1,n_discard_age_comp_years)
imatrix discard_age_comp_times(1,n_fleets ,1,n_discard_age_comp_years)

LOCAL_CALCS
catch_times = 0;
catch_years = 0;
catch_age_comp_times = 0;
catch_age_comp_years = 0;
discard_times = 0;
discard_years = 0;
discard_age_comp_times
discard_age_comp_years

I n
o o

for (int i=1;i<=n_fleets;i++)
{
int catch_counter = 0;
int discard _counter = 0;
int catch_age_comp_counter = 0;
int discard_age_comp_counter =
for (int y=1;y<=n_years;y++)
{
if (n_catch_years(i)>0)
{
if (catch_tot_fleet_obs(i,y)>1.0e—15)
{

0;

catch_counter++;
catch_times (i, catch_counter) = y;
catch_years(i,catch_counter) =y + yearl —1;
if (n_catch_age_comp_years(i)>0)
{
if (sum(catch_paa_obs(i,y))>1.0e—15 && input_Neff_catch(i,y) > 1.0e—15)

{

28

catch_age_comp_counter ++;
catch_age_comp_times (i ,catch_age_comp_counter)
catch_age_comp_years(i,catch_age_comp_counter)
!
}

Y
y + yearl —1;

}
}
if (n_discard_years(i)>0)
{
if (discard_tot_fleet_obs(i,y)>1.0e—15)
{
discard_counter++;
discard_times (i ,discard_counter)
discard_years(i,discard_counter)
if (n_discard_age_comp_years(i)>0)
{
if (sum(discard_paa_obs(i,y))>1.0e—15 && input_Neff_discard(i,y) > 1.0e—15)
{
discard_age_comp_counter++;
discard_age_comp_times (i ,discard_age_comp_counter)
discard_age_comp_years (i ,discard_age_comp_counter)

y;
y + yearl —1;

yi
y + yearl —1;

END_CALCS

/11

Ind|Ces khkhkhkhkhhkhkhhkhkhhkhkhhkhkdhhkhkdhhkhkdhhkkkhkkx

/! Enter in all available indices and then pick the ones that are to be used in

objective function

// n_indices is the number of indices entered
// nindices is the number of indices used (calculated by program)

int

indavail

init_vector index_units_aggregate(1,n_indices) // 1=biomass, 2=numbers

ICHECK(index_units_aggregate) ;

init_vector index_units_proportions(1,n_indices) // 1=biomass, 2=numbers

ICHECK(index_units_proportions) ;

init_ivector index_WAApoint(1,n_indices) // pointer for which WAA matrix to use for

biomass calculations for each index
ICHECK(index_WAApoint) ;

init_matrix index_month_ini(1,n_years,1,n_indices) // —1=average pop

ICHECK(index_month_ini) ;

init_ivector use_index_age_comp(1,n_indices) // 1=yes

ICHECK(use_index_age_comp) ;

init_ivector use_index(1,n_indices) // 1=yes

ICHECK(use_index) ;

init_matrix index_ini(1,n_years=n_indices,1,3+n_ages+1) // year, index value, CV,

proportions at age, input effective sample size
ICHECK(index_ini);

ivector n_index_years(1,n_indices)

29

int n_tot_index_years

ivector n_index_age_comp_years(1,n_indices)

ivector index_min_time(1,n_indices)

ivector index_max_time(1,n_indices)

ivector index_time_span(1,n_indices)

matrix index_obs(1,n_indices ,1,n_years)

matrix index_month(1,n_indices,1,n_years)

matrix index_cv(1,n_indices,1,n_years)

matrix index_sigma(1,n_indices,1,n_years)

matrix input_Neff_index(1,n_indices,1,n_years)

matrix index_age_comp_like_const(1,n_indices ,1,n_years)
3darray index_paa_obs(1,n_indices,1,n_years,1,n_ages)
3darray index_ WAA(1,n_indices ,1,n_years,1,n_ages)
vector index_like_const(1,n_indices)

LOCAL_CALCS
if ((max(index_WAApoint) > n_WAA_matrices) || (min(index_WAApoint) < 1))
{
for (int i=1; i<=n_WAA_matrices; i++)
{
if (index_WAApoint(i) > n_WAA_matrices || index_WAApoint(i) < 1)
fixlog << "index_WAApoint(" << i <<") is " << index_WAApoint(i) << " but it
needs to be between 1 and " << n_WAA_matrices << endl;
}
ad_exit(1);
}
for (int i=1; i<=n_years+n_indices; i++)
{
if (index_ini(i,3) <= 1.0e—15)
{
index_ini(i,3) = CVfill;
fixlog << "Changed index_ini(" << i << ",3) (the CV) to 100" << endl;
}
}
index_paa_obs=0.0;
index_min_time = 0;
index_max_time = 0;
index_time_span = 0;
index_obs = 0.0;
index_cv = 0.0;
index_sigma = 0.0;
input_Neff_index = 0.0;
index_like_const=0.0;
index_WAA=0.0;
index_age_comp_like_const=0.0;
n_index_years = 0;
n_index_age_comp_years = 0;

for (int ii=1; ii<=n_indices; ii++)

{
/! get the index and year specific information
for (int y=1; y<=n_years; y++)

30

{
int i=(ii —1)*n_years+y;
if (index_ini(i,2)>1.0e—15) //this year is used
{
f (index_min_time
f (index_max_time

(i 0) index_min_time(ii) = vy;

(ii
|f(use_|ndex()=

Y

ii) ==
ii) < y) index_max time(ii) =Yy;
= 1) n_index_years(ii)++;
)=——(——(——index_ini(i)(4,3+n_ages)));

n_ages; a++) if(index_paa_obs(ii ,y)(a)<0.0) index_paa_obs(ii ,y

index_paa_obs(ii

for(int a = 1; a<
)(a) = 0.0;

index_obs (ii ,y)=index_ini(i,2);

index_cv (ii ,y)=index_ini(i,3);

index_sigma(ii ,y)=sqrt(log(index_cv(ii ,y)=index_cv(ii ,y)+1.0));

index_month (ii ,y)=index_month_ini(y,ii);

if (use_index_age_comp(ii) == 1) input_Neff_index (ii ,y)=index_ini(i,n_ages+4);

//add in log—normal likelihood constants only for years used

index_like_const(ii)+=0.5«log(2.0«Pl)+log (index_sigma(ii ,y));

if (sum(index_paa_obs(ii,y)) > 1.0e—15 && input_Neff_index (ii ,y)>1.0e—15)

{

n_index_age_comp_years(ii)++;

index_paa_obs (ii ,y) = index_paa_obs(ii ,y)/sum(index_paa_obs(ii ,y));
/! compute multinomial constants for index
index_age_comp_like_const(ii ,y) —= gammin(input_Neff_index (ii ,y) + 1.0);

index_age_comp_like_const(ii ,y) += sum(gammin(input_Neff_index (ii ,y)=*
index_paa_obs(ii ,y) + 1.0));
}

else index_paa_obs(ii ,y) = 0.0;

}
}
index_time_span(ii) = index_max_time(ii) — index_min_time (ii);
/] set up the index_ WAA matrices (indices in numbers only will have WAA set to 0)
if (index_units_aggregate(ii)==1 || index_units_proportions(ii)==1)

