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1. Introduction

A prohibited species monthly bycatch rate for a vessel is the
ratio of either the total weight or total number of the prohibited
species caught by the vessel during a month to the total weight of
fish taken by the vessel during the month. To make statistical
inferences about a vessel's bycatch rate, some of the hauls of
fish, that the vessel makes during the month, are randomly selected
for sampling by an observer aboard the vessel. For each selected
haul, the observer either weighs or counts all of the prohibited
species present in the haul or weighs or counts all of the
prohibited species present in several baskets of fish taken from
randomly selected parts of the haul.

We will restrict our attention, from this point on, to the
problem of making statistical inferences about a vessel's monthly
bycatch_ rate of halibut. The data, relevant to making these
inferences, consist of total weights of the baskets pooled and
total weights of halibut in the pooled baskets, when all hauls
selected for sampling are basket sampled. When only some of the
selected hauls are basket sampled, and the others are whole haul
sampled, the information used to make bycatch rate inferences
include total haul weight, total basket sample weight, and weight
of halibut in the pooled basket samples, for basket sampled hauls.
For whole haul sampled hauls, the information used is total haul
weight and total weight of the prohibited species in the haul.

Described in this report are the statistical analyses of the
data taken by observers for the vessel incentive program. The goal
of these analyses is useful statistical inferences about the
bycatch rate of halibut for a given vessel, when the vessel fishes
during the course of a given month.

The first step in the analyses of the data for a vessel-month
is the application to the data of a statistical procedure which
produces robust estimates of monthly bycatch rates. The term
robust, here, refers to the fact that unusual haul sampling
results, obtained by an observer, do not have an inordinately large
effect on the bycatch rate estimate produced by the procedure. For



example, the procedure is designed to produce a reliable bycatch
rate estimate, when relatively few basket samples contain extremely
large amounts of halibut, but the majority of the basket samples
contain very little halibut. This robust bycatch rate estimation
procedure is developed in Section 2.

The second step is the use of observer data to calculate a
lower 95% confidence limit for a vessel's monthly bycatch rate.
This confidence limit is a number such that we are 95% confident
that the vessel's actual monthly bycatch rate exceeds the number.
The method used for calculating the confidence limit is described
in Section 3.

The methods, used for finding a bycatch rate estimate and a
lower 95% confidence limit for a bycatch rate, are based on certain
statistical assumptions about the nature of the observed random
variables, namely total basket sample weight, prohibited species
weight in a basket sample, total weight of a haul, and weight of
the prohibited species in a haul. In order to determine whether or
not the procedures for finding these estimates and limits are valid
the reasonableness of these assumptions must be examined.

The data analysis techniques used on observer data to check
the validity of the assumptions, that need to be made for
application of the inferential procedures, are discussed in Section
4. Application of these techniques is the third step in the
analyses of vessel incentive program data.

The fourth step is the calculation of 95% confidence limits by
the use of a technique other than the procedure used in the second
step. This step is discussed in Section 5, and it is meant to serve
as an additional check of the reasonableness of the results
obtained thus far by the data analyses. The technique is a general
purpose procedure, for producing confidence limits, which may be
applied without making any statistical assumptions about the
variables involved.

For those vessel-month situations in which all of the hauls

selected for sampling are basket sampled, one more set of analyses



of the data is performed. This set essentially consists of the
repetition of the first four steps on information which consists of
basket sample measurements as well as weights of the hauls from
which the basket samples were taken. This step serves as a final
check of the reasonableness of the results obtained by the previous
analyses. It is also an attempt to alleviate concerns expressed by
some that total haul weight is not used in making inferences about
monthly bycatch rates, when all hauls selected for sampling are
basket sampled.

2. Robust Estimation of Bycatch Rates

We will consider first the case where all observer samples
from hauls are pooled basket samples. Let the random variable x
represent the total weight of a pooled basket sample and the random
variable y represent the weight of the halibut in this pooled
basket sample. The halibut bycatch rate may be defined to be the
unknown constant r such that the mean of the random variable y-rx
is zero.

Let (x4,¥4)/s...,(X,,Y,) represent n pairs of observations of x
and y. These pairs of observations are to be used to make
statistical inferences about the unknown parameter r, and we will
first consider the problem of finding an estimate of r. The
estimate of r will be the value of g such that a reasonable, robust
estimate of the mean of the random variable y-gx is zero.

