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ABSTRACT 

Sensitivity analyses have been performed on the biomass-based fisheries 

ecosystem simulation, SKEBUB, developed at the Northwest and Alaska Fisheries 

Center;o This simulation contains an equilibration routine that forces it 

to an equilibrium state by adjusting the species biomasses. Sensitivity 

analyses were performed at this equilibrium state. Preliminary analyses 

indicated a GH'Biplot of Monte Carlo error analysis data to be more useful 

than a fractional factorial analysis of variance, because the Biplot 

simultaneously analyzes all output variables. Response surfaces of sensitive 

output variables were generated to study nonlinearities in response. 

The biomass at equilibrium and the predation/biomass ratio were the most 

sensitive output variables, and their sensitivities were species-specific. 

The consumption/biomass ratio was not a sensitive output variable in this 

simulation. The simulation was most sensitive to the following input variables: 

growth, the food requirement for growth and maintenance, the availability to 

predation, percent contribution to other species diets, and the rate of prey 

switching by predators. Again the sensitivities of the different species to 

these parameters was species-specific. In general, variability in input 

parameters was increased by approximately an order of magnitude in the output 

variables. This increased variability would be reduced if simulations in the 

sensitivity analyses were required to reach an equilibrium state at least as 

stable as that of the baseline run. Response surfaces had limited applicability 

because of the many variables and interactions excluded; however, they did show 

the presence of multiple equilibria in the silver hake and flatfish groups. 

The particular equilibrium state which is chosen as the baseline for the 
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sensitivity studies is anticipated to influence the outcome of the sensitivity 

analyses. Sensitivity analyses will thus be specific to both the simulation 

model and the data input to that model. 
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INTRODUCTION 

The sensitivity analysis of large ecosystem models is complex and time 

consuming because of the panoply of variables to be considered, but it is this 

complexity, added to the tendency of simulation models to magnify Input errors, 

that makes sensitivity analyses a necessity. The aims and types of sensitivity 

analyses are as varied as the models and the aims of the researchers in 

constructing them. They can be used as the final testing of a model to indicate 

significant sources of error and their consequence (e.g., Gardner et al. 1981) 

or as part of an ongoing procedure to improve system representation by the 

mode 1 ( M i 11 e r et a 1 . 1 9 7 6) . 

Sensitivity analyses can be divided Into methods which perturb input 

parameters and measure the resulting variation in output (also called error 

analysis), and methods which take the partial derivatives of the model equations 

with respect to each input parameter. This second method is constrained by 

the necessary rigorous assumptions and is not applicable to models whete there 

are either significant nonlinearities In response, or parameter interactions 

(although see Behrens 1978}, and applies only to small deviations of the 

parameters from their mean value (Gardner et al. 1981). The former method is 

generally more applicable to large ecosystem models, with its one major drawback, 

high computer usage, becoming less of a constraint to its effective implementation. 

The many forms of error analysis are limited only by the statistical tools 

available and computer time involved; however, the form of the error distribution 

assigned to the input parameters can 1 imit the level of interpretation possible. 

If there is 1ittle or no information on the error distribution associated with 

each input parameter, then the researcher is constrained to a study of model 

sensitivity, but if additional information is available then it is possible to 



-2­

estimate the importance of the error associated with each input parameter and 

its effect on the predictions output from the simulation. There is realistically 

no compromise between these levels of interpretation; assigning incorrect 

error ranges to even a few parameters can produce at best erroneous, and at 

worst misleading, results. 

Once error distributions and ranges have been assigned and the output 

variables of interest determined, many procedures are possible. These range 

from individual parameter perturbation (IPP) to many multivariate analyses. 

IPP provides detailed information on the shape of the response curve and can 

be used to detect nonlinearity in response (e.g., Livingston 1983), but gives 

no information on parameter interactions. Multivariate methods such as 

fractional factorial analysis of variance (systematic and simultaneous 

perturbation of parameters) or Monte Carlo methods (random and simultaneous 

perturbation of parameters) can provide information on the effects of each 

parameter and their interaction on the chosen output variable (Rose 1983, 

Gardner et al. 1981), but model instability can result from the simultaneous 

perturbation of many parameters if their reaslistic error ranges are large. 