{

}
}

n_tot_index_years
END_CALCS

imatrix index_years(1,n_indices,1,n_index_years)

imatrix index_times(1,n_indices,1,n_index_years)

imatrix index_age_comp_years(1,n_indices,1,n_index_age_comp_years)

imatrix index_age_comp_times(1,n_indices,1,n_index_age_comp_years)
LOCAL_CALCS

index_times =

index_years =

index WAA(ii) = WAA(index_WAApoint(ii));

sum(n_index_years);

0;
0;

index_age_comp_times = 0;
index_age_comp_years = 0;
for (int i=1;i<=n_indices;i++)

{
int index_counter = 0;
int index_age_comp_counter = 0;
if(n_index_years(i) > 0)

31

{
for (int y=1;y<=n_years;y++)
{
if (index_obs(i,y)>1.0e—15)
{
index_counter++;
index_times (i,index_counter) = y;
index_years(i,index_counter) = y+yearl —1;
if (sum(index_paa_obs(i,y))>1.0e—15 && input_Neff_index(i,y) > 1.0e—15)
{
index_age_comp_counter++;
index_age_comp_times (i ,index_age_comp_counter) y;
index_age_comp_years (i ,index_age_comp_counter) = y+yeari —1;

}

}
}
}
}
END_CALCS

// General internal calibration of indices, intended for accounting for length effects
on HBB tows, but calibration without length effects could also be done

//by specifying a single coefficienct and a column of ones for X, or the inverse for
AlV tows, or other gear changes for other surveys.

init_int calibrate_indices //flag to convert (HBB) indices internally with length—
based relative catch efficiency

Il ICHECK(calibrate_indices);

init_int n_rel_efficiency_penalties

Il ICHECK(n_rel_efficiency_penalties);

init_int n_lengths

Il ICHECK(n_lengths) ;

init_vector lambda_rel_efficiency(1,n_rel_efficiency_penalties)

Il ICHECK(lambda_rel_efficiency) ;

init_ivector phase_rel_efficiency(1,n_rel_efficiency_penalties)

Il ICHECK(phase_rel_efficiency);

init_ivector n_rel_efficiency_coef(1,n_rel_efficiency_penalties)

Il ICHECK(n_rel_efficiency_coef);

// estimates of relative efficiency coefficients

init_matrix rel_efficiency_coef_ini(1,n_rel_efficiency_penalties ,1,
n_rel_efficiency_coef) //ragged array

Il ICHECK(rel_efficiency_coef_ini);

int n_tot_rel_efficiency_coefs

Il n_tot_rel_efficiency_coefs = sum(n_rel_efficiency_coef);

ivector n_var_relefficiency_coef_cols(1,n_tot_rel_efficiency_coefs)

ivector n_rel_efficiency_X_cols(1,n_lengths+«n_rel_efficiency_penalties)

LOCAL_CALCS

int count = 0;

for(int i=1; i<=n_rel_efficiency_penalties; i++)

{
for(int j=1; j<= n_rel_efficiency_coef(i); j++)

{

count++;

32

n_var_relefficiency_coef_cols(count) = n_rel_efficiency_coef(i);
}
}
count = 0;
for(int i=1; i<=n_rel_efficiency_penalties; i++)
{
for(int j=1; j<= n_lengths; j++)
{
count++;
n_rel_efficiency_X_cols(count) = n_rel_efficiency_coef(i);
}
}
END_CALCS
// estimate of var—cov matrix for relative efficiency coefficiencts
init_matrix var_rel_efficiency_coef_ini(1,n_tot_rel_efficiency_coefs ,1,
n_var_relefficiency_coef_cols) // ragged matrix
Il ICHECK(var_rel_efficiency_coef_ini);
3darray var_rel_efficiency_coef(1,n_rel_efficiency_penalties ,1,n_rel_efficiency_coef
,1,n_rel_efficiency_coef)
//'if constant calibration just make this a column of 1s
init_matrix rel_efficiency_X_ini(1,n_lengths«n_rel_efficiency_penalties ,1,
n_rel_efficiency_X_cols) //ragged matrix
Il ICHECK(rel_efficiency_X_ini);
3darray rel_efficiency_X(1,n_rel_efficiency_penalties ,1,n_lengths ,1,
n_rel_efficiency_coef)

vector rel_efficiency_penalty_const(1,n_rel_efficiency_penalties)

/I matrix of Os and 1,...,n_rel_efficiency_penalties telling which observations for
each index to be calibrated and which calibration to use

init_imatrix calibrate_this_obs(1,n_indices,1,n_years)

Il ICHECK(calibrate_this_obs);

ivector n_calibrated_obs(1,n_indices)

Il for(int i=1;i<=n_indices;i++)

o

I n_calibrated_obs (i)=0;

I for(int y=1;y<=n_years;y++) if(calibrate_this_obs(i,y)>0) n_calibrated_obs (i) ++;

o}

Il ICHECK(n_calibrated_obs);

int total _calibrated_obs

I'total_calibrated_obs=sum(n_calibrated_obs);

init_matrix uncalibrated_index_at_len_obs_ini(1,total_calibrated_obs ,1,n_lengths)
Il ICHECK(uncalibrated_index_at_len_obs_ini);

3darray uncalibrated_index_at_len_obs(1,n_indices,1,n_years,1,n_lengths)

// proportions at age given length for each length in each survey and year
init_matrix age_length_keys_ini(1,total_calibrated_obs ,1,n_ages*n_lengths)

Il ICHECK(age_length_keys_ini);

4darray age_length_keys(1,n_indices,1,n_years,1,n_lengths,1,n_ages) //proportions at

age given length for each length in each survey and year

LOCAL_CALCS

int countli = 0;

int count2 = 0;

33

for(int i = 1;i <= n_rel_efficiency_penalties; i ++)
{
for(int j = 1; j <= n_rel_efficiency_coef(i); j++)
{
countl ++;
var_rel_efficiency_coef(i,j) = var_rel_efficiency_coef_ini(countl);
}
rel_efficiency_penalty_const(i) = 0.5« (n_rel_efficiency_coef(i) = log(2.0«PI) + log
(det(var_rel_efficiency_coef(i))));
for(int j = 1; j <= n_lengths; j++)
{
count2++;
rel_efficiency_X(i,j) = rel_efficiency_X_ini(count2);
}
}

countl = 0;
for(int i=1; i<=n_indices; i++)
{
for(int y=1; y<=n_years; y++)
{
age_length_keys(i,y) = 0.0;
if (calibrate_this_obs(i,y) > 0)
{
countl ++;
uncalibrated_index_at_len_obs(i,y) = uncalibrated_index_at_len_obs_ini(count1);
count2 = 0;
for(int a=1; a<=n_ages; a++)
{
for(int I=1; I<=n_lengths; |++)
{
count2 ++;
age_length_keys(i,y,l,a) = age_length_keys_ini(count1,count2);
}
}
}
}
}
END CALCS
//new q parameterization as a product of availability and efficiency.
// covariates for availability and efficiency are allowed.
init_ivector n_availability_pars(1,n_indices)
Il ICHECK(n_availability_pars);
int total_availability_pars
Il total_availability_pars = sum(n_availability_pars);
init_matrix availability_X_ini(1,n_years,1,total_availability_pars)
Il ICHECK(availability_X_ini);
3darray availability_X(1,n_indices,1,n_years,1,n_availability_pars)
init_vector availability_pars_ini(1,total_availability_pars)
Il ICHECK(availability_pars_ini);
init_ivector phase_availability_pars(1,total_availability_pars)
Il ICHECK(phase_availability_pars);