To be sure, one possible estimate of the mean of y-gx, for any
value of q, is

n
1 - —
=Y (y;-gx;) = y-gx , (1)
nia
where X and y represent the averages of the n x;'s and the n y,'s,
respectively. The value of q which makes this estimate zero is

q=y/X,and this would be the corresponding estimate of the bycatch



rate. The problem with using (1) as an estimate of the mean of y-qx
is that it is not at all necessarily robust. That is, a relatively
few inordinately large values for some of the Y;-dX;'s can have a
profound influence on this estimate. Our analyses of vessel
incentive program data have suggested that, in some cases, the
distribution of the random variable y-gqx is highly skewed to the
right with a heavy right tail. When this is the case, one would be
leery of using the average of a set of observations of y-gx to
estimate the mean of this random variable. So we seek a procedure
for estimating the mean of the random variable y-gx which does not
have this drawback.

For any given value of g, let 2ys++.,2, represent the ordered

values of YimqXy ..., ¥qm9%,. If p, represents the mean of y-gx,

consider an estimator of b, of the form

S
n _  d=1
p'q_ n ’

where t is a number which does not exceed z, and s is the number of
z;'s which do not exceed t. Essentially, this estimator is formed
by replacing all of the z;'s greater than t by the value of t
itself, and averaging the resulting set of z,'s.

Suppose that f(z) represents the p.d.f. of the random variable
y-gx. It follows from the work of Searls (1966) that the value of

t, which makes (2) the estimator of kg With minimum mean squared

error, among all such estimators, is the solution, for t, to the
equation

%pt(t—mg - (1-p,) (mi-t) = 0, (3)
where

t t B
pt=faf(2) dz, p, mt=faz f(z) dz, (l-pt)m£=ftz f(z) dz,



and a is the parameter such that f(z)>0, if z2a, and f(z)=0, if
z<a.

The p.d.f. f(z) 1is unknown, but many analyses of vessel
incentive program data have indicated that a reasonable model for

f(z) is a generalized gamma p.d.f. of the form

d -(X2,d
f(z) = — =2 (x-a)¥le P x>a,-x<ace,b,c>0,d>0
I'(c)bed
__]'_(ln _x-_a)2 (4)
= %e 2¢c? 2 ,X>a,-o<ac», b, c>0,d=0.
J2m (x-a)c

The appropriateness of the generalized gamma distribution as a
model for the distribution of y-rx will be discussed in Section 4.
If £(z) is given by (4), then p,, pm,, and (1-p,)m,' in (3) are

1 e
= cleg-uduy, d>0
Pe 1*<c1)fo ) a” e au (5)
= (p(—c 1n T)' =0,
b (£2)7 el
b, = —/———— u e du, d0
= be 2 (D[iln t_a-c]
c b
and
/ bI‘(C+i
(1-p,)m, = ) D, d>0 (7)

f
o
®
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where ® denotes the standard normal distribution function. The
integrals in (5) and (6) may be evaluated by use of the algorithm
of Lau (1985).

The procedure used for finding a value for t in (2) 1is the
following one. A search is used to find the wvalue of t which

satisfies (3). For any given value of t, the quantities p,, m,, and



m,' in (3) are determined by use of (5), (6), and (7) after a, b,
c, and d in these equations are replaced by estimates of these
parameters.

The parameter estimates are based upon Z2y+--,2,, and a is
estimated first by

4=y az, (8)
I=1
where a,=1+[1-(1/n)]", and a;,=[1-(i/n)]}"-[1-(i-1)/n]", for i=2,...,n.

The estimate (8) is the estimate of the lower bound of a random
variable proposed by Cooke (1979).

The parameters b, ¢, and d are estimated by using Vs eoer Vs

where v.=z,-4, for i=1,...,n, and a maximum likelihood estimation
argument. The estimate of d is the solution, for d, to the equation

E Vi an

—+c—Ean clln =0, (9)

Y vi

i=1

provided a positive value of d satisfies (9). For any given value
of d, ¢ in (9) is the solution to the equation

¥ (c)-1n ¢ +1n —E vl-—E In vf = 0. (10)

1'1 1=1

The solution to (10), for c, after 4 in (10) is replaced by its
estimate, is the estimate of c. The estimate of b is



where ¢ and d are the estimates of c and d, respectively.