Huson (1982) extended the analysis of Monte Carto results by using a modification 

of the GH'Biplot technique (Gabriel 1971) which simultaneously estimates the 

effects of the parameter perturbations on all measured output variables, 

producing a complete multivariate approach to sensitivity analyses. The most 

suitable method in any instance is determined by the model to be analyzed and 

the intended goals of the analysis, but several techniques are needed to gain 

an overall picture of model response (Huson 1982, Rose 1983). 
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The time during a simulation run at which output is measured can affect 

the results of a sensitivity analysis and measurements taken at a single time 

may poorly represent model performance in general (O'Neill et al. 1980). 

This can occur when a simulation is not in equilibrium or is displaying cyclical 

(e.g., seasonal) dynamics. In these instances the results from the sensitivity 

analysis can be considered valid for only that time In the simulation at which 

the variables were measured. 

In this paper I present the results from sensitivity analyses on an 

abbreviated fisheries ecosystem simulation model (SKEBUB) developed at the 

Northwest and Alaska Fisheries Center (Bax 1983). It is derived from the 

biomass-based simulation models of the Bering Sea - PROBUB and DYNUMES (Laevastu 

and Larkins 1981). It differs from these models mainly in its lack of spatial 

resolution. These simulation models (PROBUB and SKEBUB) contain an equilibration 

function which forces the simulation to an equilibrium position, defined as 

the point where the annual growth equals the annual mortalities for each 

species or species grouping (c.f. May 1971). Equilibrium is attained by adjusting 

the biomasses of the individual species, although at least one species must 

be self-regulating (c.f. Deakin - 1975, May 1973). This technique is a variant 

on relaxation procedures, in turn an extension of the Gauss-Siedel rteration 

technique, and facilitates the sensitivJty analysis by providing a stable 

simulation for analysis. 

METHODS 

The Simulation 

The simulation model SKEBUB was set up to be broadly representative of the 

Georges Bank ecosystem as reported by researchers at the Northeast Fisheries 

Center (NEFC); however, this paper is not an analysis of that ecosytem and 
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the simulation has not been sufftciently parameterized to enable such an 

analysis. The data used from the published works of the scientists at the 

NEFC or their personal communication, include the diet compositions of the 

species or species groupings, production biomass ratios (which were assumed 

proportional to biomass growth rates), input biomass values (data from 1964 

to 1966 resource assessment surveys and mean zooplankton values), and mean 

temperature data. 

Each run of the simulation model proceeded for 30,year-long iterations. 

The beginning biomass for each iteration was adjusted to move the simulation 

closer to an equilibrium position. With baseline values for input parameters, 

a stable equilibrium (i.e. no further changes in beginning biomasses) was 

reached after 20 iterations, and at this point all annual percent changes in 

biomasses were less than 5%. When the input parameters are perturbed during 

the sensitivity analyses, annual percent changes will be greater . 

Sensitivity Analyses 

Preliminary studies were conducted where the same parameter perturbation 

was made to all species groups and the output variables were summed over all 

species groups. Subsequent analyses were designed to study the species-specific 

effects of the parameters. 