34

init_vector availability_ini(1,n_indices)

Il ICHECK(availability_ini);

init_vector availability_penalty_CV (1,n_indices)

Il ICHECK(availability_penalty_CV);

init_ivector availability_penalty_type(1,n_indices)
Il ICHECK(availability_penalty_type);

init_vector availability_lower (1,n_indices)

Il ICHECK(availability_lower);

init_vector availability_upper(1,n_indices)

Il ICHECK(availability_upper);

init_vector lambda_availability (1,n_indices)

Il ICHECK(lambda_availability);

vector availability_penalty_sigma(1,n_indices)
vector availability_penalty_Inorm_scale(1,n_indices)
vector availability_penalty_phi(1,n_indices)
vector availability_penalty_a(1,n_indices)

vector availability_penalty_b(1,n_indices)

vector availability_penalty_mu(1,n_indices)

vector availability_penalty_const(1,n_indices)
ivector first_availability_phase(1,n_indices)

init_vector lambda_availability_ AR1(1,n_indices)

Il ICHECK(lambda_availability_ AR1);

init_vector availability_ AR1_sd(1,n_indices)

Il ICHECK(availability_ AR1_sd);

init_ivector phase_availability_AR1(1,n_indices)

Il ICHECK(phase_availability_AR1);

int total_availability_ AR1_devs

Il total_availability_AR1_devs = sum(index_time_span);
vector availability_AR1_penalty_const(1,n_indices)

init_ivector n_efficiency_pars(1,n_indices)

Il ICHECK(n_efficiency_pars);

int total_efficiency_pars

Il total_efficiency_pars = sum(n_efficiency_pars);
init_matrix efficiency_X_ini(1,n_years,1,total_efficiency_pars)
Il ICHECK(efficiency_X_ini);

3darray efficiency_X(1,n_indices,1,n_years,1,n_efficiency_pars)
init_vector efficiency_pars_ini(1,total_efficiency_pars)

Il ICHECK(efficiency_pars_ini);

init_ivector phase_efficiency_pars(1,total_efficiency_pars)
Il ICHECK(phase_efficiency_pars);

init_vector efficiency_ini(1,n_indices)

Il ICHECK(efficiency_ini);

init_vector efficiency_penalty_CV(1,n_indices)

Il ICHECK(efficiency_penalty_CV);

init_ivector efficiency_penalty_type(1,n_indices)

Il ICHECK(efficiency_penalty_type);

init_vector efficiency_lower(1,n_indices)

Il ICHECK(efficiency_lower);

init_vector efficiency_upper(1,n_indices)

Il ICHECK(efficiency_upper);

35

init_vector lambda_efficiency(1,n_indices)
Il ICHECK(lambda_efficiency);

vector efficiency_penalty_sigma(1,n_indices)
vector efficiency_penalty_Inorm_scale(1,n_indices)
vector efficiency_penalty_phi(1,n_indices)
vector efficiency_penalty_a(1,n_indices)
vector efficiency_penalty_b(1,n_indices)
vector efficiency_penalty_mu(1,n_indices)
vector efficiency_penalty_const(1,n_indices)
ivector first_efficiency_phase(1,n_indices)
LOCAL_CALCS

availability_X = 0.0;

efficiency_X = 0.0;

count = 0;

double max CV = 0.0;

for(int i = 1; i <= n_indices; i++)

{
for(int j=1; j<=n_availability_pars(i); j++)
{
count++;
//make sure no availability parameters are trying to be estimated when the index
is not used
if (n_index_years(i) == 0 && phase_availability_pars(count) > 0)
{
phase_availability_pars (count) = —1;
fixlog << "Changed phase for availability parameter << count << " to —1
because it pertains to index " << i << which is not used." << endl;

}

// fill out the array for the design matrices
for(int y=1; y<=n_years; y++)
{
availability_X(i,y,j) = availability_X_ini(y,count);
}
}
}

for(int i = 1; i <= n_indices; i++)

if (availability_lower (i) < 0.0)
{

availability_lower (i) = 0.0;

fixlog << "Changed lower bound for availability for index " << i << " to 0 because
it was less than 0" << endl;
}
if (availability_upper (i) < availability_lower (i))
{
availability_upper(i) = 1.0 + availability_lower (i);
fixlog << "Changed upper bound for availability for index " << i << " to 1 + lower
bound because it was less than lower bound" << endl;
}
if (availability_ini(i) < availability_lower (i) || availability_ini(i) >

availability_upper(i))
{

36

if (availability_ini(i) < availability_lower(i))
{
availability_ini(i) = availability_lower (i) + 1.0e—15;
fixlog << "changed initial value for availability parameter
availability_lower (i) + 1.0e—15 <<
" because it was < the lower bound,

<< i << " to <<

<< availability_lower (i) << endl;

}

else

{
availability_ini(i) = availability_upper(i) — 1.0e—15;

fixlog << "changed initial value for availability parameter " << i << " to " <<
availability_upper (i) — 1.0e—15<<
" because it was > the upper bound, " << availability_upper(i) << endl;
}
}
if (availability_penalty_type (i) == 1)
{
max_CV = sqrt((availability_upper(i)—availability_ini(i))=«(availability_ini(i) —
availability_lower (i))/square(availability_ini(i)));
if (availability_penalty_CV (i) >= max_CV)
{ //CV(par) must be < (E(par)—lower) (upper—E(par))/E(par)”2
availability_penalty_CV (i) = max CV«0.9999;
fixlog << "Changed penalty CV for availability of index " << i << " to " <<
max_CV+0.9999 << " because it was >= than maximum" << endl;
}
if (availability_penalty_CV (i) < 1.0e—15)
{
availability_penalty_CV (i) = max CV+0.0001;
fixlog << "Changed penalty CV for availability of index " << i << " to " <<
max_CV+0.0001 << " because it was <= 0" << endl;
}
//beta distribution for penalties: phi = alpha + beta = mu/(1—mu)/CV*2 —1
availability_penalty_mu (i) = (availability_ini(i) — availability_lower (i))/(
availability_upper (i) — availability_lower (i));
availability_penalty_phi(i) = (1—availability_penalty_mu(i)) =
availability_penalty_mu (i)=square(availability_upper (i) — availability_lower (i)
)/square(availability_ini(i)+availability_penalty_CV(i)) — 1.0;
availability_penalty_a (i) = availability_penalty_phi(i)+availability_penalty_mu (i)
availability_penalty_b (i) = availability_penalty_phi (i)=(1-—
availability_penalty_mu(i));
availability_penalty_const(i) = (availability_penalty_phi(i)—1.0)xlog(
availability_upper(i)—availability_lower (i) + 1.0e—15) — gammlin(
availability_penalty_phi(i)) +
gammin(availability_penalty_a(i)) + gammin(availability_penalty_b(i));
}
else
{
if (availability_penalty_CV (i) < 1.0e—15)
{

fixlog << "Changed availability_penalty_CV (" << i << ") to 100" << endl;