If no positive value of d satisfies (9), the estimate of d is

zero, and the estimates of b and ¢ are, respectively,

a 1 n
A: , ; = l . - 3 2
B=(J]vy) " and ¢ = [=3 (In v, - 1n b)?)

i=1 i=1

1/2

Thus, for any value of q, fi,, given by (2), may be calculated.
fi; is an estimate of the mean of y-gx. Further, a search procedure
may be used to find the value of g such that {i  is zero. This value

of g is the estimate of the bycatch rate r.

For the case where some of a vessel's hauls, selected for
sampling by an observer, are basket sampled and some are whole haul
sampled, a modification of the procedure described above may be
used to estimate a bycatch rate. Let X; represent the total haul
weight for the i-th sampled haul, and y; represent x. times the
ratio of the weight of halibut in the sample to the total weight of
the sample from the i-th sampled haul, for i=1,...,n. Then proceed
as before.

3. Confidence Limits for Bycatch Rates

The second statistical inference that is made about a bycatch
rate r is a lower 95% confidence limit for this parameter. This
limit is also based on the pairs (x,,Y{)/,... (X, Y,)- Here x;
represents pooled basket sample weight or total haul weight, for
the i-th selected haul, depending upon whether observer sampling
was strictly basket sampling or a mixture of basket sampling and
whole haul sampling. Also, for the i-th selected haul, Y;
represents either halibut weight in the pooled basket sample, for
the case of strictly pooled basket sampling, or total haul weight
times the ratio of halibut weight in the sample to the weight of
the sample, for the mixed sampling case.



The lower 95% confidence limit that is used is essentially due
to Fieller (1940). The derivation of it starts with the assumption
that y-rx has, approximately at least, a normal distribution with
mean zero. Methods for examining the appropriateness of this
assumption will be discussed in the next section.

Now

Var (y-rx)=Var y+r? Var x-2r Cov(x,y) , (11)

and, if the basic assumption is true,

P[—XZX 5 -1.645] = 0.95 . (12)
VAR (y-1rXx)

If the parameters in (11) are replaced by estimates, the
result is substituted in the left hand side of the inequality in
(12), and the resulting inequality is operated on algebraically, it
turns out that the inequality is equivalent to

;s Y 172.706 Cpm1.645(/Cy +Cpp=2Cyy=2.706 (CpyCrmCyy) (13)
X 1-2.706 Cy,
where
Z(y;-y)? T (x;-X) 2 T (x;-%) (y;-¥)
=i, C,=—=1_, and C,=—u :
o (Zy;)? o (Zx,)? ¥ " (ZTy,) (Zx;)

Thus the right hand side of (13) is a lower 95% confidence
limit for r.

4. Examining the Appropriateness of Assumptions

The procedure being used for estimating the bycatch rate, r,
uses as a model, for the distribution of the random variable z=y-
rx, the generalized gamma distribution with p.d.f. given by
Equation (4). In order to check the reasonableness of this model,

a nonparametric estimate of the p.d.f. of z is found and compared



with a member of the generalized gamma family of p.d.f.'s. The
generalized gamma family member used is given by (4), after the
parameters are replaced by estimates.

Both the nonparametric estimate of the p.d.f. of 2z and the
generalized gamma parameter estimates are obtained by using as
observations z,,...,2,, where z,=y.-fx;, for i=1,...,n, and 7 is the
estimate of r described in Section 2. The method for obtaining
generalized gamma parameter estimates is the one discussed in
Section 2.

The procedure for finding the nonparametric estimate of the
p.d.f. of z begins with estimating the location parameter, a, of

the p.d.f. of z by (8). Then a number A is determined. XA 1is such

that w,,...,w, can be regarded as a set of observations from a
symmetric distribution, where w,;=k(z;) ,for i=1,...,n and
—“&YA_
k(z) = %)1_ 420

In (z-4), A=0 .

The method for determining A is described in the appendix.

After A is determined, a kernel estimate of the p.d.f. of
w=Kk(z) may be found. This estimate is of the form

n - (W'Wi)

= 1 2n? (14)
9w = - &

where h is a smoothing parameter. Silverman (1986) provided a
detailed account of nonparametric p.d.f. estimates of the form
(14) . The observations Wys+..,w, and the method of Sheather and
Jones (1991) are used to get a value for the smoothing parameter h.