Two multivariate methods were used in the preliminary analyses; fractional 

factorial analysis of variance (ANOVA) and Monte Carlo error analysis, using 

a modified GH'Biplot to analyze the output. The basis of a fractional 

factorial ANOVA is a fully factorized design with (usually) two categories, or 

levels, for each parameter, and one measurement for each possible combination 

of parameters. The fractional factorial design assumes that higher order 
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interaction effects are negligible and confounds, or aliases, a new parameter 

with the distinct sequence of upper and lower measurement levels associated 

with one of these higher order interactions. When this design is then analyzed 

as a standard ANOVA, the effect of the added parameter will be recorded as the 

interaction effect with which it is confounded. There are numerous designs 

for fractional factorial ANOVA 1 s (e.g. National Bureau of Standards 1957), 

the designs varying in the number of parameters in the basic design (and 

therefore the number of combinations of parameters to be measured), and the 

number of additional parameters that are to be confounded with the higher 

order interactions. The design used in this study used the computer programs 

written by Rose (1983) and was a six-way ANOVA with parameters measured at 

two levels. This design requires 64 (26) runs and additional parameters 

can be confounded with the three-way and five-way interaction effects, enabling 

the simultaneous analysis of up to 32 parameters. 

The GH 1 Biplot technique has been described by Gabriel (1971) and Everitt 

(1978), and its modification for sensitivity analyses described by Huson 

(1982). The following summary is taken from Huson (1982): 

11The Biplot is a graphical display of multivariate data, 
based, where necessary, on a rank two approximation of 
the original data matrix. The plot is formed from two 
sets of coordinates, one of which represents the rows 
of the original data matrix, and the other the columns. 
The rows of the matrix [representing individual simulation 
runs and denoted as points] are plotted so that increasing 
deviation of a row from the mean is shown as increasing 
distance from the origin of,1the:1Biplot .... The columns of 
the matrix [representing individual variables and denoted 
as 1ine vectors] are represented as projections which have 
lengths proportional to the variance of the column they 
represent. The correlation between columns is approximated 
by the cosine of the angle between column projections.'11 
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In most instances ecological models will requi-re the original sensitivity 

matrix, which is the ratio of the data value to the baseline value for that 

variable, to be approximated as a rank two matrix. This approximation, 

derived from the latent roots and vectors of the variance/covariance matrix 

of the sensitivity data is dominated by the most sensitive parameters or 

variables; parameters of lesser sensitivity can be misrepresented. This can 

present a problem in large ecosimulation models where the variability associated 

with output variables can be an order of magnitude greater than that associated 

with the input variables (O'Neill et al. 1980). In this analysis the deviation 

of each output variable from its mean was reduced by a factor of 10, before 

generating the variance/covariance matrix. This improved representation of 

the input parameters. 

Everitt (1978) p~sents several measures of goodness of fit between the 

Biplot and either the variance/covariance matrix or the original data. The 

goodness of fit between the Biplot and the variance/covariance matrix is the 

sum of the first two latent roots divided by the sum of all latent roots. As 

the number of runs in an analysis increases, this goodness of fit measure 

decreases implying that it is weighted towards the representation of individual 

runs rather than towards individual parameters, which one would expect to be 

better represented as the number of observations increases. 

Four series of 64 runs were analyzed with the fractional factorial ANOVA. 

In these series the two levels for each parameter were its baseline value and 

one of -20%, -10%, +10%, +20% of baseline value, with the same level applying 

to all parameters in any one run. Many input parameters to the simulation were 

not estimated with great accuracy and confidence 1imits were not available. 

Any attempts to define precise error ranges would have been futile, instead a 
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maximum error range of .:!:_10% was assigned for the Monte Carlo analysis, with a 

triangular error distribution. 

In the final sensitivity analyses the number of input parameters to be 

independently perturbed was increased by makJng most parameter changes species 

specific; it was considered that the pooling of parameter perturbations and 

output variables over different species could produce misleading results by 

averaging out dominant, but opposing, relationships. Similarly, output variables 

were measured for the individual species. This extension to the analysis 

resulted in 117 input and output variables. The effects of perturbations to 

the fishing coefficient and the effects of parameter perturbations on total 

catch were not analyzed in this final sensitivity analysis. There were 117 

input and output variables studied (Table 1). The species groupings are 

1isted in Table 2. Maximum perturbations were again set at +10% of the mean 

value for the Monte Carlo error analysis. The fractional factorial ANOVA was 

not used in this final analysis. 