37

availability_penalty_CV (i) = CVfill;
}
availability_penalty_sigma(i) = sqrt(log(availability_penalty_CV (i)=
availability_penalty_CV (i)+1.0));
availability_penalty_Inorm_scale (i) = cumd_norm((log(availability_upper(i))—log(
availability_ini(i)+1.0e—15))/availability_penalty_sigma(i)) —
cumd_norm((log(availability_lower (i)+1.0e—15)—-log(availability_ini(i)+1.0e—15))/
availability_penalty_sigma(i));
availability_penalty_const(i) = 0.5«log(2.0+-Pl) + log(availability_penalty_sigma (i
)) + log(availability_penalty_Inorm_scale(i));
}

// availabity AR1 process
if (availability_AR1_sd (i) < 1.0e—15)
{
availability_AR1_sd (i) = 0.0001;
fixlog << "Changed penalty sd for availability AR1 process of index " << i << " to
0.0001 because it was <= 0" << endl;
}
if(n_index_years(i) == 0 & & phase_availability_ AR1(i) > 0)
{
phase_availability_ AR1 (i) = —1;
fixlog << "Changed phase for availability AR1 process of index " << i << " to —1
because this index is not used." << endl;
}
availability_AR1_penalty_const(i) = double(index_time_span(i))=*(0.5«log(2.0=PI) +
log (availability_ AR1_sd (i)));

// efficiency
count = 0;
for(int j=1; j<=n_efficiency_pars(i); j++)

{

count++;
if (n_index_years(i) == 0 && phase_efficiency_pars(count) > 0)
{

phase_efficiency_pars(count) = —1;

fixlog << "Changed phase for efficiency parameter " << count << " to —1 because
it pertains to index " << i << " which is not used." << endl;
}
for(int y=1; y<=n_years; y++)
{
efficiency_X(i,y,j) = efficiency_X_ini(y,count);
}
}
if (efficiency_lower (i) < 0.0)
{
efficiency_lower (i) = 0.0;
fixlog << "Changed lower bound for efficiency for index " << i << " to 0 because
it was less than 0" << endl;
}
if (efficiency_upper(i) < efficiency_lower(i))

{

38

efficiency_upper(i) = 1.0 + efficiency_lower(i);
fixlog << "Changed upper bound for efficiency for index
bound because it was less than lower bound" << endl;

<< i << " to 1 + lower

}
if (efficiency_ini(i) < efficiency_lower (i) || efficiency_ini(i) > efficiency_upper(i
))
{
if (efficiency_ini(i) < efficiency_lower(i))

{

efficiency_ini(i) = efficiency_lower(i) + 1.0e—15;

fixlog << "changed initial value for efficiency parameter " << i << " to " <<
efficiency_lower (i) + 1.0e—15 <<
" because it was < the lower bound, " << efficiency_lower(i) << endl;
}
else
{
efficiency_ini(i) = efficiency_upper(i) — 1.0e—15;
fixlog << "changed initial value for efficiency parameter " << i << " to " <<
efficiency_upper(i) — 1.0e—-15 <<
" because it was > the upper bound, " << efficiency_upper(i) << endl;
}
}
if (efficiency_penalty_type(i) == 1)
{
max_CV = sqrt ((efficiency_upper(i)—efficiency_ini(i))=«(efficiency_ini(i) —
efficiency_lower (i))/square(efficiency_ini(i)));
if (efficiency_penalty_CV (i) >= max _CV)
{ //CV(par) must be < (E(par)—lower) (upper—E(par))/E(par)”2
efficiency_penalty_CV (i) = max_CV=0.9999;
fixlog << "Changed penalty CV for efficiency of index " << i << " to " << max CV
*0.9999 << " because it was >= than maximum" << endl;
}
if (efficiency_penalty_CV (i) < 1.0e—15)
{
efficiency_penalty_CV (i) = max CV=0.0001;
fixlog << "Changed penalty CV for efficiency of index " << i << " to " << max CV

x0.0001 << " because it was <= 0" << endl;

}

//beta distribution for penalties: phi = alpha + beta = mu/(1—mu)/CV*2 —1

efficiency_penalty_mu (i) = (efficiency_ini(i) — efficiency_lower(i))/(
efficiency_upper (i) — efficiency_lower(i));

efficiency_penalty_phi(i) = (1—efficiency_penalty_mu(i))=efficiency_penalty_mu(i)=
square (efficiency_upper (i) — efficiency_lower(i))/square(efficiency_ini(i)=
efficiency_penalty_CV (i)) — 1.0;

efficiency_penalty_a (i) = efficiency_penalty_phi(i)=~efficiency_penalty_mu(i);

efficiency_penalty_b (i) = efficiency_penalty_phi(i)«(1— efficiency_penalty_mu(i));

efficiency_penalty_const(i) = (efficiency_penalty_phi(i)—1.0)«log(efficiency_upper
(i)—efficiency_lower(i) + 1.0e—15) — gammiIn(efficiency_penalty_phi(i)) +

gammin(efficiency_penalty_a(i)) + gammin(efficiency_penalty_b(i));

}

else

{

39

if (efficiency_penalty_CV (i) < 1.0e—15)
{
fixlog << "Changed efficiency_penalty_CV (" << i << ") to 100" << endl;
efficiency_penalty_CV (i) = CVfill;
}
efficiency_penalty_sigma(i) = sqrt(log(efficiency_penalty_CV(i)=
efficiency_penalty_CV (i)+1.0));
efficiency_penalty_Inorm_scale (i) = cumd_norm((log(efficiency_upper(i))—log(
efficiency_ini(i)+1.0e—15))/efficiency_penalty_sigma(i)) —
cumd_norm((log (efficiency_lower (i)+1.0e—15)—log(efficiency_ini(i)+1.0e—15))/
efficiency_penalty_sigma(i));
efficiency_penalty_const(i) = 0.5«log(2.0+PIl) + log(efficiency_penalty_sigma(i)) +
log (efficiency_penalty_Inorm_scale(i));
}
}
count = 0;
for(int i
{
first_availability_phase (i) = max(phase_availability_pars (count+1,count+
n_availability_pars(i)));
if (first_availability_phase (i)>0)

=1; i <= n_indices; i++)

{
for(int j=1;j<= n_availability_pars(i);j++)
{
if (phase_availability_pars(count+j) > 0 & phase_availability_pars(count+j) <
first_availability_phase(i))
first_availability_phase (i) = phase_availability_pars(count+j);
}
}
count = sum(n_availability_pars(1,i));
}
count = 0;
for(int i =1; i <= n_indices; i++)
{

first_efficiency_phase (i) = max(phase_efficiency_pars(count+1,count+
n_efficiency_pars(i)));
if (first_efficiency_phase(i)>0)
{
for(int j=1;j<= n_efficiency_pars(i);j++)
{
if (phase_efficiency_pars(count+j) > 0 && phase_efficiency_pars(count+j) <
first_efficiency_phase (i))
first_efficiency_phase (i) = phase_efficiency_pars(count+j);
}
}
count = sum(n_efficiency_pars(1,i));
}
END_CALCS
Il for(int i=1;i<=n_indices; i++) ICHECK(availability_X((i));
Il for(int i=1;i<=n_indices; i++) ICHECK(efficiency_X(i));