Finally, the estimate of the p.d.f. of z is obtained by use of
(14) and a transformation of variables. This estimate is

lk(z)-k(z;)]?
- n R i .
(z-4)*? - 2h? _ (15)

V2t nh =1

The method for finding the nonparametric p.d.f. estimate (15)
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was essentially suggested by Wand, Marron, and Ruppert (1991). But
the techniques used for finding values for &, A, and h are
different from the methods suggested by Wand, Marron, and Ruppert.

The basic assumption needed for determining a lower 95%
confidence limit for a bycatch rate is that

y-rx

P[——g——>—1.645] = 0.95 , (16)
where y-rx is the average of y,-rx,,...,y,-rx and 8 is an estimate

of the standard deviation of y-rx.

When it is determined that the generalized gamma distribution
is a reasonable model for the distribution of y-rx, the validity of
the basic assumption (16) may be examined by use of simulation.

This is done by use of the following algorithm:

1. Generate a random sample of observations, say Uypee., 4,
from a generalized gamma distribution.

(Y (u-T) 2132

n 1
2. Calculate u/s;, where EEJLE:IH and sz =—=2
n¥& n

3. Repeat steps 1 and 2 a large number, M, times obtaining

. »* * ' . b
the ratios r,,...,r,, where r; is the ratio u/s;

obtained by the j-th repetition of steps 1 and 2, for
j=1,...,M.
4. Determine p=(#r;">-1.645) /M.

If p, in step 4, is close to 0.95, the conclusion would be
that the 95% 1lower confidence 1limit for the bycatch rate is
reasonably valid.

Step 1 of the algorithm may be carried out by noting that if
the random variable z has a generalized gamma distribution with
parameters a, b, c, and d, then (z-a)? has a two parameter gamma
distribution with parameters b and c. The algorithms of Cheng
(1977) and Ahrens and Dieter (1974) may be used to generate random
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samples from a gamma distribution, and these samples are easily
transformed into samples from a generalized gamma distribution by
adding the value of the parameter a to the 1/d power of each
observation.

The values of the generalized gamma distribution parameters
used in step 1 of the simulation study algorithm would be close to
those parameter estimates obtained when checking the reasonableness
of the generalized gamma distribution as a model for the
distribution of y-rx. However, these estimates may have to be
adjusted somewhat to insure that the equation

5P(6+i)

d _
R~ = "

(17)

holds. This is necessary because, by definition of bycatch rate,
the mean of the distribution of y-rx is zero. The left hand side of
(17) 1is the mean of a generalized gamma distribution whose

parameter values are the numbers &, b, & and d.
5. Other Confidence Limits for Bycatch Rates

There is another method that may be used to find a lower
confidence limit for a bycatch rate. It is an application of a
statistical technique commonly referred to as the bootstrap.

The data gathered for making statistical inferences about a
bycatch rate r can be summarized by the n pairs (X,,¥,),...,(X,,Y,) -
These pairs may be referred to as data points, and we denote the j-
th of these by dj, for j=1,...,n.

The procedure for finding a bootstrap lower 95% confidence
limit for the bycatch rate r may be described as follows:

1. Calculate an estimate, £, of r using all of the data
points {d,,...,d.}.
2. Select at random and with replacement d,'s from the set

{d4,...,4,}, one at a time, until n data points are
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selected. Denote the selected data points by

* "

d,’y-..,4d .
3. Calculate an estimate of r using the data points
a,",...,4"

"
4. Repeat steps 2 and 3 a large number, B, of times

A ®

obtaining the estimates, of r, £,",..., 7. .
5. Let p=[#(f,"<#)]/B, t be such that

t 1 X2
exp([-=—] dx=p,
ﬁw V2T 2

and

2t-1.645 2
q=f I exp[-X] dx .
- el 2
6. The bootstrap lower 95% confidence limit for r is the
value of s such that

#(fiss)
— =

6. The Final Step

One final analysis of the data is performed for the case where
all observer samples are pooled basket samples. That 1is, the
analyses described above are repeated wusing the points
(X4/¥9) seee,(X,,¥,), where here x; and y, represent, respectively,
the total haul weight and the product of the total haul weight and
the ratio of the weight of the halibut in the sample to the weight
of the sample, for the i-th haul selected for sampling. This final
analysis serves as a final check of the reasonableness of the
results obtained by the previous analyses, and it is an attempt to
alleviate concerns expressed by some that total haul weight is not
used in making inferences about bycatch rates.
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APPENDIX

Suppose that v is a positive random variable and A is a
constant such that w=k(v), where

A_
k(v) = Vkl, A#0

Inv, A=0,

has, approximately at least, a symmetric distribution. To get a
value for A, we use, as a model for the distribution of w, the
distribution with p.d.f.