A cautionary note is necessary regarding the preparation of data for the 

sensitivity matrix. The sensitivity matrix suggested by Huson (1982) computes 

each value as the proportion of its basel inevalue. This works well for input 

parameters when the error distribution is described as a proportion of the mean 

value, but can prove troublesome for output variables. To provide compatibility 

in scales between predation and starvation, the predation orn each biomass, and 

the amount of food obtained by each biomass (an indirect measure of starvation) 

were recorded as proportions of each biomass. This also removed the strong 

dependency of predation and food obtained on the actual biomass. Another 

output variable, percent change in biomass at equilibrium, could not be 

realistically analyzed using this variant of the GH'Biplot procedure. The 

equilibration procedure adjusts the biqmasses in the simulations until close 
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to zero annual change is recorded during baseline runs; any slight absolute 

deviation from the equilibrium obtained in the baseline run would be 

proportionately enormous. The change in biomasses at equilibrium will be 

analyzed separately using IPP methods. 

RESULTS 

Preliminary Sensitivity Analyses 

The fractional factorial ANOVA and the GH'Biplot produced similar results, 

ranking the input parameters, coefficient of growth, avallabil ity to predation, 

and food requirement for growth and maintenance as the parameters exerting 

most effect on the measured simulation outputs. There were differences in 

ranking between the methods but the differences were no more than those between 

the ANOVA with different percent parameter perturbations. There were differences 

in parameter rankings between the ANOVA's when different dependent variables 

were used as a measure of change in the simulation; the GH'Bip~ot considers 

all dependent variables simultaneously. 

Two conclusions from these preliminary analyses were that the indicated 

sensitivity of the input parameters was clearly dependent on the output variable 

measured, and that the amount of perturbation of the input parameters influenced 

the results. The fractional factorial ANOVA and the GH'Biplot gave qualitatively 

similar rankings of the relative effect of perturbations of the input parameters. 

Main Sensitivity Analyses 

The GH'Biplot was used in the main sensitivity ana,lyses, because it enables 

the simultaneous analysis of all perturbed input parameters and output variables. 

The differences in the ranking of parameter sensitivities when the fractional 

factorial ANOVA was run with different percent perturbations to the input 
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parameters indicated that non-1 inearities In response might be occurring and 

the plotting of response surfaces was planned to investigate this. 

The GH'Blplot was applied to data sets generated from 200 and 550 simulations. 

The parameters and variables which showed the greatest sensitivity did not vary 

between applications, but the properties of the parameters and variables of 

lesser sensitivity were more distinct in the results from the larger data set. 

The goodness of fit of the GH'Biplot to the variance/covariance matrix was 

11%, indicating a poor fit. When the data from the 550 run simulation were 

subsampled to give data sets of 200 and then 50 runs, this goodness of flt 

measure increased to 14% and 22%, respectively. Although the goodness of fit 

measure seems weighted to be more representative of the individual model runs 

than of the individual variables, the indicated fit Is sufficiently low to 

treat these results with caution. It is likely that the parameters of lesser 

sensitivity may be poorly represented. 

There are too many variables to be plotted on one figure, and they were 

thus subdivided into either variables or species. I emphasize that all the 

GH'Biplot figures result from the one analysis and the figures can thus be 

directly compared. 

The input parameters producing greatest sensitivity in simulation output 

were growth, the food requirement for growth and maintenance, the availability 

of the species to predation; the percent contribution to other species diets, 

and the rate of prey switching (Figs. 1-5, respectively}. The input biomasses 

and the acclimation temperature (which determines seasonal changes in growth} 

did not exert as great an effect on simulation output; 'maximum deviations from 

the origin were 0.37 and 0.35, respectively. 
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The three output variables showed markedly differing sensitivities. 

Equilibrium biomass was the most sensitive variable (Fig. 6), which is not 

surprising given the equilibration technique used. A more significant contrast 

is that between the predation/biomass ratio (proportion of each biomass) 

consumed and the consumption/biomass ratio (food obtained by each biomass). 