/] starting guesses

40

init_int NAA_year1_flag // 1 for devs from exponential decline, 2 for devs from
initial guesses

Il ICHECK(NAA yeari_flag);

init_vector NAA_yeari_ini(1,n_ages)

Il ICHECK(NAA_year1_ini);

init_vector Fmult_year1_ini(1,n_fleets)

Il ICHECK(Fmult_year1_ini);

init_number is_SR_scalar_R // 1 for RO, 0 for SSBO

Il ICHECK(is_SR_scalar_R);

init_number SR_scalar_ini

Il ICHECK(SR_scalar_ini);

init_number steepness_ini

Il ICHECK(steepness_ini);

/! Phase Controls (other than selectivity and availability ,efficiency)
init_ivector phase_Fmult_year1(1,n_fleets)

Il ICHECK(phase_Fmult_year1);

init_ivector phase_Fmult_devs(1,n_fleets)

Il ICHECK(phase_Fmult_devs);

int n_tot Fmult_devs;

Il n_tot_Fmult_devs = sum(n_catch_years) — n_fleets; //no dev in first year
ivector phase_Fmult_devs_ini(1,n_tot_Fmult_devs)
LOCAL_CALCS

int counter = 0;

for(int i=1;i<=n_fleets;i++)

{

phase_Fmult_devs_ini(1 + counter, sum(n_catch_years(1,i))—i) = phase_Fmult_devs(i);

counter = sum(n_catch_years(1,i))—i;

}

ICHECK(phase_Fmult_devs_ini);
END _CALCS

init_int phase_recruit_devs

Il ICHECK(phase_recruit_devs);

init_int phase_N_year1_devs

Il ICHECK(phase_N_year1_devs);

init_int phase_SR_scalar

Il ICHECK(phase_SR_scalar) ;

init_int phase_steepness

Il ICHECK(phase_steepness) ;

//weights for data components and priors/penalties
init_vector lambda_catch_tot(1,n_fleets)
Il ICHECK(lambda_catch_tot);

init_vector lambda_discard_tot(1,n_fleets)
Il ICHECK(lambda_discard_tot) ;

init_vector lambda_index(1,n_indices)

Il ICHECK(lambda_index) ;

init_vector lambda_Fmult_year1(1,n_fleets)
Il ICHECK(lambda_Fmult_year1);

init_vector lambda_Fmult_devs(1,n_fleets)
I'l ICHECK(lambda_Fmult_devs) ;

init_number lambda_N_year1_devs

41

Il ICHECK(lambda_N_year1_devs) ;
init_number lambda_recruit_devs
Il ICHECK(lambda_recruit_devs);
init_number lambda_steepness
Il ICHECK(lambda_steepness) ;
init_number lambda_SR_scalar
Il ICHECK(lambda_SR_scalar) ;

// CVs for priors/penalties
init_vector recruit_CV (1,n_years)
I'l ICHECK(recruit_CV);
init_vector Fmult_yeari_CV(1,n_fleets)
Il ICHECK(Fmult_year1_CV);
init_vector Fmult_devs_CV(1,n_fleets)
'l ICHECK(Fmult_devs_CV);
init_number N_year1_CV
I'l ICHECK(N_year1_CV);
init_number steepness_penalty_CV
Il ICHECK(steepness_penalty_CV);
init_int steepness_penalty_type
Il ICHECK(steepness_penalty_type);
init_number SR_scalar_CV
Il ICHECK(SR_scalar_CV);
vector recruit_sigma(1,n_years)
number SR_penalty_const
vector Fmult_year1_sigma(1,n_fleets)
vector Fmult_year1_penalty_const(1,n_fleets)
vector Fmult_devs_sigma(1,n_fleets)
vector Fmult_devs_penalty_const(1,n_fleets)
number N_year1_sigma
number N_year1_penalty_const
number steepness_penalty_const
number SR_scalar_sigma
number SR_scalar_penalty_const
number steepness_penalty_phi
number steepness_penalty_Inorm_scale
number steepness_penalty_sigma
number steepness_penalty_a
number steepness_penalty_b
number steepness_penalty_mu
LOCAL_CALCS
for (int y=1; y<=n_years; y++)
{
if (recruit_CV(y) < 1.0e—15)
{
fixlog << "Changed recruit_CV (" <<y << ") to 100" << endl;
recruit_CV (y) = CVfill;
}
}
for (int i=1; i<=n_fleets; i++)

{
if (Fmult_yeart CV(i) < 1.0e—15)

42

}
if
{

}
/1
if
{

}

if
{

{
fixlog << "Changed Fmult_year1_CV (" << i << ") to 100" << endl;
Fmult_year1_CV (i) = CVfill;

}

if (Fmult_devs_CV (i) < 1.0e—15)

{
fixlog << "Changed Fmult_devs CV (" << i << ") to 100" << endl;
Fmult_devs_CV (i) = CVfill;

}

(N_year1_CV < 1.0e—15)

fixlog << "Changed N_year1_CV to 100" << endl;
N_year1i_CV = CVfill;

steepness is bounded between 0.2 and 1.0 so use a scaled beta prior/penalty
(steepness_ini < 0.2 || steepness_ini > 1.0)

if (steepness_ini < 0.2)

{
steepness_ini = 0.2 + 1.0e—15;
fixlog << "changed initial value for steepness to " << 0.2 + 1.0e—15 << " because
it was < the lower bound, 0.2" << endl;
}
else
{
steepness_ini = 1.0 — 1.0e—-15;
fixlog << "changed initial value for steepness to " << 1.0 — 1.0e—15 << " because
it was > the upper bound, 1.0" << endl;
}
(steepness_penalty_type == 1)
double max_ CV = sqrt((1.0—steepness_ini)«(steepness_ini — 0.2)/square(steepness_ini)

) il
if (steepness_penalty_CV >= max CV)
{ //CV(steepness) must be < sqrt((E(par)—0.2)(1.0—E(par))/E(par)”2)
steepness_penalty_ CV = max CV+0.9999;
fixlog << "Change penalty CV for steepness to " << max CV+0.9999 << " because it
was >= maximum" << endl;
}
if (steepness_penalty_ CV < 1.0e—15)
{
steepness_penalty_CV = max CV+0.0001;
fixlog << "Changed penalty CV for steepness to " << max CV+«0.0001 << " because it
was <= 0" << endl;
}
steepness_penalty_mu = (steepness_ini — 0.2)/(1.0 — 0.2);
steepness_penalty_phi = (1—steepness_penalty_mu) »steepness_penalty_mu=square (1.0 —
0.2)/square (steepness_ini+steepness_penalty_CV) — 1.0;
steepness_penalty_a = steepness_penalty_phixsteepness_penalty_mu;