=) e .
f(w;a,b,c)= ez [1+(zc—1>(“’ba>21 e, o=
T 1
2c—1Iw 4c—2)b
[_Iﬁlucl
- 1 VZb 0<cs=. (I)
22 (C+1) 2

If c=1/2, f(w;a,b,c) is a normal p.d.f.. If c>1/2, it is
essentially the p.d.f. for a three parameter t distribution. The
weights of the tails of this distribution increase as c increases,
and they become very heavy if c>1. If c<1/2, the distribution,
whose p.d.f. is (I), has lighter than normal tails, and the tail
weights decrease as the value of ¢ decreases. The tails are
extremely light, much like those of a uniform distribution, if c is
close to zero. Thus the distributional model, given by (I), is a
very flexible one which yields symmetric distributions with tail
weights ranging from very light to very heavy.

If (I) is the p.d.f. of k(v) and Vys+..,V, represent the order
statistics for a random sample of observations of v, the logarithm

of the likelihood function of the parameters a, b, ¢, and A is

(A-1) Y 1n v, - ¥ 1n flk(v,) :a,b,c] . (II)
=

I=1

To find an estimate of A in (I), we find the value of A which

maximizes (II). This value is found by a search, and at each step
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in the search a, b, and ¢, in (II), are replaced by suitable
functions of A and the v.'s.

For each value of A, the value of ¢ in (II) is determined as
follows. Let

A, (A) -2, (A)

i Wy e wyy

where A, (A) and A,(A) represent, respectively, the averages of the
last and first 0.05n values of the ordered set S={k(vy), ..., K(Vv)},
and A,(A) and A;(A) represent, respectively, the averages of the
first and last 0.25n values of the set S which remain after the
first and last 0.25n values are discarded. If r(A)<0.1574, c is the
solution to the equation

(1) = 0.20 «1'(1+C[Q(C”2)0E_-: , (I1I)
(1+clp(e)1?) 2¢
where
g(c)=0.6745+0.2454¢c+0.0795¢%-0.0054¢c>-0.0105¢*
and
p(c)=1.6448+1.5238¢+1.4202¢%+0.9830c3+0.4339¢? .
If r(A)20.1574, c is the solution to the equation
b(M=Qc(o.81) . 0.(0.95) (1V)

0.(0.69) 0.(0.81)

where

h(x)=0(0.81)-0(0.19) . 0(0.95) -0(0. 06)
0 0(0.31)  ((0.81)-0(0.19)

o(¢) represents an estimate of the 100t quantile based on the set
S

» and Q_(t) represents the solution, for x, to the equation
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14-_‘7'
(=

£=0.5[1+ 55 : —]

c) = 1' c+1

This approach to obtaining a value for c¢c in (II) is,

essentially, that of Kappenman (1988). r(A) is an estimate of the
quantity

f SR f(w) dw- O(O'S)W f(w) dw]
(0.5) Q(0.25)

©(0.05)

f w F(w) dw f w £(w) dw)
(0.95)

(V)

and (V) is the right hand side of (III), if f(w) is given by (I)

and ¢>0.5. h(A) is an estimate of

0(0.81)-0(0.19) +30(0.95) -0(0.05)
Q(0.69)-0(0.31) 0(0.81)-0(0.19)

' (VI)

where Q(t) represents the 100t quantile of the distribution of w,
and (VI) is the right hand side of (IV), if the distribution's
p.d.f. is (I).

For any fixed values of ¢ and A, the maximum likelihood

estimators of a and b are given by the solution, for a and b, to
the equations

E [k(v;)-al |k(v;)-a|®/9-2=0 , b= _nl_ E (v;)-al /yZ |He) ¢

i=1 c i=1

if ¢<1/2, or by the solution, for a and b, to the equations

1 k(vy)-a A [k(v;)-a)?
=0 , n-2(c-2 2 =
g; b?%+(2c-1) k(v ;) —al? n-2(c )g; b2+(2c—1)[k(vi)-a]2

if ¢>1/2. These estimators are the functions of A and the vi's
which replace a and b in (II), when (II) is searched for the value

of A which maximizes it.
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