The predation/biomass ratio was a very sensitive variable, considering the 

tenfold reduction in deviations from the mean during data preparation 

(Fig. 7). The consumption/biomass ratio was a far less sensitive variable 

(maximum deviation from mean 0.09). 

Additional information is obtained by comparing the orientation of the 

vectors. The predation/biomass ratio shows a strong positive correlation 

with the equilibrium biomass. This is again a result of the equilibration 

procedure which increases a species biomass, and thus its absolute amount of 

growth, if the total mortalities operating on it increase. In general, growth 

is negatively correlated with the equilibrium biomass, also as a consequence 

of the equilibration procedure. The availability of a species to predation, 

and the food requirements for growth and maintenance are in general positively 

correlated with the predation/biomass ratio and equilibrium biomass although 

this is apparent only for the more sensitive species. The different sensitivities 

of the different species to these variables emphasize the Importance of 

considering each species individually. The greater sensitivity of the 

predation/biomass ratio compared to the consumption/biomass ratio indicates 

the importance of prey switching in this simulation. The sensitivity to the 

rate of prey switching coefficient substantiates this and this high sensitivity 

is surprising when it is considered that this parameter was set at the same 

value for each species, and is thus the sum of potentially opposing influences . 
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The second output from the Blplot is the deviation of each row of the 

sensitivity data matrix, that is of each run, from the mean. In the analysis 

of a system that was dominated by one or two variables or species, a distinct 

pattern would develop (e.g., Huson 1982). In this analysis there was little 

asymmetry in the plot, indicating a lack of extreme sensitivity to changes in 

any individual parameter by any variable (Fig. 8). 

In the preceding plots (Figs. 1-7) two species groupings, the flatfish 

and silver hake were noticeable for the high sensitivity to their input 

parameters. Figures 9 and 10 are the same data rearranged to facll itate a 

more detailed examination of the parameters of these two species. The biomass 

of the flatfish was particularly sensitive to its growth rate and amount available 

for consumption by other species (Fig. 9). Simulation outputs are not sensitive 

to the percentage representation of the flatfish in the diets of other species, 

indicating that in this simulation the predation on the flatfish biomass 

was limited by its availability to predators and not by their preference for 

it. The flatfish biomass is comparatively small and thus unable to withstand 

a large predation pressure; the high sensitivity to its growth rate was 

negatively correlated with its equil lbrium biomass and with increased predation. 

The parameters which produced the largest changes in the silver hake biomass 

were its growth rate, its food requirement for growth and maintenance, and 

its proportional representation in the diet of predators (Fig. 10). It was 

not as sensitive to its availability to predators, indicating the predation on 

the silver hake biomass was controlled by the preference of the predators for 

it, not by its availability. Silver hake has a piscivorous diet and the high 

sensitivity to its food requirements may result from a sensitivity of the system 

as a whole to increased predation rather than solely a sensitivity of its 

own biomass. 
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The plots for these two species illustrate the different sensitivities to 

their parameters. There is high correlation between principal parameter 

vectors (either negative or positive) for each species as indicated by the 

grouping of the principal parameter vectors within a narrow angle, but between 

the two species parameter vectors are at approximately 90 degrees illustrating 

minimal correlation between groups. 

The GH'Biplot indicates which input parameters produce greatest sensitivity 

in output variables and their general relations. For a more detailed examination 

of the effects of individual or pairs of parameter response surfaces of output 

variables can be generated; however, examination of individual parameter effects 

in isolation from the other parameters in the model can provide only a limited 

view of system sensitivity. The two parameters which produced the greatest 

sensitivities for the flatfish group (growth and prey availability), and in a 

separate simulation the parameters which produced the greatest sensitivities 

for the silver hake group (growth and the food requirement for growth and 

maintenance), were sequentially perturbed and response surfaces of the annual 

change in biomass, consumption to biomass ratio, predation to biomass ratio, 

and the biomass at equilibrium generated for each species. 