43

steepness_penalty_b = steepness_penalty_phi«(1— steepness_penalty_mu);
steepness_penalty_const = (steepness_penalty_phi —1.0)«log(1.0—-0.2) — gammin(
steepness_penalty_phi) +
gammin(steepness_penalty_a) + gammin(steepness_penalty_b);
}
else
{
if (steepness_penalty_ CV < 1.0e—15)
{
fixlog << "Changed steepness_penalty_CV to 100" << endl;
steepness_penalty_ CV = CVfill;
!
steepness_penalty_sigma = sqrt(log(steepness_penalty_CV=xsteepness_penalty_CV+1.0));
steepness_penalty_Inorm_scale = cumd_norm((log(1.0)—log(steepness_ini))/
steepness_penalty_sigma) —
cumd_norm((log (0.2)—log(steepness_ini))/steepness_penalty_sigma) ;
steepness_penalty_const = 0.5«log(2.0+PI) + log(steepness_penalty_sigma) + log(
steepness_penalty_Inorm_scale);

1
if (SR_scalar_CV < 1.0e—-15)

{

fixlog << "Changed SR_scalar_CV to 100" << endl;

SR_scalar_CV = CVfill;
}
/! convert CVs to variances
recruit_sigma=sqrt(log(elem_prod(recruit_CV ,recruit_CV)+1.0));
Fmult_year1_sigma=sqrt(log(elem_prod (Fmult_year1_CV, Fmult_year1_CV)+1.0));
Fmult_devs_sigma=sqrt (log (elem_prod (Fmult_devs_CV,Fmult_devs_CV)+1.0));
N_yeari_sigma=sqrt(log (N_year1_CV«N_year1_CV+1.0));
SR_scalar_sigma=sqrt (log (SR_scalar_CV+«SR_scalar_ CV+1.0));

// calculate penalty constants

SR_penalty_const=0.5+~double(n_years)+log(2.0+PI) + sum(log(recruit_sigma));

SR_scalar_penalty_const=0.5«log (2.0+«Pl) + log(SR_scalar_sigma);

Fmult_year1_penalty_const=0.5«log(2.0«Pl) + log(Fmult_yeari_sigma) ;

for(int i=1;i<=n_fleets;i++) Fmult_devs_penalty_const(i)=0.5-double (catch_time_span (i)
)+(log(2.0«PI) + log (Fmult_devs_sigma(i)));

N_year1_penalty_const=0.5-double (n_ages—1)«log (2.0« PIl) + double(n_ages—1)+log(
N_yeari_sigma) ;

END_CALCS

// Selectivity dek d ok ok k ke k ok ke ke k ko k k ke k ok ok k ke k k ok k ok k ok ok k ok k ok Kk

/1 Selectivity is defined for all fleets/surveys so that selectivities can be mixed
and matched.

/! Also, a selectivity parameter locator allows parameters to be used for multiple
ages in a block

// or some parameters can be used in multiple selectivity blocks

init_int n_selblocks; //now for both fleets and indices. can be as small as one if all

fleets and surveys have the same selectivity
Il ICHECK(n_selblocks);

44

init_imatrix fleet_selblock_pointer_ini(1,n_years,1,n_fleets)
Il ICHECK(fleet_selblock_pointer_ini);

imatrix fleet_selblock_pointer(1,n_fleets,1,n_years)
init_imatrix index_selblock_pointer_ini(1,n_years,1,n_indices)
Il ICHECK(index_selblock_pointer_ini);

imatrix index_selblock_pointer(1,n_indices,1,n_years)

ivector n_selpars_by_block(1,n_selblocks)

init_ivector selblock_type(1,n_selblocks)

Il ICHECK(selblock_type);

LOCAL_CALCS

for(int i = 1; i<=n_selblocks; i++)

{
if (selblock_type(i) == 1) n_selpars_by_block(i) = n_ages; //by age, estimated

selectivity parameters are log(p/(1—p))

else if(selblock_type(i) == 2) n_selpars_by_block(i)
else if(selblock_type(i) == 3) n_selpars_by_block (i)
else

{

2; //logistic
4; //double logistic

fixlog << "selblock_type (" << i << ") = << selblock_type (i) <<
Must be 1, 2, or 3" << endl;
ad_exit(1);

is not valid.

}
}
for(int i=1; i<=n_fleets; i++)
{
for(int y = 1; y<=n_years; y++)

{

fleet_selblock_pointer(i,y) = fleet_selblock_pointer_ini(y,i);

if (fleet_selblock_pointer(i,y) < 1 || fleet_selblock_pointer(i,y)> n_selblocks)
{
fixlog << "Selectivity block for fleet " << i << " in year " <<y << " is " <<
fleet_selblock_pointer(i,y) << ", but it must be between 1 and " <<
n_selblocks << endl;
ad_exit(1);
}
}
}
for(int i=1; i<=n_indices; i++)
for(int y=1; y<=n_years; y++)
{
index_selblock_pointer(i,y) = index_selblock_pointer_ini(y,i);
if (index_selblock_pointer(i,y) < 1 || index_selblock_pointer(i,y)> n_selblocks)
{
fixlog << "Selectivity block for index " << i << " in year " <<y << " is " <<
index_selblock_pointer(i,y) << ", but it must be between 1 and " <<
n_selblocks << endl;
ad_exit(1);

}
}
}

45

END_CALCS

init_int n_selpars

init_vector selpars_ini(1,n_selpars) //input initial values

Il ICHECK(selpars_ini);

init_ivector phase_selpars(1,n_selpars)

Il ICHECK(phase_selpars) ;

init_vector selpars_upper(1,n_selpars)

Il ICHECK(selpars_upper);

init_vector selpars_lower(1,n_selpars)

Il ICHECK(selpars_lower) ;

init_vector lambda_selpars(1,n_selpars)

Il ICHECK(lambda_selpars) ;

init_vector selpars_penalty_CV(1,n_selpars)

Il ICHECK(selpars_penalty_CV);

init_ivector selpars_penalty_type(1,n_selpars) //1 is scaled,shifted beta, else
truncated log—normal

Il ICHECK(selpars_penalty_type);

vector selpars_penalty_Inorm_scale(1,n_selpars)

vector selpars_penalty_sigma(1,n_selpars)

vector selpars_penalty_const(1,n_selpars)

vector selpars_penalty_a(1,n_selpars)

vector selpars_penalty_b(1,n_selpars)

vector selpars_penalty_mu(1,n_selpars)

vector selpars_penalty_phi(1,n_selpars)

init_imatrix selpars_pointer(1,n_selblocks,1,n_selpars_by_block) //ragged matrix

Il ICHECK(selpars_pointer);

ivector selpar_use_count(1,n_selpars)

Il selpar_use_count = 0;

Il for(int i=1; i<=n_selpars; i++)

I for(int j=1; j<=n_selblocks; j++)

I for(int k=1; k<=n_selpars_by_block(j); k++)

I if (selpars_pointer(j,k) == i) selpar_use_count(i)++;

Il ICHECK(selpar_use_count);

imatrix selpar_selblocks(1,n_selpars,1,selpar_use_count)//ragged matrix

imatrix selpar_seltypes(1,n_selpars,1,selpar_use_count)//ragged matrix

imatrix selpar_selpositions(1,n_selpars,1,selpar_use_count)//ragged matrix

LOCAL_CALCS
if (max(selpars_pointer) > n_selpars)

{

fixlog << "number of selectivity parameters indicated in locator,
selpars_pointer) <<

is greater than the number of parameters specified ," << n_selpars << endl;
ad_exit(1);

<< max(

}

if (min(selpar_use_count) == 0)
{
for(int i = 1; i <= n_selpars; i++)
{
if (selpar_use_count(i) == 0 & phase_selpars(i) > 0)

{

46

}

fixlog << "selectivity par " << i << is not used in any selectivity blocks and
its phase is " << phase_selpars(i) <<
, SO0 setting it to —1" << endl;
phase_selpars(i) = —1;
}
}

selpar_selblocks = 0;
selpar_seltypes = 0;
selpar_selpositions = 0;
for(int i=1; i<=n_selpars; i++)

{

int count = 0;
for(int j=1; j<=n_selblocks; j++)
{
for(int k=1; k<=n_selpars_by_block(j); k++)
{
if (selpars_pointer(j,k) == i) //found where the parameter is used
{
count++;
selpar_selblocks (i ,count) = j;
selpar_seltypes (i,count) = selblock_type(j);
selpar_selpositions (i,count) = k;
}
}
}
if (selpar_use_count(i) > 1)
{
int block = selpar_selblocks (i,1);
int type = selpar_seltypes(i,1);
int position = selpar_selpositions (i,1);
for(int j=2; j<=selpar_use_count(i); j++)
{
if (selpar_seltypes(i,j) != type) // parameter is used multiple times in
different selectivity types?

{

fixlog << "selectivity parameter << i <<

" << block << of type << type <<

and also in selectivity block " << selpar_selblocks(i,j) << " of type " <<
selblock_type(i,j) << endl;

ad_exit(1);

is specified in selectivity block

}

else //sel types are the same, but now check to make sure they are in the right
position
{
type = selpar_seltypes(i,j);
if (selpar_selpositions(i,j) != position &% type != 1) // only matters if
selectivity type is not age—based
{
fixlog << "selectivity parameter " << i << " is specified in selectivity
block " << block << " of type << type <<
at position " << position << and also in selectivity block " <<

47

selpar_selblocks (i,j) << " of type << selpar_seltypes(i,j) <<
at position " << selpar_selpositions(i,j) << endl;
ad_exit(1);
!
else position = selpar_selpositions(i,j);
}
}

}
}

for(int i=1; i<=n_selpars; i++)

if (selpar_seltypes(i,1) == 1) //estimating proportion by age
{
if (selpars_lower(i) < 0.0)
{
selpars_lower (i) = 0.0;
fixlog << "Changed lower bound for selectivity parameter << i <<
because type is 1 (proportion) and it was less than 0" << endl;

"to O

}
if (selpars_upper(i) > 1.0 || selpars_upper(i) < selpars_lower(i))
{
selpars_upper(i) = 1.0;
fixlog << "Changed upper bound for selectivity parameter << i <<
" to 1 because type is 1 (proportion) and it was greater than 1 or less than
lower bound" << endl;

}
}
else //either logistic or double logistic or incorrect type
{
//lower bound must be >= 0 for all these parameters
if (selpars_lower(i) < 0.0)
{
selpars_lower (i) = 0.0;
fixlog << "Changed lower bound for selectivity parameter << i <<
" to 0 because type is 2 (logistic) and this parameter was less than 0 (a50 and
slope must be greater than 0)" << endl;

}
if (selpar_seltypes(i,1) == 2)// || selpar_seltypes(i,1) == 3) //logistic parameter
a50 and increasing slope
{
if (selpar_selpositions(i,1) == 1)// 0<ab50<n_ages
{
if (selpars_upper(i) > double(n_ages) || selpars_upper(i) < selpars_lower(i))
{
selpars_upper(i) = double(n_ages);
fixlog << "Changed upper bound for selectivity parameter << i <<
" to n_ages because type is 2 (logistic) and it was greater than n_ages or
less than lower bound and this is an a50 parameter" << endl;

}
}

else // 0O<slope

{

48

if (selpars_upper(i) < selpars_lower(i))
{
selpars_upper(i) = selpars_lower(i)+1.0;
fixlog << "Changed upper bound for selectivity parameter " << i << " to " <<
selpars_lower (i)+1.0 <<
" because type is 2 (logistic) and it was less than lower bound and this
is slope parameter" << endl;
}
}
}

else

{
if (selpar_seltypes(i,1) == 3) //double logistic
{

if (selpar_selpositions(i,1) == 1 || selpar_selpositions(i,1) == 3)// 0<a50<
n_ages

{
if (selpars_upper(i) > double(n_ages) || selpars_upper(i) < selpars_lower(i))

{
selpars_upper(i) = double(n_ages);
fixlog << "Changed upper bound for selectivity parameter " << i <<
" to n_ages because type is 3 (double logistic) and it was greater than
n_ages or less than lower bound and this is an a50 parameter" << endl

)

}
}
else // O<slope
{
if (selpars_upper(i) < selpars_lower(i))
{
selpars_upper(i) = selpars_lower(i)+1.0;
fixlog << "Changed upper bound for selectivity parameter " << i << " to "
<< selpars_lower(i)+1.0 <<
" because type is 2 (logistic) and it was less than lower bound and this
is slope parameter" << endl;
}
}
}
else // incorrect selectivity type

{

fixlog << "selectivity type for parameter " << i << " is " << selpar_seltypes(
i,1) << " but it must be 1, 2, or 3" << endl;
ad_exit(1);
}
}
}
if (selpars_ini(i) < selpars_lower(i) || selpars_ini(i) > selpars_upper(i))

{
if (selpars_ini(i) < selpars_lower(i))
{
selpars_ini(i) = selpars_lower(i) + 1.0e—15;
fixlog << "changed initial value for selectivity parameter " << i << " to " <<

49

selpars_lower (i) + 1.0e—15 <<
" because it was < the lower bound,

<< selpars_lower (i) << endl;
}
else
{

selpars_ini(i) = selpars_upper(i) — 1.0e—15;

fixlog << "changed initial value for selectivity parameter " << i << " to " <<

selpars_upper(i) — 1.0e—15 <<
" because it was > the upper bound,

<< selpars_upper(i) << endl;
}
}
if (selpars_penalty_type (i) == 1)
{
//because all parameters are bounded we use a shifted and scaled beta prior/
penalty
double max CV = sqrt((selpars_upper(i)—selpars_ini(i))+(selpars_ini(i) —
selpars_lower(i))/square(selpars_ini(i)));
if (selpars_penalty_CV (i) >= max CV)
{ //CV(par) must be < sqrt((E(par)—Ilower) (upper—E(par))/E(par)”*2)
selpars_penalty_CV (i) = max CV+0.9999;
fixlog << "Changed penalty CV for selectivity parameter " << i << " to " <<
max_CV=0.9999 << " because it was >= maximum and penalty type is beta" <<
endl;
}
if (selpars_penalty_CV (i) < 1.0e—15)
{
selpars_penalty_CV (i) = max CV+0.0001;
fixlog << "Changed penalty CV for selectivity parameter " << i << " to " <<
max_CV=0.0001 << " because it was <= 0 and penalty type is beta" << endl;
}
//beta distribution for penalties: phi = alpha + beta = mu/(1—mu)/CV*2 —1
selpars_penalty_mu(i) = (selpars_ini(i) — selpars_lower(i))/(selpars_upper(i) —
selpars_lower(i));
selpars_penalty_phi(i) = (1—selpars_penalty_mu(i))+«selpars_penalty_mu(i)=~square(
selpars_upper(i) — selpars_lower(i))/square(selpars_ini(i)+selpars_penalty_CV (i
)) — 1.0;
selpars_penalty_a(i) selpars_penalty_phi(i)=«selpars_penalty_mu(i);
selpars_penalty_b (i) selpars_penalty_phi(i)*(1— selpars_penalty_mu(i));
selpars_penalty_const(i) = (selpars_penalty_phi(i)—1.0)«log(selpars_upper(i)—
selpars_lower (i) + 1.0e—15) —
gammin(selpars_penalty_phi(i)) + gammin(selpars_penalty_a(i)) + gammin(
selpars_penalty_b(i));