The response surfaces of annual biomass change were similar for both species 

and indicate that there is a series of combinations of parameters that produce 

stable equilibrium conditions (Figs. 11 and 12). The response surface for the 

flatfish has several local minima; the response surface for the silver hake does 

not. In a fully parameterized simulation it would be important to analyze the 

response surfaces for the different species to detect any local minima for 

equilibrium conditions. The presence of such local minima and the potential for 

movement between them would have important consequences for the results from 

this simulation model. 
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The remaining response surfaces were linear (curvilinear for biomass) 

functions of the perturbed variables with no local minima. The most sensitivt 

variable was the equilibrium biomass as indicated by the GH'Biplot, and it 

showed the same positive correlation with availability to predation and the 

food requirement for growth and maintenance, and the same negative correlation 

with the growth coefficient. One conclusion of the GH'Biplot was the lack of 

sensitivity of the consumption/biomass ratio in the simulation. The response 

surfaces for the flatfish and silver hake did not Indicate this; rather for the 

silver hake the response surfaces indicated the consumption/biomass ratio to 

be more sensitive to both the growth coefficient and the food requirement for 

growth and maintenance than was the predation/biomass ratio. The flatfish 

response surfaces indicated companable sensitivity to growth and less sensitivi·ty 

to availability to predation for the consumption/biomass ratio when compared 

with the predation/biomass ratio. It is not clear whether these differences 

between analyses are a consequence of the poor goodness of fit estimated for 

the GH'Biplot or a consequence of the diffierences between univariate and 

multivariate analyses. 

To investigate this question the input parameters directly affecting the 

silver hake and the output variables for silver hake were reanalyzed. The data 

used for the previous GH'Biplot were used again. These data were analyzed using 

simple correlation analysis and partial correlation analysis controlling for 

all other parameters and variables. The parameters and variables were ranked 

according to the sensitivity indicated by each analysis (Table 3). 

The consumption/biomass ratio was indicated to be the most sensitive variable 

in the simple correlation analysis. This was not the case however in either 

the partial correlation analysis or the GH'Biplot, where equilibrium biomass 
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was again found to be the most sensitive variable. This indicates the 

limitations of the IPP methods which can produce results with high definition 

of nonlinear responses but are limited in appllcabil ity to define system 

behavior as a whole. The results of the GH'Biplot and the partial correlation 

analysis are also not in accordance. A closer examination of the results from 

these two methods indicated good correspondence for the input parameters and 

output variables to which the system was most sensitive, but less correspondence 

for the parameters and variables to which . the system was less sensitive. This 

is a function of the approximation process used to generate a rank two matrix 

for the GH'Biplot, but at the same time the distinction drawn between IPP and 

partial correlation applies. That is, partial correlation analysis can produce 

statistically precise results but is unable to synthesize the large amounts 

of information that the GH'Biplot can. Thus, the results from the partial 

correlation analysis will be limited to the particular conditions or variables 

under which they were taken. The GH'Biplot can summarize, and present in an 

easily assimilable format, the results from large sets of data, but the results 

are approximations and can indicate with reasonable confidence only the 

parameters, variables, and interactions to which the system is most sensitive. 

DISCUSSION 

The preceding analyses indicate the complex nature of the sensitivity 

analysis of large simulation models. None of the methods applied was ideal, 

each making a compromise between definition and generality. This is an extension 

of the views of Beck (1981) who, comparing large and small models, concluded 

that a large model might be able to predict the ''correct" future with little 

precision, whereas a small model might predict, albeit with high precision, 
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an Incorrect future. Sensitivity analyses which are 1imlted in their scope, 

for example, a straightforward comparison of the simulation output with expected 

values, are also limited in their usefulness. Tyler et al. (1982) found that 

various combinations of input parameters could produce the expected result for 

a stock assessment moctel; such ambiguities have given rise to criticism of the 

usefulness of simulation models in general. 