}

else

{

//we use a truncated log—normal essentially the same as asap3 (just add a constant

)
if (selpars_penalty_CV (i) < 1.0e—15)
{
fixlog << "Changed selpars_penalty_ CV (" << i << ") to 100" << endl;
selpars_penalty_CV (i) = CVfill;
}

50

selpars_penalty_sigma(i) = sqrt(log(selpars_penalty_CV (i)+selpars_penalty_CV (i)
+1.0));

selpars_penalty_Inorm_scale (i) = cumd_norm((log (selpars_upper(i))—log(selpars_ini(
i)+1.0e—15))/selpars_penalty_sigma(i)) —

cumd_norm((log (selpars_lower(i)+1.0e—15)—log(selpars_ini(i)+1.0e—15))/
selpars_penalty_sigma(i));

selpars_penalty_const(i) = 0.5«log(2.0«PI) + log(selpars_penalty_sigma(i)) + log(

selpars_penalty_Inorm_scale(i));
}

}
END_CALCS

init_int Freport_agemin

I'l ICHECK(Freport_agemin);

init_int Freport_agemax

I'l ICHECK(Freport_agemax) ;

init_int Freport_wtopt

Il ICHECK(Freport_wtopt);

init_number Fmult_max_value_ini

Il ICHECK(Fmult_max_value_ini);

init_int use_Fmult_max_penalty; //1=yes, 0 = no

Il ICHECK(use_Fmult_max_penalty) ;

init_int use_F_penalty; //1=yes, 0 = no

Il ICHECK(use_F_penalty);

init_int nXSPR

'l ICHECK(nXSPR) ;

init_vector XSPR(1,nXSPR) //percentage(s) of SPR to use for reference point(s) must be
between 0 and 100

Il ICHECK(XSPR) ;

init_int n_SR_scalar_pars // same approach as steepness, generally don’t want to do
both at the same time

Il ICHECK(n_SR_scalar_pars);

init_vector SR_scalar_pars_ini(1,n_SR_scalar_pars)

Il ICHECK(SR_scalar_pars_ini);

init_matrix SR_scalar_X(1,n_years,1,n_SR_scalar_pars)

Il ICHECK(SR_scalar_X);

init_int n_steepness_pars // need at least one parameter for mean, this has a column
of 1’s in design matrix

Il ICHECK(n_steepness_pars);

init_vector steepness_pars_ini(1,n_steepness_pars)

Il ICHECK(steepness_pars_ini);

init_matrix steepness_X(1,n_years,1,n_steepness_pars)

Il ICHECK(steepness_X) ;

init_int SR_ratio_0_type //1 for first year, 2 for last year, 3 for annual

Il ICHECK(SR_ratio_0_type);

init_int SR_model_type //1 for ASAP3 methods, else use just use RO without using
SR_ration_0 for average recruitment and estimate deviations

Il ICHECK(SR_model_type) ;

init_number ignore_guesses
I'l ICHECK(ignore_guesses);

51

// used in calculation of slope for F_01 reference points
number delta
Il delta=0.00001;

/] Projection INfosssssssssnnssssxsssss

init_int do_projections

Il ICHECK(do_projections);

init_ivector directed_fleet(1,n_fleets)

Il ICHECK(directed_fleet);

init_number nfinalyear

Il ICHECK(nfinalyear);

int nprojyears

Il nprojyears=nfinalyear—yeari—n_years+1;

init_matrix project_ini(1,nprojyears,1,5)

Il ICHECK(project_ini);

vector proj_recruit(1,nprojyears)

ivector proj_what(1,nprojyears)

vector proj_target(1,nprojyears)

vector proj_F_nondir_mult(1,nprojyears)

LOCAL_CALCS

for (int y=1; y<=nprojyears; y++)

{
proj_recruit(y)=project_ini(y,2);
proj_what(y)=project_ini(y,3);
proj_target(y)=project_ini(y,4);
proj_F_nondir_mult(y)=project_ini(y,5);

}

END_CALCS

// IVQVC |nf0*******************************
init_int doMCMC

Il ICHECK (doMCMC) ;
LOCAL_CALCS
if (dOMCMC == 1)

{
basicMCMC << " ";

for (int y=1; y<=n_years; y++)

{
basicMCMC << "F_" << y+year1—1 << " ";

for (int y=1; y<=n_years; y++)

{
for (int a=1; a<=n_ages; a++)
{
basicMCMC << "M_" << a << "_" <<y << " ";
}
}

for (int y=1; y<=n_years; y++)

{
basicMCMC << "SSB " << y+yeari—1 << " ";

}
/! Liz added Fmult_in lastyear and totBjan1

52

for (int y=1; y<=n_years; y++)

{
}

for (int y=1; y<=n_years; y++)

{

!
for(int i=1; i<=nXSPR; i++)

{

basicMCMC << "Fmult_" << y+year1—1 << ;

basicMCMC << "totBjan1_" << y+yearl—1 << ;

for (int y=1; y<=n_years; y++)
{
basicMCMC << "F_" << XSPR(i) << "_" << y+yeari—1 << " ",
}
}
for (int y=1; y<=n_years; y++)

{
}

for (int y=1; y<=n_years; y++)

basicMCMC << "MSY_" << y+yeari—1 << " ";

basicMCMC << "SSB MSY_" << y+yeari—1 << " ";
1
for (int y=1; y<=n_years; y++)

{
}

for (int y=1; y<=n_years; y++)

{
}

for (int y=1; y<=n_years; y++)

{

!
basicMCMC << endl; // end of header line

}
END_CALCS
init_int MCMCnyear_opt // O=output nyear NAA, 1=output nyear+1 NAA
'l ICHECK(MCMCnyear_opt)
init_int MCMCnboot // final number of values for agepro bootstrap file
I'l' ICHECK (MCMCnboot) ;
init_int MCMCnthin // thinning rate (1=use every value, 2=use every other value, 3=
use every third value, etc)
'l ICHECK(MCMCnthin) ;
init_int MCMCseed /! large positive integer to seed random number generator
I'l' ICHECK (MCMCseed) ;

basicMCMC << "F_MSY_" << y+year1i—1 << " ";

basicMCMC << "SSB_MSY_ratio_" << y+year!t—1 << " ";

basicMCMC << "F_MSY_ratio_" << y+yeari—1 << " ";

// To run MCMC do the following two steps:

/1 1st type "a