One approach to the problem of generating reasonable results from spurious 

data Is to restrain from tuning the data input to the simulation, relying instead 

on only .tbe best empirical estimates (Sissenwfne 1977). Even so, because the 

simulation in many ways repeats the same assumptions that were employed in the 

empirical data preparation, there are no guarantees that reasonable outputs 

necessarily result from reasonable inputs and a reasonable simulation. When 

simulation models are constructed with data requirements which are impossible 

to fulfill using only empirical estimates, some tuning of the simulation will 

be required. In these instances a complete multivariate sensitivity analysis 

is necessary. Although this can result in a lack of precision in estimating 

the sensitivities of the simulation to the individual parameters it is a more 

real lstic representation of the degree of precision which is attainable with 

the simulation under consideration. 

Certain general conclusions are evident from the sensitivity analyses of 

SKEBUB. The simulation was most sensitive to the parameter of growth and those 

parameters affecting lnterspecific predation. Similar parameters were the most 

sensitive ones in an abbreviated version of the Andersen and Ursln multispecies 

model (Li~lngston 1983). The parameter defining prey switching has a considerable 

impact on the simulation and it is likely that it is an important factor in 

system stability (Murdoch 1969). In the SKEBUB simulation, the biomass growth 

functions include the effects of recruitment; the model's sensitivity to t~e 

growth parameter reflects the importance of this factor. 
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In the GH'Biplot the deviations of the output variables from their base] ine 

value were reduced by a factor of 10. With this reduction, the variances of 

the input parameters and output variables were comparable, suggesting that 

errors in input parameters were magnified approximately tenfold in the output 

variables. O'Neill et al. (1980) found that the coefficients of variation of 

input parameters were up to an order of magnitude less than the coefficients 

of variation of the output variables in a two-variable non-1 inear model. One 

method that O'Neill et al. (1980) utilized to reduce these large coefficients 

of variation in output variables, was to define acceptable limits of model 

behavior at particular times in the simulation, thus effectively limiting the 

allowed error ranges of the input parameters. The assumption here, of course, 

is that the simulation is an accurate representation of the system and that 

the acceptable limits of the output variables can be well defined. Although 

this method did reduce the total error, the authors did not consider it to 

be the optimal method as there was no guarantee that the output at other times 

in the simulation would be reasonable. In SKEBUB the equilibration procedure 

can be used to reduce the total permissable output variability by constraining 

the acceptable percent annual change in biomass at equilibrium. Figures 11 and 

12 indicate the increase in percent annual change at equilibrium for the silver 

hake and flatfish groups as a function of two variables. The reduction in output 

variability would be dependent on the allowed annual change in biomass at 

equilibrium. Fully 70% of the Monte Carlo simulations had annual percent 

changes in biomass greater than those of the baseline run (highest percentage 

for baseline run was 0.7%). Thus, if the percent change in biomass obtained 

from the baseline was used as the criterion, a substantial reduction in output 

variability would result. This does not imply that our simulation has become 
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any more accurate, but only that we are willing to place more confidence in 

the assumption of a long-term equll lbrium than we are in the largely undetermined 

error ranges of the input parameters. 

The conclusions on the sensitivities of simulation outputs to input parameter 

perturbations are drawn from an analysis of the simulation stabilized at a 

particular point in the parameter space; response surfaces indicate the presence 

of multiple equilibria and the conclusions at different equilibria would most 

likely be different. This is especially likely in the case of the consumption/ 

biomass ratio which was indicated to be of lesser sensitivity than the predation/ 

biomass ratio in the multivariate analyses. The sensitivities of the variables 

are not just a function of the formulations within the model but of the input 

data themselves; this is well demonstrated by the differing parameter sensitivities 

of the different species. 

Sensitivity analyses often begin with the important, and often untested, 

assumption that there is a correct data source with which to either compare 

results or with which to ascribe reasonable error bounds. The results of the 

sensitivity analyses are then often presented in terms of the model, without 

regard for the fact that the simulation model is just one in a series of 

models which started with initial assumptions at the time of data collection 

(e.g., associated normal, lognormal, or other probabll lty distribution), and 

ended with the assumptions involved in the sensitivity analyses themselves. 

This series of models needs to be taken into account when interpreting the 

results from sensitivity analyses; the results from sensitivity analyses can 

represent the hypotheses and assumptions of the scientists involved in 

researching the entire system. 
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Table 1.--Parameters and variables used in the sensitivity analyses. 


Abbreviation Full name 

G!f 
FRG~ 
CF!( 

AP.!/ 

INBl.O~ 

DMAX 

B 

PS 

PM 

PB 

eta.!! 

P/a.!f 


BIOM.!J 


Input parameters 

Growth coefficient 

Food requirement for growth and maintenance 

Percent contribution in diet of other fish 

Availability to predation 

I n put b i oma s s 

Maximum allowed change in percent food composition 

Rate of change of percent food composition 

Predation by sharks 

Predation by mammals 

Predation by birds 

Mean annual temperature 

Accl imation_temperature 

Output variables 

Consumption/biomass ratio 

Predation/biomass ratio 

Equilibrium biomass 

1/ Species specific values 
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Table 2.--Llst of species or species groups represented In SKEBUB simulation. 

Number Group 

1. Dogfish 

2. Flatfish 

3. Haddock 

4. Demersal "others" 

5. Cod 

6. Silver hake 

7. Pelagic 11others 11 

8. Herring 

9. Mackerel 

10. Squids 

11. Shellfish (commercially exploited) 

12. Bent hos 

13. Zooplankton 

14. Phytoplankton 
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Table 3.--Ranking of parameters and variables associated with the silver hake 

group according to their sensitivity as indicated by different analyses. 

. l ISimple correlation.!.! Partial corre 1at1on- GH'Biplot 

1. C/B BIOM BIOM 

2. P/B G FRGM 

3. G P/B G 

4. FRGM FRGM CF 

5. BIOM C/B B 

6. CF CF P/B 

7. AP INBIOM INBIOM 

8. INBIOM TA DMAX 

9. DMAX T PM 

10. B AP T 

11. PS B AP 

12. PM PB PS 

13. PB PM PB 

14. T PS TA 

15. TA DMAX D/B 

y Ranking ordered on sum of squared correlation coefficients. 
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Figure 1.--Sensitivities of SKEBUB simulation to species specific growth 

coefficients. 
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Figure 2.--Sensitivities of SKEBUB simulation to species specific food 


requirements for growth and maintenance. 


0.0 
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Figure 3.--Sensitivities of SKEBUB simulation to species specific availability 

to predation. 
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Figure 4.--Sensltlvitles of SKEBUB simulation to species specific percent 

contribution to the diets of predators. 
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Figure 5.--Sensitivities of SKEBUB simulation to global parameters (see 

Table 1 for definitions). 
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Figure 6.--Sensitivities of species specific equilibrium biomasses in SKEBUB 

s i mu 1at ion . 
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Figure ].--Sensitivities of species specific predation/biomass ratios in 

SKEBUB simulation. 
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Figure 8.--Sensitivities of individual model runs of SKEBUB simulation. 
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Figure 9.--Sensitlvities of Input and output variables directly relating to 

the flatfish species grouping . 
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Figure 10.--Sensitivities of input and output variables directly relating 

to the silver hake. 
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Figure 11.--Response surface of percent annual change in biomass at equilibrillll 

for the flatfish species grouping (absolute values). Outlined area 

indicates parameter range in sensitivity analyses. 
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Figure 12.--Response surface of percent annual change in biomass at equilibrium 

for the silver hake (absolute values). Outlined area indicates parameter 

range in sensitivity analyses. 






	back cover pages.pdf
	NOTICEThis document is being made available in.pdf
	Page 1
	Page 2





